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Abstract

The general Hermitian nonnegative-definite solution to the matrix equét}oh™ = B
is established in a form which can be viewed as a corrected version of that derived by C.G.
Khatri and S.K. Mitra (SIAM J. Appl. Math. 31 (1976) 579-585) and an alternative version
to that derived by J.K. Baksalary (Linear and Multilinear Algebra 16 (1984) 133-139). The
new representation admits an easy way to obtain solutions of minimal and maximal rank,
respectively. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let C,,x, denote the set of complex x n matrices, and le€ denote the set
of complex Hermitiann x m matrices. Moreover, leE> denote the subset 6f7
consisting of nonnegative-definite matrices, andlgtdenote the subset @f., con-
sisting of positive-definite matrices. The symba#l$, AT, A=, Z(A), A" (A) and
rk(A) will stand for the conjugate transpose, the Moore—Penrose generalized inverse,
any generalized inverse, the range (column space), the null space and the rank, re-
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spectively, ofA € C,,x,. By A2 € CZ we denote the (unique) Hermitian nonneg-
ative-definite square root & € C,.
We consider the general Hermitian nonnegative-definite solution to the equation

AXA* =B (1.1)

for given matricesA € C,,», andB € C;. Khatri and Mitra [4, Lemma 2.1] ex-
pressed this solution as

X=A"BA )+ U, —A AU, — A~A)*, (1.2)

whereU is declared to be an arbitrary matrix @7, while A~ is declared to be an
arbitrary generalized inverse 6f Baksalary [1], however, demonstrated that (1.2)
cannotbe understood in such a way that is chosen arbitrarily in a first step, and
then, in a a second step, every solution is obtained from (1.2) by vagymgrC. .

As an alternative, Baksalary [1, Theorem 1] proposes a representation

X=XX", X=AD4+(,-AAZ, (1.3)

whereA™ is an arbitrary but fixed generalized inversedgfandD is an arbitrary but
fixedm x n matrix such thaB = DD*, wherea< is free to vary over, «,,.
It is our aim to deliver a further alternative to (1.2), which can be expressed as

X = AB(AT)* + (I, — AA)UU*(Il, — A~A), (1.4)

whereA~ represents a class of generalized inverses of the formA= =A™ +

(I, — A“A)Z(BY?)~. HereA~ and(BY?)~ are arbitrary but fixed generalized in-
verses ofA andBY/2, respectively, whereasis free to vary oven x m, andU is free

to vary overC,  ,—p) With b = rk(B). It will be seen that (1.4) delivers an additive
decompositionX = X1 + X2 such that rkX) = rk(X1) + rk(X2), rk(X1) = rk(B),
andAX1A* = B, whereX1, Xz € C.. As a consequence, representations of general
Hermitian nonnegative-definite solutions of minimal and maximal rank, respectively,
can be derived.

The importance of Eq. (1.1) has recently been emphasized by Dai and Lancaster
[2] within the real setting. See also [3] for some additional notes on the general
Hermitian solution toAXA™* = B. Further application for Hermitian nonnegative-
definite solutions to equations of the form (1.1) are given by Young et al. [7]. Their
basic Theorem 1, however, is proved to be incorrect, see Section 3.

2. Results

Before stating our main result, we consider the equatiwn= B for given ma-
tricesA andB. Clearly, there exists a matriX satisfyingAY = B if and only if
A(B) C Z(A). For such a matrixy we have rkB) = rk(AY) < rk(Y) so that a
solution of minimal rank is a solutiovf satisfying rkY) = rk(B). Mitra [5, Lemma
2.2] demonstrated that every matiixwith AY = B can be writtena¥ = Y1+ Y>
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such that rkY) = rk(Y1) + rk(Y2), rk(Y1) = rk(B) andAY 1 = B. The following
lemma gives a general representation for the set of minimal rank solutions.

Lemmal. LetA € C,x, andB € C,,», such that#(B) € #(A). Let A~ and
B~ denote arbitrary but fixed generalized inverse®\aind B, respectively. Then a
representation of the general minimal rank solutiorAfé = B is given by

Y=AB+(,-A"A)ZB B, (2.1)
whereZ is free to vary ovetC, .

Proof. LetY be given as in (2.1) for somé € C,,. Then clearlyAY =B in
view of AA™B = B. This impliesZ(B*) € 2(Y*). In addition,Y of the form (2.1)
satisfiesZ(Y™) C #(B*) so thatZ(Y*) = 2(B*) and hence k) = rk(B).

Conversely lety satisfyAY = B and rkY) = rk(B). ThenZ(Y*) = #(B*) so
thatY = YB™B. SinceAY = B, there exist¥ suchthaty =A"B+(l,—-A"A)Z =
A™B + (I, — A~A)ZB™ B, thus completing the proof.

It is obvious thaty = A™B is a minimal rank solution t&Y = B irrespective of
the choice oA ™, provided#(B) € Z(A). On the other hand, Lemma 1 shows that
every minimal rank solution can be written &S B for some generalized inverge
ofthe formA= =A"+ (1, —AA)ZB".

Subsequently we consider the equatiofA * = B for given matriced\ € C,x,
andB e C; . A necessary and sufficient condition for the consistency of this equation
isZ(B) C Z(A). In that case riB) < rk(A) < n.

Theorem 1. LetA € C,x, andB € C; with b = rk(B) such thatZ(B) € Z(A).
LetA~ and (BY/2)~ denote arbitrary but fixed generalized inverse#\adind BY/?,
respectively. Then a representation of the general Hermitian nonnegative-definite
solution toAXA* = B is given by

X = A BAT)* + (I, — ATA)UU*(l, — A~ A)* (2.2)
with

A==A"+(,— A AZBY?H", (2.3)
whereZ is free to vary ovelC, «,,, andU is free to vary ovelC, « ;,—p).

Proof. WhenX is given by (2.2) with (2.3), theiX € C. and AXA* = AA™B
(AA7)* =Binview of AA™B = B.
To see that (2.2) with (2.3) provides the general solution, let

(A O\ A 0\ [V .
B_V<0 0>v_(v1.v2)<o 0)<V§)_V1AV1

be the spectral decomposition Bfso thatV e C,,x,, is unitary andA € C; is
diagonal withb = rk(B). Sinceb < rk(A) < n we can writeB = DD*, whereD =
(VlAl/2 : Omx(n—b))-
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Now, letX € C” satisfyAXA* = B. ThenAXY/2(AX/2)* = DD*. SinceAX /2
andD are bothm x n matrices, there exists a unitaWy € C, ., such thaaX/? =
DW, see e.g. [6, Theorem 8.9.3], or equivalently,

AH = (V1AY2: 0ppcni)),
whereH = X¥/2W*. By appropriately partitioningl = (H1 : H»), we can write
AH1 =ViAY? and AH2 = 0ux(_p). (2.4)
Then there exists a matrb € C, (,—p) Such that
Ho = (I, — A~A)U.
Postmultiplying the first equation in (2.4) bg; (whereViVi = 1,) yields
AY = BY?,

where Y = H1V]. That rkY) =rk(Hy) =rk(B) can be seen from tkly) =
rk(H1ViV1) < rk(Y) <rk(H1) and b = rk(V1AY?) = rk(AH1) < rk(H1) < b.
From Lemma 1, we conclude th¥t= A=BY/2 for someZ € C,x,, whereA= is
given in (2.3). The matriX = HH* = H1H] + HoHS = YY* + HoHJ can there-
fore be written as

X =A"BA)"+ (1, —A AUU*, —ATA)",
thus concluding the proof.Od

It is easily seen that under the assumptions of Theorem 1, a representation of the
general Hermitian nonnegative-definite solutio’™$A * = B is also

X = A=B(AS)* + (I, — A"A)U(, — A~A)*

with A= from (2.3), whereZ is free to vary ovelC, x, andU is free to vary over
C; . Such a representation might be advantageous when the ré&his oot known.

In addition, we note that Theorem 1 does not only give a representation of the
general Hermitian nonnegative-definite solutionA¥A* = B, but, simultaneous-
ly, delivers an additive decompositiof = X1 + X2 such that rkX) = rk(X1) +
rk(X2), rk(X1) = rk(B) and AX1A* = B, whereXy, X2 € C.. This motivates us
to give representations for the general Hermitian nonnegative-definite solutions of
minimal and maximal rank, respectively.

Corollary 1. Under the assumptions of Theordimthe following three statements
hold:

(i) If X is represented as in Theoreimthenrk(X) = rk(B) + rk[(l, — ATA)U].

(i) The minimal rank of a Hermitian nonnegative-definite matixsatisfying
AXA* =B is rk(B). A representation for the general solution is given as in
Theoreml, whereZ is free to vary ovetC, ., andU = 0, (,—p).

(i) The maximal rank of a Hermitian nonnegative-definite makixsatisfying
AXA* =B isn — [rk(A) — rk(B)]. A representation for the general solution
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is given as in Theorerh, whereZ is free to vary ovelC,«,, andU is free to
vary overC,, ,—p) subject tak(U : AA) = n.

Proof. Let X = X1+ Xz, whereX; = AB(AS)* € C; and X2 = (I, —A~A)
uu*(l, — A A* ¢ Cf. If y is any vector inZ(X1) N #(X2), theny = A=Ba =
(I, — A~A)Ub for some vectora andb so thatAy = 0. But sinceAy = AATBa =
Ba, we arrive aty = 0. HenceZ(X1) N Z(X2) = {0}, and therefore ) = rk(X1)
+ rk(X2), cf. [6, Theorem 3.6.1], where (K1) = rk(A™B) = rk(B) and rkX»3) =
rk[(l,, — ATA)U]. This shows (i). It is now clear that = rk(B) is the minimal
rank of X. Moreover, the solutioiX of minimal rank is represented by (2.2) with
(2.3) where rk(l, —A“A)U] =0, i.e.,(I, —A~A)U = 0. This is accomplished
by choosingJ = 0 so that (ii) is shown. To see (iii), note that ¢k, — A"A)U] =
rk[U*(1,, — A=A)*] = rk[(1,, — A~A)*] — dim{A"(U*) N Z[(1, — A~ A)*1}, cf. [6,
Theorem 3.4.17], where fld,, — A~A)*] = n — rk(A). Hence rkX) = n — [rk(A)
—r1k(B)] — dim{A4"(U*) N 2[(I,, — A~ A)*]} so that the maximal rank of isn —
[rk(A) — rk(B)] whenever difi/ (U*) N 2[(, — A~A)*]} =0, or equivalently,
dim£2ZU) + A1, — A"A)] = n. Since A/ (I,, — A~A) = Z(A”A), the latter is
equivalenttorkU : ATA) =n. O

Note that part (iii) of Corollary 1 also gives a representation of the general Hermi-
tian positive-definite solution t&d XA * = B, provided such a solution exists, which
is the case if2(B) € Z(A) and rkB) = rk(A), i.e.,2(B) = Z(A). WhenAXA* =
B is consistent, then a sufficient condition f@(B) = #(A) isB € C,,.

If A~ is chosen as a minimum norm generalized inverse,A&;A = A and
(AA)* = A~A,thenrkU : A~A) = nis equivalent to rkU : A*) = n.

Let us now reconsider the example given by Baksalary [1], where

A= 1) and B=(1).

By choosingA~ = (1 0)* and notingd = BY/2 = (B¥/?)~1, Theorem 1 yields the
general Hermitian nonnegative-definite solution

X=<(1+z)(1+2) —(1J_rZ>Z>+< ui —”@), (2.5)

—z(1+72) 44 —uu uu

wherez andu are arbitrary complex numbers.dit = 0, thenX has minimal rank,
whereas in casgu # 0 the solutionX has maximal rank.

3. Extensions

Itis easily seen that the above results extend naturally to systems of four equations
AXAT =BB}, i,j=12 (3.1)
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for given matrice®\1, A2 € C,,x, andBy, B2 € C,,,xx. A representation for the gen-
eral common Hermitian nonnegative-definite solution to (3.1), and the condition for
its existence, can be given in terms of

A B1B; BiB3
A=("") and B=(_"t “tT2),
A2 BoB] B2Bj
by applying Theorem 1 and noting that (3.1) can be writte 44 * = B, where
the matrixB is Hermitian nonnegative-definite.

For the choicé& = m, Theorem 1 in [7] claimX = XX" as a representation for
the general common Hermitian nonnegative-definite solution (provided its existence)
to the two equations

AXA* =B;Bf, i=1,2, (3.2)
where
X=AIB1+ (I, — ATAD[A(1, — ATADTT (B2 — A2ATBY)
+(1, — ATAD (1, — [A2(l, — ATADTT A, — ATADDZ, (3.3)

andZ being free to vary ovet, «,. However, this cannot be true. For a counterex-
ample, disproving the asserted general representation, let
Ai=1 1, A=0 1) and By =(1 0 =B».

Itis easily computed that

(1 = ATAD, = Az, - ATADI TAZ0, ~ ATADD = (3 )

and thatX from (3.3) is uniquely given as

Now,

v 0 O
xei = (3 9

cannot be the general common Hermitian nonnegative-definite solution to (3.2),
since every matrix of the form (2.5) wittt + uu = 1 is also a solution. Take for
example

X = (_‘2‘ ‘i)

Nonetheless,

-9
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is the only common Hermitian nonnegative-definite solution to the four equations
(3.1).
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