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Abstract

The general Hermitian nonnegative-definite solution to the matrix equationAXA ∗ = B
is established in a form which can be viewed as a corrected version of that derived by C.G.
Khatri and S.K. Mitra (SIAM J. Appl. Math. 31 (1976) 579–585) and an alternative version
to that derived by J.K. Baksalary (Linear and Multilinear Algebra 16 (1984) 133–139). The
new representation admits an easy way to obtain solutions of minimal and maximal rank,
respectively. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let Cm×n denote the set of complexm × n matrices, and letCH
m denote the set

of complex Hermitianm × m matrices. Moreover, letC>
m denote the subset ofCH

m

consisting of nonnegative-definite matrices, and letC>
m denote the subset ofC>

m con-
sisting of positive-definite matrices. The symbolsA∗, A+, A−, R(A), N(A) and
rk(A) will stand for the conjugate transpose, the Moore–Penrose generalized inverse,
any generalized inverse, the range (column space), the null space and the rank, re-
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spectively, ofA ∈ Cm×n. By A1/2 ∈ C>
m we denote the (unique) Hermitian nonneg-

ative-definite square root ofA ∈ C>
m.

We consider the general Hermitian nonnegative-definite solution to the equation

AXA ∗ = B (1.1)

for given matricesA ∈ Cm×n and B ∈ C>
m. Khatri and Mitra [4, Lemma 2.1] ex-

pressed this solution as

X = A−B(A−)∗ + (In − A−A)Û(In − A−A)∗, (1.2)

whereÛ is declared to be an arbitrary matrix inC>
n , while A− is declared to be an

arbitrary generalized inverse ofA. Baksalary [1], however, demonstrated that (1.2)
cannotbe understood in such a way thatA− is chosen arbitrarily in a first step, and
then, in a a second step, every solution is obtained from (1.2) by varyingÛ overC>

n .
As an alternative, Baksalary [1, Theorem 1] proposes a representation

X = X̂X̂
∗
, X̂ = A−D + (In − A−A)Z, (1.3)

whereA− is an arbitrary but fixed generalized inverse ofA, andD is an arbitrary but
fixedm × n matrix such thatB = DD∗, whereasZ is free to vary overCn×n.

It is our aim to deliver a further alternative to (1.2), which can be expressed as

X = A=B(A=)∗ + (In − A−A)UU∗(In − A−A)∗, (1.4)

whereA= represents a class of generalized inverses ofA of the formA= = A− +
(In − A−A)Z(B1/2)−. HereA− and(B1/2)− are arbitrary but fixed generalized in-
verses ofA andB1/2, respectively, whereasZ is free to vary overn × m, andU is free
to vary overCn×(n−b) with b = rk(B). It will be seen that (1.4) delivers an additive
decompositionX = X1 + X2 such that rk(X) = rk(X1) + rk(X2), rk(X1) = rk(B),
andAX1A∗ = B, whereX1, X2 ∈ C>

n . As a consequence, representations of general
Hermitian nonnegative-definitesolutions of minimal and maximal rank, respectively,
can be derived.

The importance of Eq. (1.1) has recently been emphasized by Dai and Lancaster
[2] within the real setting. See also [3] for some additional notes on the general
Hermitian solution toAXA ∗ = B. Further application for Hermitian nonnegative-
definite solutions to equations of the form (1.1) are given by Young et al. [7]. Their
basic Theorem 1, however, is proved to be incorrect, see Section 3.

2. Results

Before stating our main result, we consider the equationAY = B for given ma-
tricesA andB. Clearly, there exists a matrixY satisfyingAY = B if and only if
R(B) ⊆ R(A). For such a matrixY we have rk(B) = rk(AY) 6 rk(Y) so that a
solution of minimal rank is a solutionY satisfying rk(Y) = rk(B). Mitra [5, Lemma
2.2] demonstrated that every matrixY with AY = B can be written asY = Y1 + Y2
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such that rk(Y) = rk(Y1) + rk(Y2), rk(Y1) = rk(B) andAY1 = B. The following
lemma gives a general representation for the set of minimal rank solutions.

Lemma 1. Let A ∈ Cm×n and B ∈ Cm×p such thatR(B) ⊆ R(A). Let A− and
B− denote arbitrary but fixed generalized inverses ofA andB, respectively. Then a
representation of the general minimal rank solution toAY = B is given by

Y = A−B + (In − A−A)ZB−B, (2.1)

whereZ is free to vary overCn×p .

Proof. Let Y be given as in (2.1) for someZ ∈ Cn×p . Then clearlyAY = B in
view of AA−B = B. This impliesR(B∗) ⊆ R(Y∗). In addition,Y of the form (2.1)
satisfiesR(Y∗) ⊆ R(B∗) so thatR(Y∗) = R(B∗) and hence rk(Y) = rk(B).

Conversely letY satisfyAY = B and rk(Y) = rk(B). ThenR(Y∗) = R(B∗) so
thatY = YB−B. SinceAY = B, there existsZ such thatY =A−B+(In−A−A)Z =
A−B + (In − A−A)ZB−B, thus completing the proof.�

It is obvious thatY = A−B is a minimal rank solution toAY = B irrespective of
the choice ofA−, providedR(B) ⊆ R(A). On the other hand, Lemma 1 shows that
every minimal rank solution can be written asA=B for some generalized inverseA=
of the formA= = A− + (In − A−A)ZB−.

Subsequently we consider the equationAXA ∗ = B for given matricesA ∈ Cm×n

andB ∈ C>
m. A necessary and sufficient condition for the consistency of this equation

isR(B) ⊆ R(A). In that case rk(B) 6 rk(A) 6 n.

Theorem 1. Let A ∈ Cm×n andB ∈ C>
m with b = rk(B) such thatR(B) ⊆ R(A).

Let A− and(B1/2)− denote arbitrary but fixed generalized inverses ofA andB1/2,

respectively. Then a representation of the general Hermitian nonnegative-definite
solution toAXA ∗ = B is given by

X = A=B(A=)∗ + (In − A−A)UU∗(In − A−A)∗ (2.2)

with

A= = A− + (In − A−A)Z(B1/2)−, (2.3)

whereZ is free to vary overCn×m, andU is free to vary overCn×(n−b).

Proof. When X is given by (2.2) with (2.3), thenX ∈ C>
n and AXA ∗ = AA−B

(AA−)∗ = B in view of AA−B = B.
To see that (2.2) with (2.3) provides the general solution, let

B = V
(

1 0
0 0

)
V∗ = (V1 : V2)

(
1 0
0 0

)(
V∗

1
V∗

2

)
= V11V∗

1

be the spectral decomposition ofB so thatV ∈ Cm×m is unitary and1 ∈ C>
b is

diagonal withb = rk(B). Sinceb 6 rk(A) 6 n we can writeB = DD∗, whereD =
(V11

1/2 : 0m×(n−b)).



126 J. Groß / Linear Algebra and its Applications 321 (2000) 123–129

Now, letX ∈ C>
n satisfyAXA ∗ = B. ThenAX1/2(AX1/2)∗ = DD∗. SinceAX1/2

andD are bothm × n matrices, there exists a unitaryW ∈ Cn×n such thatAX1/2 =
DW, see e.g. [6, Theorem 8.9.3], or equivalently,

AH = (V11
1/2 : 0m×(n−b)),

whereH = X1/2W∗. By appropriately partitioningH = (H1 : H2), we can write

AH1 = V11
1/2 and AH2 = 0m×(n−b). (2.4)

Then there exists a matrixU ∈ Cn×(n−b) such that

H2 = (In − A−A)U.

Postmultiplying the first equation in (2.4) byV∗
1 (whereV∗

1V1 = Ib) yields

AY = B1/2,

where Y = H1V∗
1. That rk(Y) = rk(H1) = rk(B) can be seen from rk(H1) =

rk(H1V∗
1V1) 6 rk(Y) 6 rk(H1) and b = rk(V11

1/2) = rk(AH1) 6 rk(H1) 6 b.
From Lemma 1, we conclude thatY = A=B1/2 for someZ ∈ Cn×m, whereA= is
given in (2.3). The matrixX = HH∗ = H1H∗

1 + H2H∗
2 = YY∗ + H2H∗

2 can there-
fore be written as

X = A=B(A=)∗ + (In − A−A)UU∗(In − A−A)∗,
thus concluding the proof.�

It is easily seen that under the assumptions of Theorem 1, a representation of the
general Hermitian nonnegative-definite solution toAXA ∗ = B is also

X = A=B(A=)∗ + (In − A−A)Û(In − A−A)∗

with A= from (2.3), whereZ is free to vary overCn×m, andÛ is free to vary over
C>

n . Such a representation might be advantageous when the rank ofB is not known.
In addition, we note that Theorem 1 does not only give a representation of the

general Hermitian nonnegative-definite solution toAXA ∗ = B, but, simultaneous-
ly, delivers an additive decompositionX = X1 + X2 such that rk(X) = rk(X1) +
rk(X2), rk(X1) = rk(B) and AX1A∗ = B, whereX1, X2 ∈ C>

n . This motivates us
to give representations for the general Hermitian nonnegative-definite solutions of
minimal and maximal rank, respectively.

Corollary 1. Under the assumptions of Theorem1, the following three statements
hold:

(i) If X is represented as in Theorem1, thenrk(X) = rk(B) + rk[(In − A−A)U].
(ii) The minimal rank of a Hermitian nonnegative-definite matrixX satisfying

AXA ∗ = B is rk(B). A representation for the general solution is given as in
Theorem1, whereZ is free to vary overCn×m andU = 0n×(n−b).

(iii) The maximal rank of a Hermitian nonnegative-definite matrixX satisfying
AXA ∗ = B is n − [rk(A) − rk(B)]. A representation for the general solution
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is given as in Theorem1, whereZ is free to vary overCn×m andU is free to
vary overCn×(n−b) subject tork(U : A−A) = n.

Proof. Let X = X1 + X2, whereX1 = A=B(A=)∗ ∈ C>
n and X2 = (In − A−A)

UU∗(In − A−A)∗ ∈ C>
n . If y is any vector inR(X1) ∩ R(X2), theny = A=Ba =

(In − A−A)Ub for some vectorsa andb so thatAy = 0. But sinceAy = AA=Ba =
Ba, we arrive aty = 0. HenceR(X1) ∩ R(X2) = {0}, and therefore rk(X) = rk(X1)

+ rk(X2), cf. [6, Theorem 3.6.1], where rk(X1) = rk(A=B) = rk(B) and rk(X2) =
rk[(In − A−A)U]. This shows (i). It is now clear thatb = rk(B) is the minimal
rank of X. Moreover, the solutionX of minimal rank is represented by (2.2) with
(2.3) where rk[(In − A−A)U] = 0, i.e., (In − A−A)U = 0. This is accomplished
by choosingU = 0 so that (ii) is shown. To see (iii), note that rk[(In − A−A)U] =
rk[U∗(In − A−A)∗] = rk[(In − A−A)∗] − dim{N(U∗) ∩ R[(In − A−A)∗]}, cf. [6,
Theorem 3.4.17], where rk[(In − A−A)∗] = n − rk(A). Hence rk(X) = n − [rk(A)

− rk(B)] − dim{N(U∗) ∩ R[(In − A−A)∗]} so that the maximal rank ofX is n −
[rk(A) − rk(B)] whenever dim{N(U∗) ∩ R[(In − A−A)∗]} = 0, or equivalently,
dim[R(U) + N(In − A−A)] = n. SinceN(In − A−A) = R(A−A), the latter is
equivalent to rk(U : A−A) = n. �

Note that part (iii) of Corollary 1 also gives a representation of the general Hermi-
tian positive-definite solution toAXA ∗ = B, provided such a solution exists, which
is the case ifR(B) ⊆ R(A) and rk(B) = rk(A), i.e.,R(B) = R(A). WhenAXA ∗ =
B is consistent, then a sufficient condition forR(B) = R(A) is B ∈ C>

m.
If A− is chosen as a minimum norm generalized inverse, i.e.,AA−A = A and

(A−A)∗ = A−A, then rk(U : A−A) = n is equivalent to rk(U : A∗) = n.
Let us now reconsider the example given by Baksalary [1], where

A = (1 1) and B = (1).

By choosingA− = (1 0)∗ and notingB = B1/2 = (B1/2)−1, Theorem 1 yields the
general Hermitian nonnegative-definite solution

X =
(

(1 + z)(1 + z) −(1 + z)z

−z(1 + z) zz

)
+
(

uu −uu

−uu uu

)
, (2.5)

wherez andu are arbitrary complex numbers. Ifuu = 0, thenX has minimal rank,
whereas in caseuu 6= 0 the solutionX has maximal rank.

3. Extensions

It is easily seen that the above results extend naturally to systems of four equations

AiXA∗
j = BiB∗

j , i, j = 1, 2, (3.1)
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for given matricesA1, A2 ∈ Cm×n andB1, B2 ∈ Cm×k. A representation for the gen-
eral common Hermitian nonnegative-definite solution to (3.1), and the condition for
its existence, can be given in terms of

A =
(

A1

A2

)
and B =

(
B1B∗

1 B1B∗
2

B2B∗
1 B2B∗

2

)
,

by applying Theorem 1 and noting that (3.1) can be written asAXA ∗ = B, where
the matrixB is Hermitian nonnegative-definite.

For the choicek = m, Theorem 1 in [7] claimsX = X̃X̃
∗

as a representation for
the general common Hermitian nonnegative-definitesolution (provided its existence)
to the two equations

AiXA∗
i = BiB∗

i , i = 1, 2, (3.2)

where

X̃ = A+
1 B1 + (In − A+

1 A1)[A2(In − A+
1 A1)]+(B2 − A2A+

1 B1)

+(In − A+
1 A1)(In − [A2(In − A+

1 A1)]+[A2(In − A+
1 A1)])Z, (3.3)

andZ being free to vary overCn×n. However, this cannot be true. For a counterex-
ample, disproving the asserted general representation, let

A1 = (1 1), A2 = (0 1) and B1 = (1 0) = B2.

It is easily computed that

(In − A+
1 A1)(In − [A2(In − A+

1 A1)]+[A2(In − A+
1 A1)]) =

(
0 0
0 0

)

and thatX̃ from (3.3) is uniquely given as

X̃ =
(

0 0
1 0

)
.

Now,

X = X̃X̃
∗ =

(
0 0
0 1

)
cannot be the general common Hermitian nonnegative-definite solution to (3.2),
since every matrix of the form (2.5) withzz + uu = 1 is also a solution. Take for
example

X =
(

4 −2
−2 1

)
.

Nonetheless,

X =
(

0 0
0 1

)
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is the only common Hermitian nonnegative-definite solution to the four equations
(3.1).

Acknowledgement

Support by Deutsche Forschungsgemeinschaft (DFG) under grant Tr 253/3-1 is
gratefully acknowledged.

References

[1] J.K. Baksalary, Nonnegative definite and positive definite solutions to the matrix equation
AXA∗ = B, Linear and Multilinear Algebra 16 (1984) 133–139.

[2] H. Dai, P. Lancaster, Linear matrix equations from an inverse problem of vibration theory, Linear
Algebra Appl. 246 (1996) 31–47.

[3] J. Groß, A note on the general Hermitian solution toAXA∗ = B, Bull. Malay. Math. Soc. 21 (1998)
57–62.

[4] C.G. Khatri, S.K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations,
SIAM J. Appl. Math. 31 (1976) 579–585.

[5] S.K. Mitra, Fixed rank solutions of linear matrix equations, Sankhyā Ser. A 35 (1972) 387–392.
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