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INTRODUCTION 

The concept of residual intersection, introduced by Artin and 
Nagata [l] in 1972, is a fruitful generalization of linkage as the following 
two examples attest. Let I be a strongly Cohen-Macaulay ideal in a 
CohenMacaulay local ring R. If Z satisfies the condition (G,), then 
Huneke [6, Proposition 4.31 has proved that the extended Rees algebra 
R[It, t- ‘1 is defined by an ideal which is obtained from I by way of 
residual intersection. Since the extended Rees algebra is a deformation of 
both the Rees algebra R[It] and the associated graded algebra gZ’/I” ‘, 
it contains considerable information about the analytic properties of I. 
(The definitions of residual intersection, strongly Cohen-Macaulay, and 
(G,) may be found in Section 4.) 

Huneke [6, Theorem 4.11 has also shown that the ideal .I, generated by 
the maximal order minors of a generic n x m matrix, is a residual intersec- 
tion of a generic codimension two Cohen-Macaulay ideal. Since J is rather 
poorly behaved with respect to linkage [S], it is promising that it is close 
to a well understood ideal once we weaken the tie from linkage to residual 
intersection. 
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The modern theory of linkage began with Peskine and Szpiro [ 111 when 
they produced a resolution of one ideal of a pair of linked ideals in terms 
of the resolution of the other ideal and a Koszul complex. It would be very 
desirable to have an analogous result for residual intersections. In other 
words, if J is the residual intersection of an ideal I with respect to an ideal 
generated by elements zi, . . . . rm, then we want to express the resolution of 
J in terms of the resolution of I and the Koszul complex on zl, . . . . z,,,. In 
this paper we begin the project: we resolve J in the case that I is a complete 
intersection and the zJ are generic linear combinations of the generators 
of I. 

The ideals that we resolve belong to a wide class of ideals defined by 
“determinantal conditions.” Let R be a ring, Y, x n and XMx m be matrices of 
indeterminates, J,,, be the ideal I,( YX)+Z,,,I,,R,(X) in the ring 
R = R[ Y, X], and A,,, be the quotient R,+/J,,,. If n <m, then Huneke 
a;c? Ulrich [7, Example 3.41 have proved that J= J,,, is the generic 
residual intersection of the generic complete intersection I= I,(Y). We give 
the R,,- free resolution of A,,,. The ideals J,,, with m <n define the 
singular locus of a projective algebraic variety that is a complete intersec- 
tion in projective space. These ideals have been resolved by Buchsbaum 
and Eisenbud [4]. The ideals J,,,, for m = n or n - 1 are particularly inter- 
esting. If m = n, then J,,, is an almost complete intersection linked generi- 
cally in a single step to a generic complete intersection of grade n; this is 
a Northcott ideal. If m = n - 1, then J,, is the Gorenstein generic double 
link from a generic complete intersection of grade n; this is a Herzog ideal. 
(For up-to-date information about these two types of J,,, see [2].) We 
note that Pellikaan [9. Theorems 3.1 and 3.21 has produced a resolution 
of I,( Y)/I,( YX) over R,,,; his result does not yield a resolution of A,,,,, 
but some similar ideas are involved. 

There are two other ways to view the ideals J= J,,,. In afline space 
A nmfn(R), consider the variety V of complexes 

Q-R”AR”AR 

with rank O2 < min{n, m}. DeConcini and Strickland [S] have shown that 
J is the ideal of V. Furthermore, if R is a normal domain, then R[X, Y]/J 
is a normal domain and J is a perfect ideal with grade equal to the maxi- 
mum of n and m. Finally, A,,, can also be interpreted as Symm.(coker X) 
for T= NJWL,n~n,I”~W). 

The first section is a review of multilinear algebra, followed by delini- 
tions of the main constituents of our resolution. Preliminary acyclicity 
results are given in Section 2, while the resolution itself may be found in 
Section 3. Section 4 contains a discussion of the generic case, with applica- 
tions to residual intersections and canonical modules. 
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1. MULTILINEAR ALGEBRA 

For a quick review of multilinear algebra consult [4]. If G is a free 
module over a ring R, then we let S(G), A(G), and D(G) denote the sym- 
metric algebra, exterior algebra, and divided power algebra of G over R, 
respectively. Each of these algebras (A) is equipped with a co-multiplica- 
tion A: A + A @A which is induced by the diagonal map G + G @ G. We 
shall also let A denote any of the R-linear maps given by restriction of A 
followed by projection. For example, A : A’ G -+ A1 G 0 A’ G carries 
a A b A c to a@b A c-b@a A c+c@a A b and A: D3G-+D,G@D2G 
carries a (3) to a@a”’ and aC2’b to a @ ab + b @ at2) for all a b and c in F. 
The co-multiplication A satisfies the co-associativity property. ;or example, 
the diagram 

(1.1) I 
Id 0 A 

commutes for all non-negative integers a, b, and c. 
We shall frequently, but silently, invoke a handful of canonical inden- 

tilications. In particular, we always think of a free module as coming 
equipped with an orientation. In other words, if G is a free R-module of 
rank n, then we select and fix an isomorphism A” G --f R. Having done this, 
for each a 3 0, we obtain a perfect pairing 

which is induced by multiplication. There is a similar result exploiting the 
fact that D(G) is the graded dual of S(G*). Indeed, for each a 2 0 there is 
a perfect pairing 

(1.3) D,G@ S,(G*) + R. 

Our resolution will be obtained as the total complex of a certain bicom- 
plex. The constituent pieces are all remarkably similar, however, being 
variations on the Koszul complex. We begin with the most elementary ver- 
sion. If + : F -+ R is a map of free R-modules then the Koszul complex K(t,b) 
induced by $ is the exterior algebra A F together with a differential map 
P:l\aF+lI\UP1 Fgiven by 
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By applying (1.1) to the integers 1, a - 1, and b we see that the diagram 

commutes for all non-negative a and b. More generally, if 4 : F-P G* is a 
map of free R-modules, then we let S be the ring S(G*), p be the free 
S-module SQR F, and $1 F -+ S be the composition of id 0 4 with multi- 
plication SQR G* -+ S. Note that if G* = C:=, RT,, then S can be viewed 
as the polynomial ring R[ T, , . . . . T,,]. The differential 8 on the Koszul com- 
plex K(6) has a natural decomposition corresponding to the decomposition 
of Ap F as C,?, (S,G* OR A” F); following [4] we let al, denote the com- 
ponent S, ~, G* Q A* F + S, G* @ AJ ~ ’ F. Hence for each integer r 2 0, 
there is a complex of free R-modules (which we shall still call a “Koszul 
complex”) 

(1.5) O+S,G*@~F+S,G*@r~lF+ ... +S,G*@iF+O. 

EXAMPLE 1.6. Suppose rank F= rank G = n and 4 is an isomorphism. If 
{e 1, . . . . e,} is a basis for F and we let T, = 4(ei), then T,, . . . . T,, is a regular 
sequence in S. It follows that K(4) is the S-free resolution of 
S/( T,, . . . . T,,) 2: R. Hence the complex (1.5) is split exact for r 2 1. 

EXAMPLE 1.7. Suppose rank F= m > n = rank G and C$ is a projection, 
that is, there are bases {e,, . . . . e,} for F and {T,, . . . . T,} for G such that 
$(e,) = T, for 1 Q 1 <n and &e,) = 0 for i2 n + 1. It is well known that the 
homology H,(K($)) = 0 for ja m -n + 1, and it is not difficult to see that 
for 0 < j d m - n the homology at K, ($) . IS concentrated in the summand 
S,G* @A’ F. Hence the complex (1.5) is exact except at S,,G* @A’ F, for 
O<r<m--n. 

Dualizing the complexes (1.5) and applying the perfect pairings (1.2) and 
(1.3), we obtain new complexes that involve divided powers of G. It is 
convenient, however, to give an independent definition. 

DEFINITION 1.8. If 4: F --, G* is a map of free R-modules, then the 
Eagon-Northcott map 



218 BRUNS, KUSTIN, AND MILLER 

is the composition 

D,G@iF% D u-,G@D,G@iF@hjy F 

h-l b-l 

LD ._,GOG@G*O /j Fz D,plG@ A F, 

where ev : G @ G* -+ R is the evaluation map. 

Remark 1.8a. It is easy to verify that q”,: :qi = 0. We shall call a 
complex formed by these maps an Eagon-Northcott complex. 

LEMMA 1.9. If C$ : F + G* is a map of free R-modules, then the Eagon- 
Northcott complexes associated to q5 are dual to the Koszul complexes 
of (1.5). 

Proof. Let m and n denote rank F and rank G, respectively. The perfect 
pairings (1.2) and (1.3) give a perfect pairing 

for all a and b. We claim that the diagram 

commutes (up to sign). It suflices to show that ( I]I, y) = ( - 1 )b+ ’ (z, 8~) 
for zED,GOll\‘F and ~vES’,~,G*@~“~~+~ F. If one picks bases for F 
and G, then this is a straightforward calculation. 1 

Remark 1.9a. If rank G = 1, then both the Eagon-Northcott complex 
and its dual reduce to the simple Koszul complex K(4); in this case, the 
lemma restates the well-known fact that this complex is self-dual. 

The following proposition is a reformulation of Example 1.6. 

PROPOSITION 1.10. Let G be a free R-module of rank n 2 1. If a and h 
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are non-negative integers with b<n- 1, then the Eagon-Northcott 
complexes 

(l.lOa) O+D,,+,G@jiG*+ ... -+D,,+,G@~G*+D,,c@R+O 

(l.lOb) O-D,p,G@AG*+ . . . +D,G@“i\‘G*+R@P\G*+O 

induced by the identity map on G* are split exact. 

Proof: If F= G*, C$ = id, and r > 1, then Example 1.6 guarantees that 
complex (1.5) is split exact. It follows that the dual 

O-D,G@AG 
“-I. 

-+ ... +D,G@ /j G 

is also exact. If n < r, then we obtain (l.lOa) by letting a= r-n. If 
1 drdn, then we obtain (l.lOb) by letting b=n-r. 1 

The kernels that appear in the above Eagon-Northcott complexes play 
a central role in our construction. 

DEFINITION 1.11. If G is a free R-module of rank n Z 1, then for each 
pair of non-negative integers a and b, let K:(G) be the kernel of the 
Eagon-Northcott map rt: D,GQA’G* -+ D,-,G@Ahpl G* which is 
induced by the identity map G* + G*. 

PROPOSITION 1.12. If G is a free R-module of rank n 3 1, then 

(a) KG(G) = A” G* for all b 3 0, and in particular K,“(G) N R, 

(b) Kz(G)=D,(G)for aZla>O, 

(c) K,“-‘(G)= D,+,(G) for all aB0, 

(d) K,b(G)=O for all a> 1 and ban, 

(e) K,b(G)=im(~b,~~) for all a, b>O, except K,“(G)#O=im(~~+‘). 

Proof: The assertions all follow immediately from the definition of K,b 
and Proposition 1.10. 1 

Remark 1.12a. Buchsbaum and Eisenbud [4, pp. 26&262] prefer to 
work directly with the Koszul complex induced by id: G* -+ G*. They 
define L;(G*)= ker(L$y !), which is equal to im(8;) unless p+q= 1. 

Observation 1.12b. If G is a free R-module of rank n > 1 and a and b 
are integers with a + n -b # 0, then 

(K,bG)* 2: L;;:(G*). 
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Proof: The Eagon-Northcott complex 

b+2 b+l 

D a+2 G@ /i G*+D,+,GQ A G*-+K,~+O 

is exact by Proposition 1.12(e). It follows that the top row of 

b+l O-+ (K,bG)* -+ 
( 

D,+,GQ /j G *)* L (D~+~GB~/~’ G)* 

(1.12c) 2 

I I 

4 

n-b- I n--h-2 

O+L;;:(G*)+S,+,G*@ /j GA S ..2G*Q A G 

is exact. The bottom row of (1.12~) is exact by the definition of L;(G*). 
The square commutes by Lemma 1.9. m 

PROPOSITION 1.13. Zf G is a free R-module of rank n 3 1, and a and b are 
non-negative integers with b < n, then K,b(G) is a free R-module of rank 

(1.13a) 

Proof: The result follows from Observation 1.12b and [4, Proposi- 
tion 2.5(c)]. Note that (“; ‘) is defined to be 1 if a=0 and zero 
otherwise. 1 

Remark 1.14. Given maps of free modules 4: F+ G* and II/ : G* -+ H* 
inducing Eagon-Northcott maps q and 1, respectively, it is trivial to verify 
that (l@A)(~@l)=(r~@l)(l@II). But if H*=G*, then both 101 and 
101 act on A” F@D,G@A’G*, where the middle term plays two 
different roles, depending on the choice of association. The diagram 

commutes, as the reader may verify. 
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2. FIRST ACYCLICITY RESULTS 

One of the most important tools in the theory of resolutions is the 
acyclicity lemma of Peskine and Szpiro. The version we use may be found 
in [4, Corollary 4.21. 

LEMMA 2.1 [lo, Lemma 1.81. Let R be a noetherian ring and let 

F:O+F,+F,p,+ ... -F,+F, 

be a complex of finitely generated free R-modules. If F, is acyclic for all 
prime ideals P of R with grade P < n, then F is acyclic. 

Many versions of the next result appear in the literature. It is more 
convenient to prove the version we use than to ask the reader to translate 
some other formulation into our context. 

PROPOSITION 2.2. Let 4 : F + G* be a map of free R-modules with rank 
F=mZn=rankG.AssumethatgradeI,(~)Bm-n+l.Ifaandbarenon- 
negative integers with b > n - 1, then the Eagon-Northcott complex 

is acyclic. 

Proof: For each r 2 1, consider the Koszul complex (1.5) 

S,,G*QA F + ..’ +S,G*Q; F-+0. 

By Lemma 1.9 its dual is the Eagon-Northcott complex 

m--r 

(2.3) O+D,G@iF + ... -+D,,GQ /‘j F. 

If we localize at a prime of grade less than m-n + 1, then by hypothesis 
some n x n minor of q5 becomes invertible, and we may assume that q5 is a 
projection. Hence, by Example 1.7, the Koszul complex is split exact, and 
so is its dual. From the acyclicity lemma one concludes that the truncation 
of (2.3) consisting of the last m-n + 1 maps is exact. In other words the 
complexes 
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O-D,GQiF 
m-r 

+ ... +DOG@ A F for l<r<m--n+l 

O+D,cOi;\ I;-+ ... +D~+.+,,G&~‘F for m-n+l<r 

are all acyclic. 1 

We are now ready to define the rows and columns of our double 
complex. For the remainder of this section we maintain the following 
setting: 

F and G are free R-modules with rank F= m > n = rank G, 
(2.4) 4: F+ G* and + : G* + R are R-module homomorphisms, 

and K,b = K,b( G). 

The columns pose little problem. 

LEMMA 2.5. (a) For each integer a, with 0 <a < m -n, there is a 
complex (K,, K,), 

where IC:: Ki + K’,-’ is induced by the differential id@aJ on D,GQK(+). 
(b) The homology H,(K,) is annihilated by i,(ll/)“” for 0 < j< n - 2. 

Proof. The identity map on G* induces an “Eagon-Northcott map” of 
complexes (see Remark 1.14) q: D,G@K(+)+ (D,G@K($))[-11: 

o- D,GO j\ c* -...- D,G@IJG* -D,G&’ 

I I 
‘I 

I 
‘I 

I 
n n-1 0 

D a-,G@/jG*-D,_,G@A G*-+...-D,~,G@/I\G*-----+O. 

The kernel complex is 0 + K,” -+ K,“- ’ -+ . . + Kz by definition, and by 
Proposition 1.12(e) the image complex is 0 + K,“:: -+ ... -+ Kjj- 1 -+ 0. By 
Proposition 1.12(d), K,” = 0 for a > 1. To prove (b) we observe that K, is 
obtained by truncating A” G* from the end of K(ti) and inserting 0 in its 
place. It is well known that the homology of K($) is annihilated by Ii(+), 
and the remaining assertion is easily proved by induction on a using the 
long exact sequence of homology associated to the short exact sequence of 
complexes ker r] - D,GQK($)- im q. [ 

The rows present significantly greater problems. 
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LEMMA 2.6. Fix the notation as in (2.4). Let c and d be non-negative 
integers. Then there is a complex (Red, pCd), 

in which the differential pjd: Kj-,@r\‘F+ Kf-, d@/,’ ’ F is induced b,v 
idOrl:~rl:/\~G*O(D,~dGOl\iF)~/\‘G*O(D,~1~dGOl\J~1F). 
Furthermore, if d > n - 1 and grade I,(#) > m -n + 1, then R,., is acyclic. 

Proof: To lighten the notation, let r~ denote any map induced from an 
Eagon-Northcott map based on 4: F+ G*, and let il denote any map 
induced from an Eagon-Northcott map based on id: G* -+ G*. Then there 
is a map of complexes 

The kernel complex is (Red, p) by Definition 1.11, and the image complex 
is (R,-, rl+,, p) by Proposition 1.12(e); that is, there is a short exact 
sequence of complexes 0 + R,, --t C,, + R,. _, d+, [ - 1 ] -+ 0. 

We now assume that grade I,(#) 2 m -n + 1, and, by induction on c, we 
show that Red is acyclic for all c>O and d>n - 1. If c=O, then R,., is 
simply the Eagon-Northcott complex induced by 4 and consequently is 
acyclic for all d > n - 1 by Proposition 2.2. Assume now that c > 1 and 
d2n--1 and R,-,J+, is acyclic. The long exact sequence of homology 
that is associated to the short exact sequence of complexes above yields 
that R,, is acyclic, for C,, is acyclic by Proposition 2.2, and the homology 
H,R - 1d+,C-ll)=H,~,(R,-,d+,) is zero for i3 2 by the induction 
hypothesis. 1 

Recall that K,b = A” G*. We define sb: K,h @ A” F + A” F as the com- 
position 

where the final map is the perfect pairing of (1.2). 
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COROLLARY 2.7. For d = n and each b B 0, the map ~~ is an augmentation 
of the complex R,,. 

Proof: We show that the composition 

n+l 

K;@/j FLK@jjFAiF 

is zero for 0 < b < n. (For b = n it is even exact since s” is an isomorphism 
and Kr = 0.) From the definition of p there is a commutative diagram 

where we remind the reader that the Eagon-Northcott map n is the 
composition 

Hence .sbp is a restriction of the composition (poA”+” $oA)o (ev 040 A). 
Use (1.1) and the fact that the diagram 

commutes in order to see that asp is also equal to the composition 

;I G*QGQ~A' F~C 'A' G*BG*~G@~~'F 

b-1 n+l b-l n+l-b 

& /j G*Q /j Fd’ /j G*Q A F@iF 

,,\n+l-66 
b-l n+l-b 

+ /‘/G*Q A G*@iFLj\F. 

Thus .sbp = 0, since Kf@ /j”+l F is precisely ker(ev 0 A,). 1 

Remark 2.8. Henceforth, we drop the second subscript from R,, and 
denote this augmented complex by R, with differential pi. 
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3. THE RESOLUTION 

Throughout this section R is a commutative noetherian ring, and we 
retain the setting of (2.4): 

(3.1) F and G are free R-modules with rank F= m k n = rank G, 
4: F -+ G* and $: G* + R are R-module homomorphisms, 
and Ki = Ki( G). 

Our goal is to construct a bicomplex B = B($, 4) of free R-modules. If the 
ideal J= Z,($b) + I,(#) of R has grade at least m, then the total complex 
T of B is a resolution of R/J. Furthermore, if R is graded and the maps $ 
and 4 are homogeneous of positive degree (or if (R, HZ) is local, 
qb(F)c mG*, and $(G*)cmR), then T is a minimal resolution of R/J. 
Consider the diagram B($, 4): 

n-l 
o- K;:‘,Qj(: F - . ..- F 

I m 

where the maps are defined as follows. The column on the right is a trunca- 
tion of the Koszul complex induced by the composition tj 0 4: F + R. The 
other columns are obtained as K,@ /\‘+, F (see Lemma’2.5). For each b 
with O<b<n- 1, the row 

is the augmented complex R, of Corollary 2.7. 

Remark 3.la. It follows from Proposition 1.12 that the top and bottom 
rows of B($, 4) are the Eagon-Northcott complexes 

O-D,pn,,G@AF- . ..- D,G6/1 F 
n-l 

- D,G@ /j F 

and 

0-D,p,C@jjF-...--+ D,G@,;j Fa R, 
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respectively. The other rows of B may be regarded as transitional steps 
between these two Eagon-Northcott complexes. 

PROPOSITION 3.2. The diagram B($, 4) is a bicomplex. 

Proof We must show 

(a) that the diagram 
n+u n+u- 1 

K,b O/j F-----d-, Q/jF 

I I 
n+fl n+U-l 

K,b-‘Q /j F- K,bI:Q A F 

commutes for all a and b with 1 <a<m---n, and 1 <bdn- 1, and that 
(b) the augmentation maps sb induce a map of complexes on the two 

right-hand columns. 

Claim (a) is an easy consequence of Remark 1.14. To establish (b) we 
need to show that the diagram 

iG*.i;F L iF=K,(+/) 

I 
3 

I 
s 

b -- 1 

/j G*@jjF~hj\lF=Kb&,h+h) 

commutes (up to sign). Consider the diagram 

j+jjF ’ 

I 

+Ac~&~~Fo~~F 

A 

I 
s 

/4\G*~"i~pb~~b~'~ L ~G‘*~~~~F~~~'F 

I /jn-h+l$$ I A”-b@ 
~G*@"+~-'G*@bjjlF LiG*gnibG*@"i\'F 

I ? I P 
b-l ntl-b b-l b-l 

/jG*Q /j G*@/jF ' b/jF. 

The composition across the top followed by the maps on the right side is 
equal to aeb; and the composition down the left side followed by the 
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bottom map is E ‘- ‘8 The top square commutes because each map from . 
A” F to /jnPh F@Ab-’ F is the same as 

~F+*~‘F+~~~FQ~~‘F 

by (1.4). The middle square commutes because 4: F -+ G* induces the map 
A $: K($4) -+ K(d) of Koszul complexes. The bottom square commutes 
because the Koszul complex K(4) is a differential algebra. 1 

The next lemma is a preliminary calculation. It is used in Lemma 3.4 to 
establish acyclicity of the rows of B($, 4) under the condition grade 
Z,,(d) 2 m--n + 1. For integers a and Y with 0 <a, r d n, let y be the 
“condensation” map given by the composition 

l’:jjG*Qj\G*L ;ic*onjyG*Qr--ji+oG* a@‘,yaG*, 

and let C: be the kernel of y. 

LEMMA 3.3. Let G be a free R-module of rank n and let a 
and r be integers with 0 <a, r < n. Zf r]: G@ A’+ ’ G* -+ A’ G* is the 
Eagon-Northcott map induced by the identity map on G*, then 
VQid: G@A”G*@A\‘+’ G* + A” G* QA’ G* induces a surjective map 
Kf@/l\rfl G* + CL. 

Proof. First note that both A’+ ’ G* and CL are zero for r = n and all a. 
We may therefore assume that r < n - 1, and prove the statement for all a 
by descending induction on r. The following diagram commutes, and has 
exact rows and columns. The map A: G@ A” G* + Aa- i G* is the Eagon- 
Northcott map induced by the identity on G*: 

0 0 

I I r+l 
Kf Q /j G* --% CA 

i 
O-K;+‘&*- &;lG*Q;lG*-0 

I Y 
I 

o- .,',I 
r--n+0 

a--l - /jG*Q/jG* ---& /j G* -0 

I 
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We shall actually prove that the induced homomorphisms a; and /I;:\ are 
surjective in tandem. Of course they are related, since by the snake lemma 
coker($) N coker(fi;+ii). 

Since Cz- , = 0, the map Bit: is surjective for r = n - 1, and it follows 
that a”,-’ is surjective. We assume inductively that 

(*) /I:?: and a: are surjective for all 0 d a < n 

and demonstrate that the same holds for /?L-, and cc:- ‘. It clearly suffices 
to prove that fii- i is surjective. The key to the argument is that the map 
a:-l: Kf-‘Q/j\‘+’ G* -+ CL-, is surjective by (*). Consider the following 
commutative diagram, in which three of the maps are surjections. By 
Proposition 1.12(e), im(q) = K;@ A” G* and im(A) = Kf-’ Q A’+ ’ G*: 

r+l 
D,GQ /j G*QjjG* L K;QA G* 

I 
A 

I 
s:-, 

r+l 

Kf-‘Q /j G* 6, - C’ 0-l’ 

It follows that B;-, is surjective. 1 

LEMMA 3.4. Retain the notation of (3.1). Zf grade Z,(d) 2 m-n + 1, then 
each row of the bicomplex B(I1/, 4) is acyclic. If, further, H, denotes 
coker(s’), i.e., the 0th homology of the bth row, then there is an integer N, 
independent of b, such that Z,,(d)N H,=O. 

ProojI Row b, or in other words the augmented complex R, given in 
Corollary 2.7, has length m - n + 1. By the acyclicity lemma (Lemma 2.1), 
it suffices to show that (Rb)P is exact whenever P is a prime ideal of R with 
grade P < m -n + 1. By hypothesis, such a prime cannot contain I,,(#). 
Consequently, it suffices to show that R, is acyclic if some n x n minor of 
4 is invertible. Under the circumstances, we may assume that F= G* @ F’ 
for some F’, and 4: G* OF’ + G* is the projection map. 

From Lemma 2.6 and its proof, we see that it suffices to show that 

is exact for all b with 0 <b < n - 1. For each integer N, write AN F as 

63 ,+,=N~\~G*@A~F’, in order to decompose the above complex as 

n+l 
K;Q A F’+O-+O 
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plus the direct sum of complexes 

Each of these is exact because p is induced by yl, and hence by Lemma 3.3 
the image of this map is precisely CL = ker(y). 

Observe further that each of the maps y is surjective. This implies 
that H, =coker(~~) has support contained in Spec R/Z,(4). Hence 
rad(ann(H,)) 1 rad(Z,(d)) 1 I,(#), and the final assertion of the lemma 
follows. m 

DEFINITION 3.5. Let T = T($, 4) be the total complex of B($, 4). In 
other words, T is the complex 

o+p,+ ... +P,,+Qn-,@P,-,+ ... +Ql@P,+Q,,, 

where Q, = A’ F and P,= @ K:(G)@ lI\“+O F, the sum is taken over all 
(a, 6) with 

(3.5a) a+b=i-1, O<a<m-n, and Obbbn-1. 

The maps in T are taken from B (there is a standard routine for changing 
the sign of some of the maps, described in [ 12, Lemma 11.151, but as this 
is notationally cumbersome and materially insignificant we suppress the 
details). If R is a graded ring and II/ and 4 both are homogeneous maps of 
degree 1, then each map P,, , + P, has degree 1, each map Q,, , + Ql has 
degree 2, and each map P, + 1 -+ Q, has degree n - i. (All maps Q,, , + P, 
are zero.) In this case, Q, = R( -2i)“‘) and P, = R( - (n + i- l))““, where, 
by Proposition 2.4, 

e(i)= Y 
0 

and 
2 f(i) = C ,+a; l -b)(n;u)(nya), 

the sum is taken over all a and b as in (3Sa). In particular, 

P,=R(-m-n+ l)““‘), where f(m) = 

It is clear that H,(T) = R/J, where J is the ideal Zi($4) + Z,,(d). Our main 
result is that T is a resolution of R/J if the grade of J is at least m. We shall 
see in Proposition 4.2 that this hypothesis holds in the generic case, and 
hence the hypothesis on grade Z,(d) that appears in the following theorem 
is actually superfluous. 
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THEOREM 3.6. Retain the setting of (3.1). Zf the ideal J= ZI(t,b4) + Z,,(d) 
has grade at ‘least m, and grade Z,(d) am-n + 1, then T($, 4) is a 
resolution of R/J, and J is perfect of grade exactly m. 

Proof: As usual we shall invoke the acyclicity lemma. The complex T 
has length m so it suffices to show that T, is acyclic for primes of grade less 
than m. This can be done directly, but we get the result indirectly by 
showing that the homology of T is annihilated by an ideal of grade at 
least m. We begin by observing that grade(Z, ($4)” + Z,(d)“) = grade J > m 
for any N > 0. 

Taking HL = coker(s’) = H,(R,), we obtain a complex 

H’:O- H:,..,z H;e2 ‘I ” d” - . ..- Hi---+ H&-+0, 

where d” is induced by the differential a on the Koszul complex 
K(@) = A F. Since we have assumed that grade Z,(d) > m - n + 1, we may 
apply Lemma 3.4 in order to conclude that each row R, of B is acyclic. It 
follows that the iterated homology H:‘(H’) is in fact H,(T); thus H,(T) = 0 
for r 3 n. Furthermore, we apply Lemma 3.4 again in order to see that each 
term of H’ is annihilated by Z,,(d)N for some sufficiently large N. Hence 
Z,(d)N.H,(T)=O for O<r<n- 1. 

The homology of T can be computed as a spectral sequence limit of 
iterated homology in two different ways. By reflecting B(t,b, 4) across the 
vertical axis (i.e., the column A F) one obtains a standard first quadrant 
spectral sequence induced by the horizontal differential d’ of 
bidegree ( - 1,0) and vertical differential d” of bidegree (0, - 1). With the 
terminology of Rotman [ 12, p. 3 17 and Theorems 11.18 and 11.193 in force 
we obtain 

where 

“~;,,=H;W;,,VW 2 H,+,(T), 

H;W;,,W) = ;ucH,) if q>O 

P 
if q = 0. 

Since all terms off the vertical axis are zero, the sequence collapses and 
‘E;,, = ZZ,w . Convergence of the spectral sequence means that for each 
r 2 0, the gemology H,(T) has a finite filtration {@‘H,(T)} such that 
II m E p.‘-p = @PH,(T)/QpP’H,(T). In this case the filtration is trivial and 
H,(T) = H:‘(H’) as claimed above. 

The situation is more interesting when we compute column homology 
first. By Lemma 2.5(b) the homology Hi,,(B) = H&K,_ l)@A”‘PP’ F is 
annihilated by Ii($)” for 0 d q < n - 1. The homology along the vertical 
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axis is H:,,(B) = H,(K($$)) for 0 <q < n - 1, which is annihilated by 
Z,($d). Taken together, these facts show that Hi,,(B), and hence also 
the iterated homology Hb(Hi,,(B)) is annihilated by Z,($d)“’ for some 
sufficiently large N, provided that 0 d q < n - 1. Since we have already 
determined that H,(T) =0 for r > n - 1, we need only to determine the 
annihilator of Hb( Hg,, ~ ,(B)) before wrapping up our spectral sequence 
argument. Rather than doing this explicitly we resort to an artifice. 

Extend B to B by adjoining free modules A” F and K,“@ A” F at posi- 
tions (0, n) and (1, n), respectively. These modules, and the relevant maps, 
are found by truncating A F= K($d) and K,@A” F=K($)@I\“F one 
step further back than previously. In other words, we have 

The square commutes (see Lemma 3.2(b)) and moreover en is an 
isomorphism. If the total complex T of B is a resolution of R/J, then so is 
T (one simply splits off the extra summands from ?” and Fn + ,); and 
obviously the first part of our argument needs no alteration since no new 
row homology has been introduced. But it is apparent that Hi,,+,(B) is 
annihilated by Z,(t,bd), so we now have a convergent spectral sequence 

‘E,2‘,= H;(H;,,(B)) P, H,+,(T) 

in which the terms with p + q 6n- 1 are annihilated by Z,(I,G~)~ for suf- 
ficiently large N. This sequence does not collapse, but B is bounded so it 
eventually stabilizes and ‘E,:, = 
a subquotient of ‘Ez,,, 

‘Ei., for some t 3 2. In any event ‘EpFq is 
so it is annihilated by the same ideal. For 

each r <n - 1, H,(T) has a finite filtration in which the quotients 
cPH,(~)/@~- ‘H,(T) are isomorphic to ‘E,y,-,. Replacing N by a still 
larger integer, and taking the first part of the argument into account, we 
conclude that H,(T) is annihilated by Z,,(C$)~ + Z,(#4)“. 

Finally, since T is a resolution of R/J, m B pd R/J 2 grade J B m: 1 

4. THE GENERIC CASE AND APPLICATIONS 

It still remains to show that Theorem 3.6 is not vacuous. Following this, 
we interpret our result in the context of linkage and residual intersection, 
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and use it to compute the canonical module. We establish notation first for 
the generic case. 

DEFINITION 4.1. Let R be a commutative noetherian ring, Y, x n and 
x nxm be matrices of indeterminates, R,,, be the polynomial ring R[ Y, X], 
and J,,, be the ideal I,( YX) + Z,,,,,,,,,,(X). Let A,,, = R&J,,,. 

PROPOSITION 4.2. (a) The ideal J,,m has grade at least max {m, n }. 

(b) rf m > n, then J,,, is perfect of grade m. 
(c) Zf m>n, then J,,,=II(YX):Z,(Y). 

Proof. (a) Let J denote J,,,, M=max{m,n}, and L=min{m,n}. 
The claim is trivial to verify if L = 1. We show that if P is a prime ideal 
containing J, then depth S, > M. (Since grade J= depth S, for some such 
P, the claim follows.) The inequality certainly holds if all of the indeter- 
minates {xv, y,} are contained in P. 

If y, is not an element of P, then there is a 1 x n matrix Y’ of indeter- 
minates and an isomorphism 0: R,,,[y;‘] + R[ Y’, X, (y;)-‘1 with 
@J)=Z,([l,O, . . . . 0] X) + IL(X). This ideal contains (x,, , . . . . xl,,,) + IL(X)), 
where X’ is the matrix formed by deleting the top row of X. Hence 

grade J, > 
m if man 
m+((n-l)-m+l)=n if n>m 

=M. 

If xl1 is not an element of P, then the same type of reasoning shows that 
grade J, 2 grade (ZI( YX’) + Z,(X’)), where x’ is the matrix 

1 0 [ 1 0 X” 

and X” is an (n - 1) x (m - 1) matrix of indeterminates. Thus grade J, > 
grade ((Y~)+Z~(CY~, . . . . y,]X”) + IL--(X”)). By induction on L we 
concludedepthS,~gradeJ,~1+max{n-1,m-1}=M. 

(b) This is a direct application of Theorem 3.6. 
(c) Let S=R,,,, J=J,.,, and K = I, ( YX) : I1 ( Y). Cramer’s rule 

shows that Jc K. Consequently, it suffices to show that J, = KP for all 
prime ideals P which are associated to S/J. Fix such a prime ideal P. Since 
J is perfect, it is grade unmixed; thus P has grade m. Therefore P cannot 
contain Z,(X) + Z1( Y), which has grade m + 1. If Z,(X) $ P, then J, and K, 
are both equal to S,. If Z,(Y) $ P, then Z1( Y), = S,. It follows that K, is 
equal to ZI( YX),, which is contained in J,. 1 

Remarks. (a) The total complex T only pertains to J,,, for n d m. The 
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ideals J,,, with m <n have been completely resolved in [4]. There is no 
need to estimate their grade here; however, the argument we gave works in 
either case. 

(b) DeConcini and Strickland [S] use the technique of algebras with 
straightening law to show that if R is a field, then J,,, is a perfect ideal of 
grade equal to max{n, m}. One can use the basis for A,., found in [S] in 
order to prove that if R is the ring of integers Z, then Jn,,, is a perfect ideal 
of grade max{n,m}, and A,,, is faithfully flat over Z. Now if R is an 
arbitrary commutative noetherian ring, the theory of generic perfection 
enables us to conclude that J,, m is perfect of grade exactly equal to 
max{n, m}. Our proof of Proposition 4.2 uses the standard technique for 
estimating the grade of a “determinantal-like” ideal and does not depend 
on the results of DeConcini and Strickland. 

(c) Our proof of (c) is extracted from [7], although it is not possible 
to quote a precise result from that paper. 

Having established the generic case, it follows by the principle of generic 
perfection that we only need to know that the grade of J is large enough 
in order to conclude exactness of T(IC/, 4). 

COROLLARY 4.3. Retain the setting of (3.1). If the ideal J= 
I,($#) + Z,(4) has grade at least m, then T(tj, 4) is a resolution of R/J, and 
J is perfect of grade exactly m. 

Next we interpret the resolution T and the annihilator condition (c) 
above in the context of residual intersection. The definitions we use are 
taken from Huneke and Ulrich [7]. 

DEFINITION 4.4. Let R be a Cohen-Macaulay local ring, A c Z be ideals 
of R with A #Z, and let J be the ideal A : Z. If ht(J)> m > ht(Z), and 
m > p(A), then J is called an m-residual intersection of Z (with respect to A). 
If furthermore, I, = A p for all prime ideals P of R which contain Z and have 
height at most m, then J is a geometric m-residual intersection of I. 

The notion of residual intersection works best when the ideal Z is 
strongly Cohen-Macaulay and satisfies a mild condition on the local 
number of generators. 

DEFINITION 4.5. An ideal Z is strongly Cohen-Macaulay (SCM) if the 
Koszul homology modules for any set of generators of Z are Cohen- 
Macaulay. An ideal Z satisfies the condition (G,) if p(Zp) 6 ht(P) for all 
prime ideals P with ht(P) < m - 1. An ideal satisfies the condition (G,,), if 
it satisfies (G,) for all m. 

EXAMPLE 4.6. If (R, m) is a Cohen-Macaulay local ring and m B n, 
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then J,, m is a geometric m-residual intersection of the ideal I= Z1( Y) in the 
local ring UC., ) o,z, y. sj. In this case I is clearly (SCM) and (G,.), 
A = Z1( YX), and J,,,, = A : I by Proposition 4.2(c). We call J,,, a generic 
m-residual intersection of the generic complete intersection I. 

The following result, due to Huneke and Ulrich, gives conditions under 
which a residual intersection can be deformed. We use it to prove 
Theorem 4.8, which is the main theorem of this section: the resolution of an 
arbitrary geometric residual intersection of a complete intersection is given 
by the total complex T. The proof of the theorem involves deforming the 
residual intersection to be a generic residual intersection, applying Proposi- 
tion 4.2 and Theorem 3.6 obtain the desired structure and resolution for the 
generic case, and finally specializing back to the original setting. 

LEMMA 4.1. Let S be a Cohen-Macau1a.v local ring, f be a regular 
S-sequence, R be the ring S/(f ), and 0: S + R be the natural map. Suppose 
that I’, J’, and A’ are ideals of S with J’ the geometric m-residual inter- 
section of I’ with respect to A’; and Z, J, and A are ideals of R with J the 
geometric m-residual intersection of Z with respect to A. Suppose further that 
f is a regular sequence on S/Z’, and that I’ is strongly Cohen-Macaulay and 
satisfies the condition (G,). Zf &I’) = Z and t3(A’) = A, then O(J’) = J. 

Proof. This is a collation of [7, Proposition 4.2(ii) and Theorem 1.53. 1 

THEOREM 4.8. Let (R, H) be a Cohen-Macaulay local ring and let Z be 
a complete intersection ideal in R. Zf J is a geometric residual intersection 
of Z, then the total complex T of Section 3 is a resolution of R/J by free 
R-modules. 

Proof: Let yl, . . . . y, be a regular sequence that generates I. Suppose 
that J is a geometric m-residual intersection of Z with respect to an ideal 
A = (z,, . . . . z,,,). Let y and z be the matrices [r,, . . . . JJ,] and [z,, . . . . z,], 
respectively. Since A c Z, there is an n x m matrix x with entries from R 
with z= yx. View y as a map from R” to R and x as a map from R” to 
R”. We show that the total complex T of B(y, x) is a resolution of R/J. The 
ideal J is an m-residual intersection of Z, so by definition J is equal to A: Z 
and has grade at least m. It is apparent that Z,(yx) + Z,(x) c J. Once we 
show equality, then the proof is finished by appealing to Corollary 4.3. 

Let Y = [ Y,, . . . . Y,l and J’= (X,,Lxm be matrices of indeterminates. Let 
f be the sequence of elements Y, - yI, . . . . Y,, - yn, X, 1 - x,, , . . . . X,, - x,, 
in the ring R[X, Y], M be the maximal ideal generated by ~2 and f, 
and S be the Cohen-Macaulay local ring R[X, Y] M. Let I’ = Z1( Y), 
A’= I,( YX), and J’ = I,( YX) + Z,,(X) in S. It is clear that f is a regular 
sequence on S, and that R is isomorphic to S/(f). Let 0: S-+ R be 



THE GENERIC RESIDUAL INTERSECTION 235 

the canonical map. Observe that e(Z’) = Z, &A’) =A, and e(J’) = 
Z,(yx) + Z,(x). Furthermore, A’: I’ = J’ by Proposition 4.2(c) and localiza- 
tion at M. Since ht( Z,(x) + I’) = m + 1, it is clear that Z> = ,4’p for all prime 
ideals P of height at most m which contain I’. Thus J’ is the geometric 
m-residual intersection of I’ with respect to A’. Finally, we consider the 
ideal I’. Since ht(Z’) = n = ht(Z), we see that f is a regular sequence on S/Z’. 
Obviously the complete intersection I’ is strongly Cohen-Macaulay and 
satisfies the condition (G ~ ). Hence by Lemma 4.7, Z,(yx) + I,( x ) = e( J’) = 
A:Z=J. 1 

EXAMPLE 4.9. Let R be a Gorenstein local ring; Z be a grade n complete 
intersection ideal in R; -?, , . . . . zn be a regular R-sequence in Z; and J be the 
n-residual intersection of Z with respect to (z,, . . . . z,,). In this case J is linked 
to Z by way of (2, , . . . . 2 .). There are two ways to obtain the R-resolution 
of R/J. One could use the bicomplex B of Section 3, or one could use the 
technique of linkage. The point of this example is to show that these two 
methods are equivalent. 

Consider first the linkage interpretation. Let z be the matrix [z,, . . . . z,], 
and let x,,,, and y1 x,I be matrices with entries from R with Z,(y) = Z and 
z = yx. View x as a map F -+ G* and y as a map G* + R. In effect this 
means choosing bases for F and G*. If {e,, . . . . e,} is the basis for F then 
we shall use the obvious orientation, namely A” F= Re, A e2 A . . A e,. 
The Koszul complexes K(z) and K(y) resolve R/(z) and R/Z, respectively. 
Let tl: K(z) + K(y) be the complex map given by CI, =x and CI, = A’ (x). 
The first theorem of linkage [ 11, Proposition 2.61 states that the mapping 
cone of a*: (K(y))* + (K(z))* is a resolution of R/J. In particular, J is 
equal to Z,(z) + Z,(x). 

On the other hand, the grade of J is at least n by hypothesis. Since we 
now know that J= Z,(z) + Z,,(x), by Corollary 4.3 the total complex T(y, x) 
of the bicomplex B(y, x)-or equivalently, and more conveniently, the 
total complex T of the extended bicomplex B given in the proof of 
Theorem 3.6-is a resolution of R/J. In this case the bicomplex B consists 
of two columns s: K, 0 A” F + K(z). Since K, = K(y), and A” F _Y R, it is 
not difficult to use the self-duality of the Koszul complex (Remark 1.9a) in 
order to see that the bicomplex B is isomorphic to the complex map LX*. 

In the situation of linkage there is an identification of the canonical 
module o R,‘J = Ext”,(R/J, R) with Z/(z). If the linkage is geometric, then in 
turn Z/(z) 2: (I+ J)/J. Huneke and Ulrich [7] have generalized this result 
for residual intersections of ideals (such as complete intersections) that are 
in the even linkage class of ideals satisfying (SCM) and (G,). We shall 
prove a rather general and formal result that identifies the Ext-module, 
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from which the result of [7] can be recovered whenever the two sets of 
hypotheses coincide. 

THEOREM 4.10. Let R be a commutative noetherian ring; y, xn and x, xm 
be matrices of elements of R with n < m; and let I, J, and A denote the ideals 
Z,(y), Z,(yx) + Z”(x), and Z,(yx), respectively. Assume that grade I> n and 
grade J2 m. Then 

Ext;(R/J, R)=S,-.+,(Z/A). 

ProoJ From Corollary 4.3, we know that J is perfect and that the total 
complex T of B is a resolution of R/J. It follows that the dual 
T* = Hom,(T, R) of T is a resolution of Extz(R/J, R). The argument 
consists of two distinct parts. First, we find a presentation of Z/A by free 
R-modules in order to express the symmetric module S,(Z/A) in terms of 
the data x and y. Then, we form the dual B* of B in order to read off 
&P’* 1. 

Let 4: F + G* and +: G* -+ R be represented by the matrices x and y, 
respectively. Observe that the diagram 

(4.11) F@A G* c”c71, G* ’ ) (Z/A)---+ 0 

is a presentation of Z/A, where 8 is the Koszul complex map induced by $. 
(Indeed, if y EG* with I//(Y)E A, then $(y)= Ic/($f) for some f e F; hence 
y - &f) is in the kernel of I++ : G* + Z On the other hand, Z is a complete 
intersection generated by the entries of the matrix y, which represents $. So 
the kernel of Ic/ is the image of a.) It follows that 

S(Z/A) = R[ T,, . . . . T,l Y,T,-Y,L&,,T, . 
I > 

In particular, the homogeneous summand S, --n + ,(Z/A ) of S(Z/A ) is equal 
to 

where Im, is the image of the composition 

a is the Koszul map, and p is (as always) the multiplication map; and 
where Im, is the image of the composition 
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We now turn to the second part of the argument. If m = n, then it is clear 
that 

G* - Ext;(R/.Z, R) - 0 

is a presentation of ExtF(R/J, R). (Use Example 4.9 if necessary.) Hence- 
forth, we take n <m. We have observed that T* is a resolution of 
Ext;(R/J, R). But T* = (Tot(B))* = Tot(B*); so 

*,(I1 +I,), 

where 

Z,=im(K*)=im 

with K induced by d (see Lemma 2.5), and * 
Z,=im(p*)=im 

K 

m-1 * 

K~I~+~@ /j F 
> ( 

+ Ki_',@iF )I 
with p induced by the Eagon-Northcott map q (see Lemma 2.6). Our 
goal now is to identify (K;:f,@l"\" F)* with S,-,+,(G*) and to prove 
that I, = Im, and I, = Im, under this identification. By Remark 1.9a and 
Observation l.l2b, there is a commutative diagram 

( 
K;z2,@iF * 

) 
K* 

* ( 
K;y:@AF * 

i 

> 
z 

' I 
1 

ker S,,,+,G*@~G*--% S,,-,,,,G*QR 
[ 1 l@d - L,+,G* 

in which 6 is the Koszul map induced by id,., and 8 is induced by +. It 
follows from Example 1.6 that I, can be identilied with the image of the 
composition 

Smm,G*QiG*A S,_.G*QG*QG*- S,m.+,G*QG*- S,_,+,G* 

and this is evidently the same as Im,. Use Remark 3. la and Lemma 1.9 in 
order to see that I, is the image of 

S,-,G*OF~S,~,+,G*, 
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where here 8 is induced by 4: F + G*. It is clear that a is given by 

so Z2 = Im,, as claimed. 1 

The next result is a special case of both Theorem 4.10 and [7, Theorems 
2.3 and 5.31. 

COROLLARY 4.12. Let R be a Gorenstein local ring and let Z be a com- 
plete intersection of height n in R. Zf J is a geometric m-residual intersection 
of Z, then the canonical module of R/J is isomorphic to S, _ n + ,( (I + J)/J). 

Proof: Since J is a geometric residual intersection of Z, we may use 
Theorem 4.8 in order to see that Theorem 4.10 applies. The result follows 
because by [6, Theorem 3.11, In J = A in the case of geometric residual 
intersection. 1 

We also recover a result of Bruns. In the setting of Theorem 4.10 we 
assume that R = S[x, y], where x and y are matrices of indeterminates 
over a Gorenstein normal domain S. DeConcini and Strickland have 
proved that R/J is also a normal domain. Bruns [3, Theorem 3.11 has 
proved that the class group of R/J is cyclic, torsion-free, and generated by 
the class of the prime ideal K= (Z, _ 1(x’) + J)/J, where x’ is the submatrix 
of x consisting of the first n - 1 columns. He [3, Theorem 4.11 also proves 

COROLLARY 4.13. Given the notation of the above paragraph, then 

CmRIJ1 =h--+ lICKI 

in the class group of RJJ. 

Proof: In the generic situation it follows from [7, Theorem 3.33 that 
In J = A and that the symmetric power S, _ n + ,( (I+ J)/J) is isomorphic 
to the ordinary power (Z’+.+’ + J)/J. Consequently Ext’;(R/J, R) is 
isomorphic to 

S,-,+,(Z/A) N Smpn+ l((Z+ J)/J) N (Z’+‘+’ + J)/J. 

It remains to show that the ideals K and (I+ J)/J of R/J are isomorphic. 
Let Ai=(-l det(x:), where xi is the matrix x’ with row i deleted, and 
let 0: G* -+ K be given by [A,, . . . . A,]. It is easy to see that 

F@iG*- CA 31 e G*-K-O 

is a complex. It follows from the presentation of Z/A in (4.11) that there is 
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a surjective map from the ideal (Z + J)/J of R/J to the non-zero ideal K. 
This map must be an isomorphism since R/J is a domain. 1 
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