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ABSTRACT 

Suppose F is a differentiable mapping from a rectangle R c E” into E”. Gale and 
Nikaido proved that if the Jacobian of F is a P-matrix in R, then F is univalent in R. 
Their paper has served as the basis of numerous results on univalence. Recently H. 
Scarf conjectured a significant extension: that the Jacobian of F need not be a 
P-matrix everywhere in the rectangle R, but merely on its boundary. This paper 
proves Scarf’s conjecture, and to do so utilizes a conceptually different method of 
proof than that of Gale and Nikaido. The proof is presented in such a way as to 
demonstrate a suggestion of Scarf that orientation arguments may provide an altema- 
tive proof of the Gale-Nikaido theorem. 

1. BACKGROUND 

Over a dozen years ago Gale and Nikaido proved a result which is by 
now well known and has spawned numerous other results regarding univa- 
lence of mappings. For example, in the area of linear complementarity, 
coupled with the work of Samelson, Thrall, and Wesler [13], it underpinned 
the result that the linear complementarity problem has a unique solution if 
and only if its matrix is a P-matrix. It led to the notion of a P-function [ll]. It 
is used in [9] to show uniqueness of solutions to nonlinear complementarity 
problems, building on the earlier work of Cottle [3] and Karamardian [6]. 
Overall, the Gale-Nikaido work provided fundamental results on when a 
mapping is univalent. 

To be more precise, let F: A c E”-+E”, with R a rectangle and E” the 
Euclidean n-space, be a differentiable mapping with Jacobian F’(x). For any 
K c{1,2,..., n}, consider the submatrix remaining from F’ after deleting the 
rows i and columns i for i E K. The determinant of that submatrix forms a 
principal minor of F’, and we denote it by M(x)x. If K = { 1,2, * . * , n}, then 
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all elements are deleted, so we define M( x)~ = 1. However, if K = 0, observe 

M(x)@ = detF’(x), (1.1) 

where detF’(x) is the determinant of F’(x). 
Gale and Nikaido proved that F is univalent (i.e., injective, one-to-one) if 

F’ is a P-matrix. The Jacobian F' is a P-matrix if all principal minors are 
positive, that is, if for all XER and K ~{1,2;..,n}, 

M(& > 0. 

Recently, H. Scarf conjectured an interesting strengthening of the Gale- 
Nikaido result [14]. He suggested that univalence does not require all 
principal minors to be positive. On the interior of the rectangle R, only 
det F’( x) > 0 is needed. On the boundary only certain principal minors need 
be positive. In the next section of the paper we prove Scarfs perceptive 
conjecture. 

2. VERIFYING SCARF’S CONJECTURE 

To prove the conjecture for x = (xi) E E”, let 

R = {xlui~;u,~bi,i=l;..,n} 

for u, <b,, a,, bi finite. With the rectangle defined let 

Z(x) = {ilxi=ui orx,=b,} 

for xeR. 
Suppose we have a continuously differentiable F: R-E”, with Jacobian 

F’(x) and principal minors of the Jacobian Mu. 
Scarf conjectured that if Mu > 0 for all K. c Z(X), then F is univalent in 

R. Observe that this property and (1.1) insure that on all of R, detF’(x) > 0. 
However, if Z(x) = 0, no proper principal minors need be positive. Only at 
the vertices of R-that is, where Z(X) = { 1 , . . . , n} -must all principal minors 
be positive. 

A two-dimensional example where the property holds is the function 
F:[ - 1, l] X [ - 1, l]+E’, defined by 
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Observe that F’ is not a P-matrix on the square [ - 1, l] X [ - l,l], but that 
Mu > 0 for all K c Z(x). Hence, the Scarf conjecture would assert the 
univalence of F on the square. In fact, as we shall prove in Sec. 3, F is 
univalent in E2. 

In this paper, we shall prove univalence using a slightly weaker assump- 
tion on the principal minors. We say that F has the S-prqerty if: 

M(& II M(x), > 0 
iEK 

(2.1) 

for all x E R and all K c Z(r). The S-property permits certain principal 
minors to be negative. 

The proof of the conjecture depends on gently deforming F into a new 
mapping G which is very similar to F. Then G will be shown one-to-one. 
Hence F, being almost the same as G, will be also, thereby validating the 
conjecture. On R, the mapping G will be identically F except near the 
boundary aR. Near aR, G will be norm coercive, which means that as x 
approaches M, ]]G( x )]I -+ 00, where 1) * )I is the Euclidean norm. Also we will 
insure, letting G’ be the Jacobian, that det G’(x) >0 on ii, the interior of R. 
But now the norm-coerciveness theorem will apply [12, p. 1361. 

THEOREM 1 (Norm-Coerciveness theorem). Let G:R+E” be continu- 

ously dij&mntiuble and mrm coercive, and suppose det G’(x) > 0 on A. Then 

G is one- to-one and onto (bijective). 

Consequently with G univalent, F will also be univalent. 
The actual construction of G is straightforward. Given 6 with 

define a continuously differentiable function of one variable, Q : (a,, bi)+E I, 

with derivative Q’ as follows: 

If ai+6<r, <bi-8, Di(Xi) =o. 

If a,<x,<a,+S or bi-b<xi<bi, Di’( Xi) > 0. (2.2) 

As xiJai or xiTbi, 
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For one example of such a function let 

D,(q) = - max 0, 
( ( 

A-+])‘+(max(O,&-i))‘. 
Xi - a, 

Then define G = (G,) as 

G,(x) = F&x) + D,(~,)sgnM(x)~, (2.3) 

where 

sgna = 
i 

+1, a>O, 
- 1, a < 0, 

for a # 0. 

Clearly G(x) = F( ) x except when x is within 6 of aR, which permits us to 
define G another way. Note that G is continuously differentiable for small 
6 > 0, since the S-property insures that M(X), #O for all i E Z(x). Let 

Then 

Gi(x) = 
Fj(x)+Di(xi)sgnM(r)j iEZ,(x) 

F,(x) i@&(x)’ 
(2.5) 

Further observe that F is bounded, since F is continuous on the compact 

set R. Therefore, since 1 Dj ( xi) 1 -00 for some i as x approaches M, G is norm 
coercive. 

With G thus defined we can proceed with. the details of the proof and 
start with a lemma about determinants. 

LEMMA 1. Let DI be an n X n diagonal matrix with nonzero diagonal 

entries di only in positions i E I. Let P be an arbitrary n X n matrix. Then, 

where the MK’s are the principal minors of P. 
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As this formula may be a bit confusing, here is an example for n = 3 and 
Z= {1,2,3}: 

det(P+ Or) = detP + d,M, + AM2 + d3M3 + d,d,M,, 

+ d,d,M,, + d2d3MD + d,$d,. 

The proof of the lemma follows easily from the formula for the determi- 
nant of the sum of two matrices and by noting that the ith column of DI is 
zero except possibly in the ith position. 

We may now prove the Scarf conjecture. 

THEOREM 2. Let F: R+E” be continuously differentiable on the rectan- 
gle R, and suppose the S-property holds. Then F is univalent on R. 

Proof. Assume there exist two distinct points x and g in R such that 
F( 5) = F( ij), and seek a contradiction. Without loss of generality, we may 
assume both points are in R. (If not, we may always perturb F slightly so that 
they are, as shown in the Appendix.) Let 6, be the distance to the nearest 
boundary point from either x or y. Thus 

S, = min{J(x-z[(lzEaR, x=31or y}. 

The S-property holds on any face of R. By continuous differentiability it 
will also hold near any face. But Is(x) specified which faces of R a point x is 
near. Thus, via compactness, a 8, > 0 exists such that 

M(x)K II M(x), > 0 for all K c Zaz(x). (2.6) 
iEK 

Let 6 = i min {a,, S,}, and consider the function G defined in (2.3). Note 
that G(g) = G( iJ, since from (2.2), G(x) = F(x) for all x at least a distance 6 
from the boundary. Consequently we need merely prove G satisfies the 
hypothesis of Theorem 1, as that will force G to be one-to-one thereby 
providing the contradiction. 

We already know G is norm coercive; thus we must verify that det G ‘(x) 
> 0 on R. This obviously holds if the distance of x: from 3R is at least 6, for 
there F(x) = G(x). 

Suppose x is within 6 of 8R. Then examining (2.5) we see 

detG’(x) = det[ F’(x) + D&c,..], (2.7) 
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where Q8(,) is a diagonal matrix with diagonal entries D/(x4) sgnM( x){ for 
those i E 4(x). From (2.2), Q’(x,) >O. Also, since 6 <a,, from (2.6) we know 
that M(x),fli~KM(x)i>O for all K cZ~(X). But then applying Lemma 1 we 
see that all terms in the expansion of (2.7) are positive. Thus det G’(x) > 0 for 
x within 6 of aR. 

We therefore see that det G’( X) > 0 on i. Consequently all conditions of 
the norm-coerciveness theorem hold, so that G is one-to-one. n 

3. THE S-PROPERTY ON E” 

The S-property can be easily extended to the entire space E” by simple 
changes in the definitions. Again we are interested in a rectangle R = {x = 

( xi)1 a, < x, < bi }, a, < bi, a,, b, finite, but now we are more concerned about 
what happens outside of it. Consequently given R, define 

JR(x) = {i/x, <ui or bi <xi}. 

We say that F:E”+E”, continuously differentiable, has the S-property on 
E” if there exists a bounded rectangle R such that 

M(x)K II M(X)i > 0 for all K c JR(x). (3.1) 
iEK 

Whereas before we required the S-property to hold on the boundary of 
R, now we want the property to hold outside of R. Note that the rectangle R 

can be taken arbitrarily large, although bounded. Thus if det F’(x) >0 on E”, 
we need only concern ourselves about the principal minors very far out. 

To prove univalence of F we again employ the norm coerciveness 
theorem and Lemma 1, but utilize somewhat different modifications of F. In 
particular, boundedness of F is of concern since we are on E”, but the 
following lemma applies. 

LEMMA 3. Let F= ($):E”+E” be continuously di@mntiubk, and 

define a mapping H = (HJ by 

Then F is univalent on E” if and only if H in. F satisfies the S-property on 

E” if and only if H does. Furthermore, H is bounded. 
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Proof. Clearly H is bounded and H is one-to-one if and only if F is 
one-to-one. 

As for the S-property, let VHi(x) be a row of the Jacobian matrix for H, 
and similarly let VF, be a row of the Jacobian of F. Then 

V Hi = 
,&3/2 v Fi* 

Each row of H’ is precisely a positive multiple of a row of F’. Therefore a 
principal minor of H’ is a positive multiple of the corresponding principal 
minor of F’. W 

To prove univalence under the S-property on E”, we may without loss of 
generality assume F bounded. If it is not, by Lemma 3 we can transform it 
into a bounded function with the same S-property holding. 

With F bounded let us now create a function G on which we can apply 
the norm coerciveness theorem. For this define Bi(xi) : E ‘+E’ with continu- 
ous derivative B/(q) by 

q(q) = 0 if ci <Xi <di, 

Bi’(Xi) > 0 if xi<ci orq>d,, (3.2) 

and 

IBilxi)l + * if ~xi~+co. 

One example would be 

Now define G = ( Gi) by 

Gi(~) = F~(x) + Bi(;Ti)sgnM(x)i. (3.3) 

As F is bounded but lBi( x8 +co as IxiJ-+co, we see that IjG(x)(l+cc as .)I 
11 xJ( + co. Thus G is norm coercive. Also, defining a rectangle 

T = {xlci <xi <di}, (3.4 

note that G(x) = F(X) for x E T. 
The proof of the univalence is now at hand. 
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THEOREM 3. Let F : E “-+E n be continuously differentiable, and let F 

satisfy the S-property on E” for Sony bounded rectangle R. Then F is 

univalent. 

Proof. Assume that F( %) = F( $ for some i, g E E”. Also, without loss of 
generality, let F be bounded. Define the rectangle T in (3.4) so large that 
both X and y are in T, and so that R c T; that is, 

c, <ai and di>bi. (3.5) 

Taking the G of (3.3), F= G on T, so that G(T) = G( g). Moreover, G is 
norm coercive. Thus we need merely prove that on E”, det G’(x) >O. But 

detG’(x) = det[F’(x)+B,T(X)], (3.6) 

where I$+, is a diagonal matrix with components II,’ sgnM(x), in the 
diagonal position i E Jr( x) and Jr(x) = { iI xi < q or xi > di}. 

Further, by (3.5) 

If we expand (3.6) by Lemma 1, it is again true that all terms are positive. 
The mapping G therefore satisfies the conditions of the norm-coercive- 

ness theorem and must be one-to-one, a contradiction. n 

4. DISCUSSION 

As mentioned earlier, our goal is to demonstrate that orientation argu- 
ments “may provide an alternative proof of the Gale-Nikaido theorem” (see 
a foreword by H. Scarf in [7, p. lo]). Th is objective is achieved via the 
norm-coerciveness theorem, which, though it is often verified by other 
means, can also be demonstrated via orientation arguments. Such arguments 
lead to constructive proofs commonly found in the theory of computing fixed 
points. To be more precise, given G: A-E”, we consider the homotopy 
equation H : R X [0, 11-E” defined by 

H(x,t) = G(x)-[tG(x’)+(l-t)y] -0 (4.1) 

for an arbitrary x’~i. Then, if G is norm coercive and twice continuously 
differentiable, and det G’(x) > 0 for all x E A, by using orientation arguments 



ON UNIVALENCE AND P-MATRICES 247 

one could show that, under a regularity condition on the mapping H, the 
solution to (4.1) is a path (x(e), t(e)), (r(l), t(1)) = (x0, l), which is mono- 
tonic in t. This path may be constructively generated by the complementary 
pivot scheme described in [5]. Because of the norm-coercivity of G, all 
values of t must be taken in the path (x(e), t(0)). One is therefore assured of 
finding the unique solution (x(O), t(O))=(x*,O) of G(x)= y. 

Recall that G is a deformation of the given map F which satisfies the 
S-property. In fact, we have a sequence of functions { G9} defined by (2.5) 
for a sequence { &} with &+O. For each Si, the equation (4.1) will furnish an 
x ‘1 satisfying 

G(xS,) = y. 

If F(x) = y has a unique solution x *, then the sequence {x4} will converge to 
x* as Sj+O. Otherwise, if F(x) = y has no solution, then the sequence will 
approach the boundary of the rectangle R as Q-+0. 

If F: E: -+E n is a continuously differentiable function such that F’(x) has 
positive principal minors for all x > 0, then finding a solution to F(x) = 0 can 
be done by way of a nonlinear complementarity algorithm. Since F’(r) is a 
P-matrix for all x > 0, from [II] we have 

for all x > 0, y > 0 (i.e., F is a P-function), so that there can be at most one 
solution to the complementarity problem 

x > 0, F(x) > 0, dF(x) = 0, (4.2) 

where t denotes matric transposition. Hence, if F(x) -0 has a solution, it will 
be the unique solution to (4.2). Otherwise the solution to (4.2), if it exists, 
will be such that F(x) #O. [Of course nonlinear complementarity algorithms 
may require further restrictions on F to generate an approximate solution to 

(4.2).1 
Finally, it should be noted that Theorem 3 may be used for proving the 

existence and uniqueness of solutions to (4.2). We associate with F the 
mapping G : En+ E n defined by 

G(z) = z- -F(z+), ZEEfl, 

where z+,z- are such that 

z = z+ -z-, z+ >o, z- >o, 

zi+xi- = 0 for all i. 
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For continuously differentiable F, G is continuous. Clearly, we can make 
G continuously differentiable by smoothing out the function G at the points 
where zi = 0 for some i. It is immediate that 

G(z) = 0 iff 1c = Z+ solves (4.2). 

Thus, if G is a continuously differentiable function for which Theorem 3 
holds, then (4.2) will have a unique solution, (See [9] for related discussions 
on this subject.) 

5. ADDENDUM 

After proving our result we were informed by D. Gale and H. Scarf that 
A. Mas-Cole11 has independently and simultaneously verified Scarfs conjec- 
ture. Mas-Cole11 utilized the Poincare index theorem of differential topology 
(rather than the more elementary norm-coerciveness approach) to obtain 
results relating to and including the Scarf conjecture. 

The Associate Editor has also informed us of three related papers. 
Charnes, Raike, and Stutz [l] extend the P-matrix characterizations of Gale 
and Nikaido. Chua and Lam [2] obtain a slightly different version of the 
norm-coerciveness theorem that we quoted; their result permits det F’ to be 
zero at isolated points and positive elsewhere. Kestelman [8] demonstrated 
that if F is univalent when restricted to 8R, then F is univalent in R. Scarfs 
conjecture relates somewhat to Kestelman’s result, but specifically provides 
conditions for the Jacobian matrix in aR that guarantee univalence. Kestle- 
man’s result, however, is very interesting and may lead to an alternative 
proof for univalence by detailed examination of F along the boundary aR. 

6. APPENDIX 

Here we show that the two points x and q selected in Thoerem 2 may be 
assumed to be in i without any loss of generality. 

LEMMA. Let F: R-E” be continuously differentiable and satisfy the 
S-property on the bounded rectangle R. Suppose F(x’) = F(x’) for two 
distinct points x1 and x2 in R, not both in A. Then there exists a continu- 

o&y differentiable function i? which satisfies the S-property, where F( y’) = 

F( y2) fm two distinct points y1 and y2 in g. 
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Proof. Let x1 and x2 be the two distinct points of the hypothesis. We 
may assume that x: #xF. Let Y1 be very close to x1, and Y2 be very close to 
x2, but Y’,Y2~fi. (If x1 or x2 is already interior, then let Y1= x1 or Y2= x2.) 
Given Y’ and Y2, define 

F,(x) = Fi(X) - 
bi+l-Y:) b&-Y:) 

Y:-Y:. - Yf-Y: ’ 
x E R, 

where 

F( y’) = b’ and F( y”) = b2. 

Clearly F is continuously differentiable, and 

aFi(x) : bi’- b,? 

3x1 Y5 Y: 
j=l. 

By hypothesis, F( x’) = F(x2). Th en f rom (A.l) by selecting yi sufficiently 
close to xi, and y2 sufficiently close to x2, we can make the term 

arbitrarily close to zero. _ 

b,!-bf 

Yf-Y: 
(A.2) 

Let ( MF( x))~ and ( MF( x))~ denote the principal minors of the Jacobians 
of F and 2 respectively. As F is continuously differentiable and R compact, 
we may select the term in (A.2) to be so close to zero that if (M”(x))k >0 

( < 0) on a compact subset of R, then (M’[x))k > 0 ( < 0) on that subset also. 
But then the S-property must hold for F. Further, there are two distinct 
points y1 and y2 in i with F( y’) = F( y”). Also F is continuously differentia- 
ble. n 
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