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ABSTRACT 

By MGR we denote a class of special, highly efficient multigrid methods for 
solving h-discrete elliptic differential equations. Unlike standard multigrid methods [4, 
9, 181, MGR methods are characterized by “intermediate” grids (between the given 
h-grid and the 2h-grid) and by special fine-tocoarse and coarse-tofine grid transfer 
techniques. The MGR idea has been conceived 113, 71 by the second author in trying 
to extend the range of applicability of the total-reduction method [15, 161 to more 
general problems. Described in a somewhat different way, methods of MGR type have 
in the meantime also been considered by Braess [l-3] and Meis [ 111. The convergence 
properties of the simplest MGR method (MGR-6) are essentially improved if it is 

combined with one step of checkered GauscSeidel iteration (MGR-CH). For the 
model problem of Poisson’s equation in the unit square, for example, the spectral 
radius decreases from 4 to $ by such a modification, whereas the computational 
effort is not essentially enlarged. For Poisson-like equations, MGR-CH yields the 
fastest iterative solver known so far. Other MGR variants are particularly suitable for 
anisotropic operators. 

1. INTRODUCTION 

In [7], the development of “nonstandard” multigrid (MG) methods for 
linear elliptic boundary-value problems (in 2D regions) was outlined. It was 
pointed out that these methods have several advantages in practical respects: 
Compared to “standard” MGtechniques [4, 9, 10, 181 they are 

(1) considerably faster-even on sequential computers, 

(2) just as widely applicable to general problems, 

(3) immediately suitable for parallel processing (see also [6]). 
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Perhaps still more important than these practical advantages is the fact that 
the nonstandard techniques can be rigorously analyzed quantitatively in the 
following sense: By Fourier expansion the spectral radii (asymptotic conver- 
gence factors) and the spectral norms (error-reducing factors) of the corre- 
sponding two-level (h,2h) methods can be precisely evaluated for model 
problems. (From these quantitive results on the twdevel methods, the 
convergence properties of the complete multilevel methods can be analyzed 
in a well-known straightforward manner [la].) 

Examples for such model problems are the discrete Poisson and the 
Helmholtz equations, as well as the anisotropic equation 

- au,, - bu,, + cu = f, 

with Dirichlet, Neumann, or periodic boundary conditions in rectangular 2D 
regions, using 5 or g-point discretizations of order 2 or 4, respectively. (Also, 
4th-order equations of biharmonic type and 3D equations may be treated.) 
Each of them stands for a class of more general problems (with variable 
coefficients, in nonrectangular convex regions, etc.) to which the quantitative 
results obtained for the corresponding model problem carry over practically. 
Thus-in contrast to many of the general approaches in the convergence 
theory of MG methods-the elementary “model problem analysis” allows us 
to evaluate the different algorithms and to find “optimal” ones. 

Among the nonstandard techniques the so-called MGR methods are of 
particular interest. The essential algorithmic features of these methods are the 
use of intermediate grids (between the given h- and the 2h-grids) and the 
specific coarse-tofine and fine-to-coarse grid transfers. These transfer tech- 
niques and the use of intermediate grids have been motivated by the 
total-reduction (TR) and the alternating-reduction (AR) methods [15, 16, 191, 
which are among the fastest direct Poisson solvers. 

In this paper, we consider in detail only such MGR methods as are related 
to TR. The characteristic feature of the TR-related MGR methods is the use 
of a rotated grid of mesh size ah between h and 2h. AR-related MGR 
methods are of particular interest for anisotropic operators (see Section 6) and 
for 3D problems. 

The original “MGR-0” method was conceived as a fast approximate solver 
[14]; used as an iterative solver, its convergence properties are not satisfac- 
tory. The main purpose of this paper is to demonstrate the striking 
improvement which is achieved by combining MGR-0 with checkered (CH) 
Gauss-Seidel relaxations. By this combination one obtains the so called 
MGR-CH methods, which are analyzed by determining the spectral radii 

ph 
fib and spectral norms uh fib for the respective (h, 6 h)-iteration opera- 
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tom. For example, we prove 

ppjr; (h+O) for MGR-O, 

F@h 7% (h-0) for MGR-CH[ I]. 

In MGR-CH[l] one CH-relaxation step (per iteration) is performed; due to 
the particular algorithmic performance, the computational effort compared to 
MGR-O is not essentially enlarged by this. Among all iterative Poisson solvers 
known so far (see [4], [6], [7], [II], [14], [18], [20]), MGR-CH[l] yields the 
most efficient algorithm of all (in rate of convergence versus computational 
effort). 

The above results, which refer to the model problem of Poisson’s equation, 
and further, more detailed statements are presented in Section 2 and de- 
rived-by simple Fourier-analysis and linear-algebra arguments-in Section 
3. In Section 2 we also make some remarks about the relationship of the MGR 
methods to the algorithms considered by Braess [ 11. In particular, the original 
MGR-O method (described in a somewhat different way and apparently 
developed independently) is also analyzed theoretically in [l]. By the use of 
finite-element arguments and a strengthened Cauchy inequality, Braess ob- 
tains the abovementioned bound of & (namely, for the energy norm) also for 
Poisson’s equation in more general regions. This is a remarkable theoretical 
result. The bound of i-for the (h, ah) version-is, however, of very little 
practical use; see Sections 4 and 5. Unfortunately, although Braess allows 
additional CH relaxations in his description of the MGR method, his proof 
does not take this possibility into account and thus does not explain the 
essential improvement achieved by it.’ 

In Section 4 we consider the corresponding (h,2h) versions of various 
MGR methods. We give spectral radii, spectral norms, and computational- 
effort quantities, in order to perform efficiency comparisons. This section 
contains several results which are derived in detail in [20]. In particular, for 
the main MGR variants the spectral radii for the (h,2h) versions turn out to 
be the same as for the (h,fih) versions. Complete multilevel cycles are 
briefly discussed in Section 5. 

This paper has been called a “note” because the MGR idea is-for 
simplicity-described only for the simplest model problem and because we 
consider only two MGR algorithms (MGR-O and MGR-CH[l]) in detail. The 
special situation (discrete Poisson equation with Dirichlet boundary condi- 

‘In recent papers [2, 31, Braess was able to improve his result by taking into account the 
effect of additional relaxation steps. For certain convex domains, he obtains not optimal, but good 
bounds for the respective convergence factors. 



4 M. RIES, U. TROTTENBERG, AND G. WINTER 

tions in the unit square) is exploited in the proofs, as we make use of the 
knowledge of the eigenfunctions of the discrete LapIace operator. (A more 
systematical investigation of various standard and nonstandard multigrid 
methods in connection with different model probIems is given in [18, 201.) 
We want to point out, however, that the MGR principle is more generally 
applicable, similarly to the MG principIe itself. (See Section 6.) 

For the description of the methods we prefer-for well-known theoretical 
and practical reasons [4, 19]-the use of grid functions and difference 
operators rather than vectors and matrices. Of course, matrix terminology 
could also have been used in principle. 

2. SPECTRAL RADII AND SPECTRAL NORMS FOR THE (h, ah) 
VERSIONS OF MGR 

In this section we describe the (h, v’2h) versions of the MGR-6 and the 
MGR-CH methods and derive quantitative results for their spectral radii. All 
descriptions and results refer to the hdiscrete model problem of Poisson’s 
equation in the unit square with Dirichlet boundary conditions: 

bPh(P) = f(P) PEQhL 

Uh(P) = dP> P E Qh\Qh) 
(2.1) 

with 

~h={p=(x,y)~~2:~=ih,y=jh(i,j=1,2,...,N-1)}, 

(2.2) 
ilh={P=(X,y)ElR2: x=ih,y=jh(i,j=O,l,..., N)}; 

N=h-‘=2P, PEN. 

L, denotes the usual 5point approximation of the Laplacian - A: 

-1 
-I 4 -I , 

-1 I h 

For the description of the algorithms we make the following f-1 assump- 
tions: All approximations of u,, (up), u!+“+‘), @‘), etc.) are supposed to be 
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grid functions on ah that satisfy the exact boundary conditions = g(p) on 
a,\&?,. Consequently, all “error quantities” occurring (vr’ etc.) are also 
defined on a,, with zero boundary conditions ( = 0) on a,,\L?,,. The right-hand 
side f and the “defect quantities” dp) etc. naturally are given (and needed) 
only on a,,. For our description it is, however, convenient (at some places) to 
assume them to be extended to a,, by zero, i.e., = 0 on a2,\Q2,. 

Apart from ah, we here introduce the following grids: 

nf;‘= {P = (X, y) E w,: x = ih, y = jh, i + j even} 

(“even points” of a,), 

n; = n,\ii,E (“odd points” of a,). 

Gh, a,f, 2: are shown in Figure 1 (N = 8). Evidently, the checkered grid 0: 
can be identified with a (rotated) grid of mesh size fi h: 

QN=Q,E with H =&fh 

In the following, we use this notation aH (instead of wf) as well as 

&: =at,nQ, and @: =$,ni=i?f. 

For MGR-O and MGR-CH[l], we now describe the iteration process 

*p -+ q+u on Qz,. 
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MGR-0 ALCORITHM((~,H) version) 

[I] Compute the defect dr) of ur) on a,,: 

qy P) : = f(P) - L,ux”‘( P) for PEQh. 

[II] Restrict dp) to 52,, using the weighted restriction operator 

1 
z:=+ I 4 1 

[ 1 I li’ 

dj;‘( P) : = Z,HdP’( P) for P EQH 

[III] Solve exactly the H-discrete defect equations 

LHQ( P) = dp( P) for P EQH 

with zero Dirichlet boundary conditions. Here L, is given by 

(2.3) 

(2.4 

[IV] For the (H + h) transfer of the correction v(g), set 

uzT_‘( P) = o(Hn)( P) for PEG,, 

and-using these values-solve the h-discrete defect equations 

Lg@)( P) = dp( P) for PEG: (2.5) 

with zero Dir&let boundary conditions. [All equations of (2.5) are 
explicit equations, since for any unknown each of the values VP) of all 
neighbors of P E id?: is already known: The system can be described by 
a diagonal matrix.] 

[V] Set 

Uj:+L @+fl(hn) for PEilh. 

We should like to point out that there are several possibilities to construct 
algorithms that are equivalent to MGR-O. Some of such algorithms require 
even less operations. (Such an equivalent formulation has been given by 
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Braess in [l]; see Remark 2.2 for details.) Of course, such modifications should 
be exploited when the algorithm is implemented (see Section 4). We have 
preferred the above description because it directly corresponds to the theoret- 
ical representation of the iteration operator in Section 3 and because this 
description is oriented to standard MGalgorithms. 

The algorithm MGR-CH[l] described in the following is a combination of 
MGR-O with one step of Gauss-Seidel iteration (i.e. successive relaxation with 
relaxation parameter o = 1). In the case of checkered ordering of the grid 
points, which we assume here (also called “red-black” or “chessboardlike” 
ordering), the Gauss-Seidel operator R, can be described as a product of two 
(Jacobi-like) operators R, , o RE which belong to Qf and Qf, respectively. 

MGR-CH[l] ALGORITHM ((h, H) version) 

[0] Do one step of Gauss-Seidel iteration with “even-odd checkered” order- 
ing of the grid points: 

dhn)= R,u(,")+ r,, on ah. (2.6) 

Here R, is formally defined by 

R,,=R;.R;, 

with 

(2.7) 

R$+')= 
w(P) for PEG:, 

for PEClh\@, 

w(P) for PEQH, 
h 

for PEiih\!JtH, 

and rh is given by 

Tf(P) for PEG:, 

for PEC&\Qh. 
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[I] through [VI: As in MGR-O with z$$~) instead of UP’. 

REMARK 2.1. In this description, we have-for simplicity-explained the 
MGR-CH[l] method by reducing it to MGR-O. If MGR-CH[l] is regarded by 
itself, there are two essential simplifications compared to MGR-O which 
should of course be exploited in the algorithmic performance of MGR-CH[ 11. 
These simplifications are due to the fact that the even-odd relaxation RfRf in 
[0] implies 

dj,“)=O on s2:. (2.8) 

As a first consequence, the application of 

in (2.3) degenerates to a multiplication by k. As a second consequence, the 
right-hand side of (2.5) is zero. Therefore the use of the discrete equation in 
(2.5) degenerates to bilinear interpolation (also see Remark 2.3). 

Evidently, the two processes MGR-O and MGR-CH[l] can be char- 
acterized by 

usl”+ 1) = MFu(hn) + sh (n=0,1,2,...) (2.9) 

with linear iteration operators M, . H For the explicit representation of Mf see 
Section 3. Clearly, 

M; [MGR-CH[~]] = M/[MGR-O] .R,,. 

The asymptotic convergence properties of the two methods are characterized 

by 

THEOREM 1. For the spectral radii ~2 = p( Mr) of the iteration operators 
we obtain the following upper limits independent of h: 

P:& (h-0) for MGR-0, (2.10) 

PP% (h + 0) for MGR-CH[l] . (2.11) 

The following supplements refer to the algorithms MGR-CH[ ~1. These are 
obtained from MGR-CH[l] by performing u > 1 steps of checkered Gauss- 
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Seidel iterations in [0] instead of only one step, whereas all other components 
of MGR-CH[l] remain unchanged. The iteration operator then is given by 

M; [MGR-CH[ V]] = M; [MGR-O] .R”;, . (2.12) 

Also for this more general case the upper limits of pf = $[v] can be 
determined exactly. If Y becomes larger, the spectral radii, of course, decrease, 
whereas the computational effort per iteration step increases. In fact, the 
efficiency of the MGR-CH[V] methods (convergence rate versus computa- 
tional effort) turns out to be best for v = 1. (These efficiency aspects are 
discussed in detail in Section 4.) 

SUPPLEMENT 1. Zf Y > 1, we have 

(2Y)aV 

(2Y + qZu+’ 
(h-0) forMGR-CH[v]. 

(2.13) 

For Y ---) 00, p*[ v] behaves like 

vp*[v] --, k . 

Whereas the spectral radius p(M) characterizes the asymptotic conver- 
gence properties of the respective iteration process, the spectral norm 

u(M) = llWsp = JPwf*) 

gives the (1 Il,-error reduction factor per iteration step. One obtains 

SUPPLEMENT 2. For h -+ 0, the spectral norms u,“[v] of the MGR-O and 
MGR-CH[v] methods (v > 1) converge to the following upper limits: 

u;jl+ for MGR - 0, (2.14) 

for MGR-CH[ v], (2.15) 
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TABLE 1 
SPECTRAL RADII AND SPECTRAL NORMS 

FOR MGR-CH[ v] 

P*[vl a*[Vl 

MGR-O 0.5 0.5 
MGR-CH[ l] 0.074 0.141 
MGR-CH[S] 0.041 0.066 
MGR-CH[B] 0.028 0.044 

where q* = q*[v] is the only real zero of the cubic equation 

(2v + l)q3 + (2v +3)q2 + (6v +3)17 + (9 - 10~) = 0. 

Table 1 contains the limits p*[ v] and u*[v] (three decimals) for some 
values of v. 

Theorem 1 and the two supplements are proved in the following section. 
The proofs, which are based on Fourier-analysis arguments, are elementary 
but technically somewhat complicated. 

We here make some remarks about related approaches and special fea- 
tures of MGR. 

REM~~RK 2.2. As pointed out already in the introduction, there is a very 
close relationship between the MGR methods considered above and the 
methods described by Braess in [l]. In detail, we find: The (h, H) version of 
MGR-O is equivalent to Braess’s Algorithm 2.1 in [l] with v = 0. In the cases 
v = 1 and v = 2, Braess’s algorithms are very similar to MGR-CH[v]; indeed, 
the only difference is that the Gauss-Seidel relaxation operator R, in [1] is 
defined by R, = II:. Rz instead of (2.7) (odd-even checkered relaxation 
instead of even-odd). This slight difference has no influence on the spectral 
radii &[ v] (in the case of the model problem). Therefore, by arguments 
similar to those above, one also obtains for Braess’s methods 

p*[o]=+, p*[1]=+0.074, p*[2]=&$+0.041 (for h-0). 

Braess shows in [l] for his methods only’ 

Pm G8 (for v = 0,1,2 and arbitrary h). (2.16) 

‘Cf. Footnote 1. 
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REMARK 2.3. For the general concept of MGR, we regard the use of the 
discrete equations in the (H, h) transfer [cf. (2.5)] as essential, although in 
MGR-CH it degenerates to bilinear interpolation from Q2, to a,, i.e. to the 
application of 

1 
4 

[ 

1 
1 1 

1 
1. 
lh 

Of course, if the relaxation operator R, is chosen in a different way (for 
example as in Braess’s methods), the use of the discrete equations cannot 
simply be replaced by bilinear interpolation. 

There are several interesting interpretations of the use of the discrete 
equations. For example, it can be regarded as (and be replaced by; see [l]) 
“half a step” of relaxation, which means that there is some “inherent 
smoothing” in this process. This explains why for MGR-O one obtains the 
spectral radius (upper limit) 4 instead of 1. (The value 1 is characteristic for 
the usual coarse-grid correction operators of standard MG methods [18]. One 
would obtain it also for MGR-O if the use of the discrete equation were 
replaced by bilinear interpolation there.) For a formal description of the use 
of the discrete equations as an appropriate relaxation process see [20]. 

Furthermore, the error in the (N, h) transfer is of order 0( h2) in the case 
of bilinear interpolation, but of order 0( h4) if the discrete equations are used. 

3. PROOF OF THEOREM 1 AND THE TWO SUPPLEMENTS 

The basis of the following proof is the fact that the eigenfunctions of - A,, 
form simple (i.e. two-dimensional) subspaces which are invariant under the 
iteration operators it4: of MGR-O and MGR-CH[V]. The proof is divided in 
several parts. 

(1) Representation of MF [MGR-O] 
For the representation of MF, we first note that the (H, h) transfer in 

MGR-O (part [IV] in the algorithm; see Section 2) can equivalently be written 
as 

v(hn)( P) = I Ikuj;‘(P)+Tf&j:)(P) for P E Q, 

0 for P E 2h\Q2h 
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where 1; denotes the bilinear interpolation operator 

w(P) for PEfi2H, 

$w(P):= 

il 1 1 1 
4 1 0 1 w(P) for PE@, 

1 h 

and 

iHw(P): = 
i 

0 for PEQH, 

w(P) for PEOfl 

( zero on ti2,, identity on @ ) . 
Using this representation, one can easily recognize from the description of 

MGR-O that MF is given by 

M;[MGR-O] = I, - Z,$,rZ;Z,, - ;i& (8.1) 

(Compared to standard MG methods [4, 9, 181, the MGR-0 iteration operator 
contains the additional term h2/4iHLh which reflects the use of the discrete 
equations in the (H, h) transfer.) 

(2) Notation 

BY 

we denote the respective spaces of grid functions (on ah, St,, ii:), which are 
additionally assumed to satisfy zero boundary conditions. By qk, (k, 1= 
1,2,..., N - 1) we denote the discrete eigenfunctions of the model operator 
- A, (with Dirichlet boundary conditions): 

+,,(x, y) = sin(krx)sin(Zry), (r,Y)EQ2,. 

These Gkl form a basis of 6(52,). 
Given k,ZEN,_,=(l,2 ,..., N-l}, Iet k= N- k, I= N- 1. From the 

relations 
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it then follows that 

44,: = i(+,,+ &x10, for (k,Z)EJ’ 

is a basis of G( Q2,) and that 

is a basis of G( Qf ). Here the index set J’ is given by 

(3.2) 

By E,, we denote the spaces 

The E,, are twedimensional except for k = I= N/2, when E,, is onedimen- 
sional. 

(3) Proof of (2.10): p; for MGR-O 
We first show that the E,, are invariant under Mf. Setting ck: = cos knh, 

ckl: = 2 L(ck + cl), one has [for (k, 1) E J’] 
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These relations imply the invariance of E,, under MF. Furthermore, with 
respect to the orthogonal basis 

we obtain that Mf is orthogonally equivalent to ( Mkl: (k, Z) E J’). Here M,, 
denote the matrices 

and the 1 X 1 matrix 

Clearly, 

M - 0. N/2, N/2 - 

p(M/) = (kyj%,,~(M,f) and P(MM)= (Ck - cd” 
4(1- c/&J * 

If (k, Z) ranges over J’, then ( ck , cf ) varies in the triangle 

D = &$,?I> : - I< E =G 1, - E 6 11 Q 1) 

(see Figure 2). For h --+ 0, we finally have 

p(M,?)p ma 
(t-d2 1 

(5,11)@4(1-57?) =2. 

(3.6) 

FIG. 2. 
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-The maximum is attained for (E, n) = (1, - 1). 

(4) Proof of (2.11): pi for MGR-CH[ v] 

The Mf operator of MGR-CH[V] is given by 

MF= I,,-Z;L;'ZfL,,-;iHLh R; 1 (3.7) 

[cf. (2.12),(3.1)]. The spaces E,, [(k, I) E J'] are also invariant under this 
operator MF. Namely, under R, = RFRf, the qkl and &fare transformed in 
the following way: 

Finally, instead of (3.5), we now obtain the following representation of 
Mf[MGR-CH[V]] with respect to (3.4): 

-(l+ck,) 1 - (1 - ckl) ’ 
M N,2,N,2bl= 0. 

Consequently, 

(h-4 

with 

and D as in (3.6). 
By monotonicity arguments (for fixed V) it can easily be shown that g, 

attains its maximum on the line 6 = 1. Hence it can be found by differenti- 
ation. We obtain 

In particular, for Y = 1 we obtain the value of & at (5, n) = (1, ;). 
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(5) Proof of Suppkment 2: u: for MGR-0, MGR-CH[V] 
Here one has to determine 

for the matrices Mkl in (3.5) (MGR-O) and in (3.8) (MGR-CH[V]), respec- 
tively. In the case of MGR-O, one obtains for h + 0 

with D as in (3.6). 
In the case of MGR-CH[V] (v > l), one has 

By simple monotonicity arguments one recognizes that the maximum is 
attained at 5 = 1. Differentiation with respect to TJ finally yields the formula 
(2.15). 

4. COMPARISON OF SEVERAL (h,2h) METHODS: CONVERGENCE 
PROPERTIES AND COMPUTATIONAL EFFORT 

The analysis of the (h, H) versions of MGR-6 and MGR-CH[V] considered 
in the preceeding sections gives no information about the efficiency of these 
algorithms compared to other ones as long as the computational effort is not 
taken into account. For the following comparison, we consider the (h,2h) 
versions of the respective methods instead of the (h, H) versions, as most 
multigrid methods are recursively defined by means of (h,2h). 

Table 2 gives a survey of 

pih=p(Mih), uh”“=u(M;y, ,z . e2h 

Here Mfh denotes the (h,2h) iteration operator. By Bib, we give the number 
of arithmetic operations ( X and + ) per grid point of 9, and per iteration 
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step, excluding the solution of the &,-equations. (If the &,-equations are 
solved by a recursively defined MGR cycle of V- or of W-type, 0:” has to be 
multiplied by a factor of $ or 2, respectively, to obtain the total amount of 
work per complete multigrid iteration step. See Section 5 for some details.) 

The MGR methods MGR-CH[V, v’] considered in this section are-roughly 
speaking-characterized by the following components for each iteration step 
@’ -+ up+ 1): 

M Y steps of Gauss-Seidel even-odd checkered relaxations on a,, 
[I] defect restriction to 3,,, 

[o’l v’ steps of Gauss-Seidel even-odd checkered relaxation on 9, (for the 
correction, with starting vector 0), 

[II] defect restriction to Q2,,, 
[III] exact solution on Qa,, 
[IV] (2h -+ H) transfer using the H-discrete equations, 
[V] (H + h) transfer using the h-discrete equations. 

Instead of a detailed description of these algorithms we give here only a 
representation of the corresponding iteration operators M,f” = Mth[MGR- 
CH[ v, v’]]: 

Mih= Ih-I;(I,-M;h)L;lI~Lh-~i,L,, R; 1 
with 

here the operators Ifh, L,, = - Ash, Zih, tab, R, are defined with respect to 
&,,,, Q2, in exactly the same manner as the corresponding operators 12, 
L, = - Au, If, i,, R, with respect to a2,, G2, (see Section 2). (In the case 
v = v’ the (h,2h) version of MGR-CH[ v, v’] could have been defined also 
recursively based on the (h, H) version of MGR-CH[V].) 

Interpreting Mih as an approximation of Mf in (3.7), one can represent it 
also in the following way: 

Mih = Mh” + l;M;hL;‘IfLhR”h. 

REMARK 4.1. In the cases v 2 1 and v’ > 1 there are again inherent 
simplifications in the above algorithms due to the fact that the corresponding 
defects are zero on @, and a;, respectively ( iHLhRh = 0, &,L,R, = 0). 
The corresponding discrete equations in [IV] and [VI, respectively, are not 
really used, but replaced by bilinear interpolation, in these cases. Notice, 
however, that in the case v’ = 0 the use of the discrete equation in the 2h -+ H 
transfer is essential. 
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REMARK 4.2. For v = v’, one obtains the (h,2h) versions of MGR-CH[ v]. 
The methods MGR-CH[ l,O] and MGR-CH[ 1, l] have been mentioned already 
in [7]; they were called respectively MGR-CH 1 and MGR-CH 2 there. 

The spectral radii pih and spectral norms eth for the MGR-CH[v, v’] 
methods have been determined by theoretical considerations similar to those 
of the last section. The only difference is that for the (h,2h) versions 
considered here the spaces 

remain invariant under M lh but the (two-dimensional) spaces E,, in (3.3) do , 
not. Therefore, the corresponding Fourier analysis, in general, leads to 4 x 4 
matrices instead of 2 X2 matrices, and is technically somewhat more com- 
plicated (see [18], [20] for details). The values for pf’ and aih in Table 2 refer 
to the case N = h- ’ = 64; they are, however, nearly independent of h in the 
sense that the first two decimals of these values do not change if h becomes 
smaller. 

Only for comparison, we also consider (h, 2h) versions of a standard 
multigrid technique, namely LEX(v,O>INJ, roughly explained in the follow- 
ing. (Such standard methods have formerly been recommended for the 
Poisson equation by A. Brandt [4]; also see the corresponding remarks in [7], 
[18].) Here the smoothing is performed by v steps of Gauss-Seidel point 
relaxation with lexicographic (row- or columnwise) ordering of the ah-points. 
Afterwards, the (h -+ 2h) restriction is carried out simply by Iihu( P) : = v(P) 
(P E a,&) (“injection”). On the 2h-grid, L, = - Ah is approximated by 
L,, = -A,,. For the (2h + h) transfer, bilinear interpolation is used. The 
values for pih corresponding to LEX( v, O>INJ given in Table 2 are only 
approximate ones (marked by *); they have been calculated by the so-called 
“local mode analysis” (Brandt [4]). By this one can also recognize that the 
spectral norms oih of these methods behave like 0( h-‘) (for h + 0). 

In order to judge the efficiency of the various methods in Table 2 it is, of 
course, necessary to look at both the spectral radii pih (and norms uih) and 
the computational effort 0, . 2h We have noted our evaluation of the methods in 
the last column of Table 2. (As a measure of efficiency we have used here 

eff: = [pihla with a = lO/6,2h, 

i.e. an asymptotic convergence factor per 10hp2 arithmetic operations.) 
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In addition to the numbers given in Table 2 we remark that one obtains 

(numerically) 

p”h” [MGR-CH[ V, v’]] = p”h” [MGR-CH[ v, v]] 

u;h [MGR-CH[ y, /J] = u;* [MGR-CH[ V, Y]] I 
if v’>v, 

so that it is of no use to do more CH relaxations on 52, than on s1,. 
With respect to the considerations in the next section concerning “com- 

plete cycles” the following observation is very important. It refers to the 
respective (h, H) and (h,2h) versions of MGR-CH[V], i.e. Y = v’. 

REMARK 4.3. The numerical calculation of pf (and (JR) for MGR-CH[Y] 

and pi’ (and uih) for MGR-CH[V, V] yields the results given in Table 3 
(h = &). We see that the spectral radii and the spectral norms are not 

TABLE 2” 

Method P”hh 

P h 

2h 
Oh x + Eff. Comment 

MGR-CH[O,O] 0.499 0.499 2 7 

MGR-CH[ 1, l] 0.074 0.141 3 9.75 
MGR-CH[2,2] 0.041 0.066 4.5 14.25 
MGR-CH[S, 31 0.028 0.043 6 18.75 

0.46 

0.13 
0.18 
0.24 

MGR-CH[l,O] 0.096 0.169 2.5 8.5 0.12 
MGR-CH[2,0] 0.062 0.100 3.5 11.5 0.16 
MGR-CH[3,0] 0.047 0.071 4.5 14.5 0.20 

MGR-CH[2, l] 
MGR-CH[3, l] 

0.047 
0.037 

MGR-CH[S, 21 0.028 

0.071 
0.055 

0.043 

::i 

(00) 

4 12.75 0.16 
5 15.75 0.20 

5.5 17.25 0.21 

LEX(l,O)-INJ 0.447* 
LEX(S,O)-INJ 0.2 * 
LEX(3,0)-INJ 0.089* 
LEX(4,0)-IN J 0.042* 
LEX(5,0)-INJ 0.028* 

2.5 6.5 
3.5 10.5 
4.5 14.5 
5.5 18.5 
6.5 22.5 

0.41 
0.32 
0.28 

I 

Less efficient 
0.27 
0.29 

Not competitive 

Very efficient 

Very efficient 

“As already mentioned in Section 2, there are several possibilities for implementing 
the MGR-CH[ v, v’] method, resulting in different operation counts. Some of such 
algorithmic simplifications (cf. Remark 2.1 etc.) have been exploited in giving the 
above numbers for Bib. 
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enlarged by the step jiom H to 2h. For the significance of this phenomenon 
for practical purposes, see Section 5. 

However, if the (h,4h) versions of MCR-CH[V] are considered (“V- 
cycles”; see next section), one obtains larger values pih[ Y] than the above 
pih [ Y]; for instance 

p”hh [0] = 0.674, pih [l] = 0.093 (for h=&). 

See [20] for details. 

5. COMPLETE CYCLES 

The analysis of the previous sections (and the comparison of computa- 
tional effort) refers to the (h,2h) and the (h, H) versions of the respective 
methods. Such twdevel versions are, of course, not used in practice; they 
serve only as a basis for “complete” (multilevel) iteration cycles or for “full” 
multigrid algorithms [18]. On the basis of (h,2h) versions, such algorithms 
can be defined (recursively or adaptively) in the MGR context in exactly the 
same manner as the standard MG techniques. We shall not explain these 
straightforward procedures here. We should like, however, to point out the 
significant difference between complete cycles based on (h, 2h) and on 

(h, H). 
The simplest (h,2h) recursion of a complete cycle is characterized by the 

number y of MGR (or MG) iterations which are performed on the next 
coarser grid (mesh size 2h*) to solve approximately the h*-grid equations 
(h*=h,2h,4h ,..., h, /2). (In the case of the model problem the coarsest 
mesh size can be chosen as h, = $.) 

Let ah(y) denote the spectral norm of the iteration operator which 
describes such a complete cycle. By a simple recursive estimate, one can 
obtain an h-independent bound for ah(y), provided y > 2 and ulh (cf. the 
previous section) is sufficiently small (for example 0:’ < a) [18]. 

TABLE 3 

0 0.5 0.5 0.5 0.5 
1 0.074 0.074 0.141 0.141 
2 0.047 0.047 0.066 0.066 
3 0.028 0.028 0.043 0.043 
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TABLE 4 

Y 1 2 3 4 
I 

e,,(Y) d ,$ey 28;” 4 s,z” e;hO(log K’) 

In the case y = 2 we speak of a complete cycle of “W-type.” In the case 
y = 1, which we refer to as a complete cycle of “V-type,” the corresponding 
estimation technique yields no h-independent bound for 0,(1).~ Therefore, 
from a theoretical point of view, a complete cycle with y > 2 is more 
satisfactory, at least simpler to handle. 

On the other hand, the computational effort for a complete cycle, denoted 
by /3,(y), is proportional to 8ih and thus proportional to h-2 (points of the 
finest grid) only if y < 3. Namely, one has the estimates shown in Table 4. 
(These estimates are easily obtained by a geometric-series relation 19 k, taking 
into account the number of grid points of Q2kh -yielding a convergence 
factor of 9 = y/4.) So in the case of an (h,2h) recursion, the demands y >, 2 
and y < 3 seem to be natural from the theoretical and from the practical point 
of view, respectively. With respect to efficiency, y = 2 is preferable. 

As pointed out also by Braess [l], the situation is essentially different for 
complete cycles (of MGR type), which are defined in the simplest way by a 
(h,H) recursion. Let y’ now denote the number of MGR iterations which are 
performed on the next coarser grid (mesh sixe &/a*) to solve approximately 
the h*-grid equations (h* = a” h, k = 0, 1,2,. . . ). If one chooses the same y’ 
for all grids 52,,, practical considerations similar to those above yield y’ 6 1 
(instead of y < 3) in order to restrict the total computational work to be 
proportional to he2. (In the corresponding geometric series relation Cqk, one 
here has to do with 9 = y’/2 instead of y/4.) 

On the other hand, the theoretical complications for the V-cycle described 
above are, of course, present also in the framework of the (h, H) recursion. 
This is the reason why in our opinion it is important to obtain small 
h-independent bounds for p”” ,, and uih for the corresponding (h,2h) MGR 
methods (cf. Remark 4.3). Nevertheless, the values for &, ut (as derived in 
Section 2) give some theoretical insight into the principal convergence 
behavior of the different approaches. 

“By use of a modified argument, recently Braess [3] has obtained h-independent bounds for 
the convergence factors of certain V-cycle MG methods. In the meantime, this idea has been 
adopted by several other authors. In all these theoretical approaches, restrictive assumptions have 
to be made. 
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6. ANISOTROPIC OPERATORS AND OTHER APPLICATIONS 

As already pointed out in the introduction, the MGR principle is not at all 
restricted to such special situations as the model problem considered in the 
previous sections. As an example for a more general practical application of 
MGR, we only mention the program MG 01 [17, 18, 71 for 

-Au(P)+c(P)u(P)=f(P), P E!TJ, 

dP> = g(P), PEX!, 

on general 20 domains Q. In this program, which is based on a simple 
multigrid cycle and the full-MG technique [4], all MG components can easily 
be replaced by corresponding MGR components (e.g. CH(l, l)-FW [7] can be 
replaced by MGR-CH[ 1, 11). 

Furthermore, with respect to more general problems, the MGR concept 
has several additional advantages over standard MG techniques. A very 
simple example for this is the above Helmholtz equation (with constant or 
variable c > 0). The (h -+ H)-transfer operator naturally suggested by the 
total-reduction principle is 

If=I- 
8+ch2 I 

1 
1 4+ch2 I 

1 i h 

instead of (2.3). Indeed, the use of this operator yields smaller spectral radii 
for the corresponding MGR methods than (2.3). 

We want to discuss the important case of an anisotropic operator 

Lu = - EU,, - uyy with o<E#l (6.1) 

in some more detail. For simplicity, we consider the following discrete 
problem: 

Lhuh(p) = _f-tp) (PEah), 

(6.2) 

Uh(P) =dp> (p E %\Qh), 

where fi,, is given by (2.2) [square grid of mesh size h in Q = (0, l)‘] and L,, is 
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the ordinary S-point approximation of L in (6.1): 

23 

-1 
2-t2E -& . 

-1 1 h 

For the problem (6.2), it is well known [17] that pointwise (CH) relaxation 
has unsatisfactory smoothing properties if E K 1 (or E Z+ 1). These difficulties 
are easily overcome by line relaxation, or-still better-by “z&m-line” 
relaxation [6, 181. By zebra-line relaxation we here mean a Gauss-Seidel line 
relaxation process consisting of two half steps, where in the first half step the 
even lines and in the second half step the odd lines are relaxed. 

In the total-reduction context, a special difficulty arises from the fact that 
the operator L cannot consistently be approximated by a 5-point difference 
operator on the rotated grid Q2,. With respect to this difficulty, in the MGR 
context, the combination of multigrid with appropriate versions of the “alter- 
nating-reduction (AR) method ” [16, 191 (instead of total reduction) is of 
particular interest. In AR the use of the rotated intermediate grid Q2, between 
9, and Qa,, is avoided; instead the AR intermediate grid is characterized by 
doubling the mesh size in only one direction (x or y). Thus the (h -+ 2h) 
transfer in the q-AR (or yx-AR, respectively) process is performed by two 
half steps using the intermediate grid &?2,h1, h, (or ah,,ahy, resp.). 

The MGAR versions of MGR yield highly efficient algorithms, especially 
for anisotropic operators. We give results (spectral radii pih) for only one 
algorithm of this type; a systematical study will be contained in [20]. 

The algorithm [(h,2h) version] is characterized by the following compo- 
nents (with notation analogous to the description of MGR-CH in Section 4): 

WI v steps of y-zebra-line relaxation on fi2,, 
[I] defect restriction to 8ah h *, r by the restriction operator 

a[1 2 l]h, 

[II] defect restriction to Qah by the restriction operator 
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[III] exact solution on &,, using the discrete operator 

L,,= & --E I -1 
2+2x? --E , 

-1 1 2h 

[IV1 (%h + Q;2,hx, h, > transfer using the discrete defect equations with oper- 

ator 

-4 
L 0 8+2& 0 -E 

-4 1 h 

(tridiagonal systems), 

Lv] (%h,.h -nh> transfer using the discrete defect equations with Lh 
(tridiag&aI systems). 

This algorithm can be analyzed rigorously by means of Fourier analysis as 
outlined for the (h,2h) versions of MGR-CH in Section 4. We obtain the 
results in Table 5 for the spectral radii pih with respect to E and Y ( = 0,l). 

From these results one immediately recognizes that also for this AR 
variant of MGR we obtain the bound of i for the spectral radius in the case 
v = 0. This bound is indqendent of E. (Note that [IV] and [V] can be 
interpreted as half steps of zebra-line relaxation, on Q2,,=, h in the x-direction 
and on ah in the y-direction, respectively. Thus, also in ‘this algorithm, we 
have an “inherent smoothing”-cf. Remark 2.3-of alternating type.) 

In the case v = 1, of course, the y-direction is distinguished by the 
y-zebra-line relaxation process. The y-line relaxation is “correct” for the case 
E < 1. Indeed we obtain the well-known value of 0.074 = & if E + 0; but even 
for E + 00 the spectral radii are bounded by i. 

An efficient method which is robust with respect to E >, 1 and E < 1 is 
obtained if two alternating steps of zebra-line relaxations are performed in 
connection with MC-AR, namely, one in the x- and one in the ydirection. 

TABLE 5 
pih FORTHE MGR-AR ALGORITHMS 

E 
Y 0.01 0.1 1 10 100 

0 0.5 0.5 0.5 0.5 0.5 
1 0.074 0.074 0.084 0.25 0.41 

"Two significant figures; Y steps of y-zebra-line relaxation, h = &. 
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Furthermore, such alternating (zebra-) line relaxations are of particular inter- 
est if E is a function of (x, y) which varies in value between >> 1 and < 1 
over the domain a. 

Finally, we would like to point out that the AR variants of MGR are of 
particular interest for 30 problems. A survey of various intermediate grids for 

3D problems is contained in [12]. 

The authors would like to thank Achi Brandt (Rehovot, Israel) for fruitful 
discussions and proposals. In particular, he suggested combining the original 
MGR with checkered relaxation, and also obtained the quantities of i and $ 
by use of his “local mode analysis”. 

Furthermore, we also had interesting discussions on the MGR complex 
with Th. Meis (Cologne) and W. Hackbusch (Bochum). Motivated by the 
paper of Braess [l] and by our work, Meis has also started to investigate 
multigrid methoo!s that make use of intermediate grids [ll]. Hackbusch has 
already used checkered relaxation techniques - independently of the 

MGR - within his MG approach in [8]. 
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