TRIANGLE-FREE PARTIALL GRAPHS AND EDGE COVERING THEOREMS

J. LEHEL and Zs. TUZA
Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Received 11 July 1980
Revised 10 February 1981

In Section 1 some lower bounds are given for the maximal number of edges of a ($p-1$)colorable partial graph. Among others we show that a graph on n vertices with m edges has a ($p-1$)-colorable partial graph with at least $m T_{n, p}\left(\frac{n}{2}\right)$ edges, where $T_{\text {n.p }}$ denotes the so called Turán number. These results are used to obtain upper bounds for special edge covering numbers of graphs. In Section 2 we prove the following theorem: If G is a simple graph and μ is the maximal cardinality of a triangle-free edge set of G, then the edges of G can be covered by μ triangles and edges. In Section 3 related questions are examined.

Preliminaries

We will consider only loopless graphs without multiple ed́ges. If $G=(X, E)$ is a graph, then the edge set $F \subset E$ together with the spanned vertices define a partial graph of G which will be denoted by the same letter F for simplicity reasons.
K_{p} stands for a p-clique (complete graph on p vertices); K_{3} will be called a triangle.

The graph G will be called F-free if G has no partial graph isomorphic to the graph F.

The copies of a given graph F are graphs isomorphic to F.
$\gamma(F)$ denotes the chromatic number of the graph F.
A k-partition of the graph $G=(X, E)$ is a partition of X into k classes; a k-partition is said to be almost equipartite if each of its classes contains $\lfloor|X| / k\rfloor$ or $\lfloor|X| / k\rfloor+1$ vertices.

1. K_{p}-free partial graphs

Turán in [1] determined $T_{n, p}$, the maximal number of edges in a K_{p}-tree graph on n vertices. (The value $T_{n, p}$ is about $(p-2) n^{2} / 2(p-1)$.) On the other hand it is known (remarked by Erdös) that every graph with m edges contains a cut of more than $\frac{1}{2} m$ edges. We will prove an extension of this statement giving a sharp lower bound for the number of edges in a maximal K_{p}-free partial graph of an arbitrary graph.

Suppose that every edge $e \in E$ of the graph G has a real weight $w(e)$ and put

$$
W\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w(e) \quad \text { where } E^{\prime} \subset E .
$$

1.1. Theorem. For all $p \geqslant 3$ every graph on n vertices has a ($p-1$)-colorable partial graph with edge set E^{\prime} satisfying

$$
W\left(E^{\prime}\right) \geqslant W(E) T_{n, p} /\binom{n}{2} .
$$

Proof. The nonedges of G will be considered as weighted edges with weight 0 . Then every almost equipartite $(p-1)$-partition P of the vertices of G contains exactly $T_{n, p}$ weighted edges joining vertices of different classes in P. Let t be the number of all almost equipartite ($p-1$)-partitions and let E_{i} be the set of weighted edges between different classes in the i th partition ($i=1,2, \ldots, t$).

Obviously $S=S(e)=\left|\left\{i: e \in E_{i}\right\}\right|$ does not depend on the choice of e, therefore

$$
t \cdot T_{n, p}=\sum_{i=1}^{t}\left|E_{i}\right|=\binom{n}{2} \cdot S .
$$

On the other hand:

$$
\begin{aligned}
\sum_{i=1}^{\mathbf{t}} W\left(E_{i} \cap E\right) & =\sum_{i=1}^{\mathbf{t}} W\left(E_{i}\right)=\sum_{i=1}^{\mathbf{t}} \sum_{e \in E_{i}} w(e) \\
& =\sum_{\substack{(e, i) \\
e \in E_{i}}} w(e)=S \sum_{e \in U_{i}^{\prime}=E_{i}} w(e)=S \sum_{e \in E} w(e)=S \cdot W(E) .
\end{aligned}
$$

From this:

$$
\left\{\sum_{i=1}^{t} w\left(E_{i} \cap E\right)\right\} / i=W(E) \cdot S / t=W(E) T_{n, p} /\binom{n}{2}
$$

This implies that for some $j(1 \leqslant j \leqslant t)$

$$
W\left(E_{i} \cap E\right) \geqslant W(E) T_{n, p} /\binom{n}{2} \text { holds. }
$$

1.2. Corollary. Every graph of n vertices and m edges contains a K_{p}-free partial graph with at least $\boldsymbol{m} T_{\text {n.p }} /\binom{n}{2}$ edges.

Proof. Let $w(e)=1$ for each $e \in E$. In this case $W\left(E^{\prime}\right)=\left|E^{\prime}\right|$ thus Theorem 1.1 gives us a ($p-1$)-colorable partial graph G^{\prime} with at least $m T_{n, p}\left(\frac{n}{2}\right)$ edges. G^{\prime} cannot contain the p-chromatic graph K_{p}.
1.3. Corollary. A graph on n vertices, with m edges contains a bipartite partial graph with at least $m(n+1) / 2 n$ edges (which is more than $\frac{1}{2} m$).

Proof.

$$
T_{n, 3} /\binom{n}{2}=\left[\frac{n^{2}}{4}\right] /\binom{n}{2} \geqslant \frac{n+1}{2 n} .
$$

1.4. Corollary. A graph on n vertices with m edges contains a K_{p}-free partial graph with more than $m(p-2) /(p-1)$ edges.

Proof. Suppose $n=(p-1) k+r$ where $0 \leqslant r \leqslant p-2$ and $n \geqslant 2$. Then

$$
\begin{aligned}
T_{n . \mathrm{p}} & =\frac{p-2}{2(p-1)} \cdot\left(n^{2}-r^{2}\right)+\binom{r}{2} \\
& =\left(n^{2}-n\right) \frac{p-2}{2(p-1)}+\left(n-r^{2}\right) \cdot \frac{p-2}{2(p-1)}+\binom{r}{2} \\
& =\binom{n}{2} \cdot \frac{p-2}{p-1}+\frac{(n-r)(p-2)+r^{2}-r}{2(p-1)}>\binom{n}{2} \frac{p-2}{p-1} .
\end{aligned}
$$

In Se stion 3 we will use the following strengthening of Corollary 1.3.
1.5. Proposition. A graph $G=(X, E)$ with $2 k+1$ edges $(k \geqslant 2)$ has a bipartite partial graph with at least $k+2$ edges.

Proof. Corollary 1.3 gives us a bipartite partial graph $G=\left(X^{\prime}, E^{\prime}\right)$ with $\left|E^{\prime}\right|=$ $k+1$. If none of the remaining k edges can be added to E^{\prime}, then each of them completes an odd circuit with some edges of G^{\prime}, thus $X=X^{\prime}$. Since $\left|E^{\prime}\right|=k+1$, $\left|X^{\prime}\right| \geqslant 2 k+1$ would imply that G^{\prime} has at most two adjacent edges, therefore in this case we could not obtain $k \geqslant 2$ odd circuits. Conseauently $|X| \leqslant 2 k$ and Corollary 1.3 states that G contains a bipartite partial graph with at least

$$
\begin{aligned}
|E| \cdot \frac{|X|+1}{2|X|} & =\frac{2 k+1}{2}\left(1+\frac{1}{|X|}\right) \geqslant \frac{2 k+1}{2}\left(1+\frac{1}{2 k}\right) \\
& =\frac{(2 k+1)^{2}}{4 k}>k+1 \text { edges. }
\end{aligned}
$$

1.6. Remark. One can see that Theorem 1.1 and Corollary 1.2 are true in a stronger form when $T_{n, p} /\binom{n}{2}$ is replaced by $T_{\gamma(G), p} /\left(\gamma_{2}^{(G)}\right)$. This fact with the obvious $\binom{(G)}{2} \leqslant m$ results in the following sharpening of Corollary 1.3.
A graph of m edges contains a triangle-free partial graph with at lerst $\frac{1}{2} m+(\sqrt{8 m+1}-1) / 8$ edges.

2. Edge covering by triamgles

For a simple graph $G=(X, E)$ we define the following values:
Δ is the minimum number of cliçues with size $\leqslant 3$ which cover E; μ is the maximum carcinality of a triangle-free edge set of G;
μ_{1} is the maximum cardinality of the subsets of E which contain at most one edge of the triangles of G. (We remark that none of the spanned triangle-free subgraphs of G can contain more than μ_{1} edgts of G.) The following result was motivated by a question of Erdös.
2.1. Theorem. $\mu_{1} \leqslant \Delta \leqslant \mu$.

Proof. (a) If $M_{i} \subset E$ is a set of cardinality μ_{1} containing at most one edge of the triangles of G, then we need at least $\mu_{1} 2$ - and 3-cliques to cover its edges: $\mu_{1} \leqslant \Delta$.
(b) Let $M \subset E$ be a maximal traingle-free set $(|M|=\mu)$. Consider the edges $e \in E \backslash M$. We define $\Gamma(e) \subset M$ as the set of edges e^{\prime} for which there exists a triangle of G containing both e and e^{\prime}. We will prove the existence of an injection $g: E \backslash M \rightarrow M$ satisfying the property: $g(e) \in \Gamma(e)$ holds for each $e \in E \backslash M$. In this case the $|E \backslash M|$ triangles containing e and $g(e)$ cover all the edges of G with the exception of at most $|M|-|E \backslash M|$ edges of M (because the $g(e)$'s are different). Obviously a covering, of E has been gained with at most $|M|$ edges and triangles which implies $\Delta \leqslant \mu$.

If $\left|\bigcup_{e \in K} \Gamma(e)\right| \geqslant|K|$ hoids for each $K \subset E \backslash M$ than the well-known König-Hall Theorem [2] gives us the injection g.

Suppose contrarily that for some $K \subset E \backslash M$ we have $\left|\bigcup_{e \in K} \Gamma(e)\right|<|K|$. Put $M^{\prime}=\bigcup_{e \in K} \Gamma(e)$. C.coose a maximal triangle-free edge set M^{*} in the partial graph defined by $K \cup M^{\prime}$.

$$
\left|M^{*}\right|>\frac{1}{2}\left|K \cup M^{\prime}\right|=\frac{1}{2}\left(|K|+\left|M^{\prime}\right|\right)>\left|M^{\prime}\right|
$$

because of Corollary 1.3 and our assumption on $|K|$.
On the other hand M^{*} and $M \backslash M^{\prime}$ are disjuirt subsets of $M \cup K$, therefore

$$
\left|\left(M \backslash M^{\prime}\right) \cup M^{*}\right|=|M|-\left|M^{\prime}\right|+\left|M^{*}\right| \geqslant|M| .
$$

Because of the maximality of \boldsymbol{M} the set $\left(M \backslash M^{\prime}\right) \cup M^{*}$ contains a triangle of $\boldsymbol{G} . \boldsymbol{M}$ is triangle-free thus for an edge e of this triangle $e \in K$. Consequently all the edges of the triangle are contained by $K \cup \Gamma(e)$, that is M^{*} contains this triangle- a contradiction.

Graphs with $\Delta=\mu$ will be characterized in Theorem 3.3.
2.2. Remarlk. It seems to be true that one car find edge-disjoint covering of E as well by μ edges and triangles. (We have proved it for planar graphs in a more general form.) This result would be a generilization of a theorem of Erdös-Goodman-Pósa [3] which st.utes that the edges of a grar.h on n vertices can be covered by at most $\left[\frac{1}{4} n^{2}\right]$ pairwise disjoint 2- and 3 -cliques.

3. Gemeral edge coverings

Like covering by triangles, we propose the problem of edge coverings by copies of a given graph. From here F can be arbitrary (directed or undirected) but fixed
graph. For a graph $G=(X, E)$:
Δ_{F} denotes the minimum number of copies of F and edges covering E;
μ_{F} is the maximum number of edges in the F-free partial graphs of G. If G is a graph on n vertices and F is bipartite then $\mu_{F}=o\left(n^{2}\right)$ holds [4]. Because most of the graphs on n vertices have cn^{2} edges, one can not expect a good relation between Δ_{F} and μ_{F}. Therefore we suppose that the chromatic number of F is not less than 3.
3.1. Theorem. $\Delta_{F} \leqslant \mu_{F}$. holds for every graph F with $\gamma(F) \geqslant 3$.

To obtain a proof one can amuse himself replacing the word "triangle" by " F " and the number μ by μ_{F} in the proof of Theorem 2.1.

If F is a ditrangle (a directed circuit of length 3), then from Theorem 3.1 we can get a result analogous to Theorem 2.1.
3.2. Corollary. If $G=(X, \mathscr{O})$ is a directed graph and μ^{\prime} is the maximal cardinality of a ditriangle-free arc set of G, then $थ$ can be covered by μ^{\prime} arcs and ditriangles.

A question arises in a natural way: is our upper bound for Δ_{F} the best possible? A slight modification of the proof of Theorem 3.1 gives:
3.3. Theorem. $\Delta_{F}=\mu_{F}$ holds if and only if the graph G is F-free $(\gamma(F) \geqslant 3)$.

Proof. (a) If $G=(X, E)$ is F-free, then $\mu_{F}=|E|=\Delta_{F}$.
(b) Let $M \subset E$ be a maximal F-free partial graph $\left(|M|=\mu_{F}\right)$. One supposes that $E \backslash M \neq \emptyset$; then each edge of $E \backslash M$ forms an F with some edges of M (M is maximal F-free).

Let $e_{0} \in E \backslash M$ and $e_{0} \in F_{0}$ where F_{0} is a copy of F and $F_{0} \backslash M=\left\{e_{0}\right\}$. Let e_{1} and e_{2} be two other edges of F_{0}.

For $e \in(E \backslash M) \backslash\left\{e_{0}\right\}$ let $\Gamma(e)=\left\{F^{\prime} \cap\left(M \backslash\left\{e_{1}, e_{2}\right\}\right)\right.$: $e \in F^{\prime}, F^{\prime}$ is a copy of $\left.F\right\}$. We will verify the Hall condition between $(E \backslash M) \backslash\left\{e_{0}\right\}$ and $M \backslash\left\{e_{1}, e_{2}\right\}$ as well as we did it in the proof of Theorem 2.1 between $E \backslash M$ and M.

Suppose contrarily that there exists a set $K \subset(E \backslash M) \backslash\left\{e_{0}\right\}$ with property: $|K|=q+1$ and for the set $M^{\prime}=\bigcup_{e \in K} \Gamma(e),\left|M^{\prime}\right|=q$ ($q \geqslant 1$ is clear). It follows from Proposition .5 that one can choose at least $q+3$ edges from the $2 q+3$ ones of $K \cup M^{\prime} \cup\left\{e_{1}, e_{2}\right\}$ which form a bipartite consequently F-free partial graph M^{*}. Put

$$
N=\left(\left(M \backslash\left\{e_{1}, e_{2}\right\}\right) \backslash M^{\prime}\right) \cup M^{*}
$$

Applying the observations that $\left|M^{*}\right| \geqslant q+3$ and $\left(\left(M \backslash\left\{e_{1}, e_{2}\right\}\right) \backslash M^{*}\right) \cap M^{*}=\emptyset$ we obtain:

$$
|N|=|M|-\left|\left\{e_{1}, e_{2}\right\}\right|-\left|M^{\prime}\right|+\left|M^{*}\right| \geqslant|M|-2-q+q+3=|M|+1
$$

therefore N contains a copy F_{1} of F by the maximality of M. Thus there is an edge $e \in F_{1} \cap K$, consequently $F_{1} \in \mathbb{K} \cup \Gamma(e)$, which means that $F_{1} \subset M^{*}$ contradiction.

The Hall condition is true and König-Hall Theorem gives now the existence of an injection $g:\left((E \backslash M) \backslash\left\{e_{0}\right\}\right) \rightarrow\left(M \backslash\left\{e_{1}, e_{2}\right\}\right)$ satinfying that $g(e) \in \Gamma(e)$ holds for each $e \in(E \backslash M) \backslash\left\{e_{0}\right\}$. This injection guarantees that at most $\left|M \backslash\left\{e_{1}, e_{2}\right\}\right|=\mu_{F}-2$ copies of F and edges from M cover all edges of G except the edges e_{0}, e_{1}, e_{2} which are covered by F_{0}. Consequently $\Delta_{F} \leqslant \mu_{F}-1$.
3.4. Theorem. Let F be K_{p}, the p-clique ($p \geqslant 3$ and $|F|=\binom{p}{\mathbf{p}}$). If G contains a p-clique, then $\Delta_{F} \leqslant \mu_{F}-|F|+2$.

Proof. For $p=3$ our assertion is given by Theorem 3.3. Let $p \geqslant 4$ and $M \subset E$ be a maxima: K_{p}-free set $\left(|M|:=\mu_{F}\right.$). Let $e_{0} \in E \backslash M$ and C_{0} be a p-clique of G for which $C_{0} \backslash M=\left\{e_{0}\right\}$. We will p:ove the existence of an injection $g:(E \backslash M) \backslash C_{0} \rightarrow$ $M \backslash C_{0}$ satisfying that for each $e \in(E \backslash M) \backslash C_{0}, g(e)$ and e are contained in a p-clique of G. In this case we have at most $\left|M \backslash C_{0}\right|+1=\mu_{F}-(|F|-1)+1=$ $\mu_{F}-|F|+2 p$-cliques and edges which cover E. Supposing that the Hall condition does not hold, one can find the edge sets $K \subset(E \backslash M) \backslash C_{0}$ with $|K|=q+1$ and $M^{\prime} \subset M \backslash C_{0}$ with $\left|M^{\prime}\right|=q$ satisfying that each $e \in M \backslash C_{0}$ contained in a p-clique meeting K is an element of M^{\prime}. We observe that

$$
\begin{equation*}
q \geqslant p-2 \tag{1}
\end{equation*}
$$

Indeed, if $e_{1} \in K$ and C_{1} is p-clique of G for which $C_{1} \backslash M=\left\{e_{i}\right\}$, then $C_{1} \neq C_{0}$; thus one vertex v_{1} spanned by C_{1} is not spanned by C_{0}; since there are at least $p-2$ edges of C_{1} starting from v_{1}, and contained in $M \backslash C_{0},\left|C_{1} \cap\left(M \backslash C_{0}\right)\right| \geqslant p-2$; finally since M^{\prime} contains $C_{1} \cap\left(M \backslash C_{0}\right)$, thus

$$
q=\left|M^{\prime}\right| \geqslant\left|C_{1} \cap\left(M \backslash C_{0}\right)\right| \geqslant p-2
$$

which gives (1). Let us consider the graph $G^{\prime}=\left(X^{\prime}, E^{\prime}\right)$ defined by the edge set $E^{\prime}=K \cup M^{\prime} \cup\left(C_{0} \backslash\left\{e_{0}\right\}\right)$ and denote by M^{*} its maximal K_{p}-free partial graph. Using Corollary 1.4 we have:

$$
\begin{equation*}
\left|M^{*}\right|>\left|E^{\prime}\right| \cdot \frac{p-2}{p-1}=\left(2 q+\binom{p}{2}\right) \cdot \frac{p-2}{p-1} \tag{2}
\end{equation*}
$$

It is easy to see that $\left(\left(M \backslash C_{0}\right) \backslash M^{\prime}\right) \cup M^{*}$ is $K_{p}-$ free, therefore

$$
\begin{aligned}
|M| & \geqslant\left|\left(\left(M \backslash C_{0}\right) \backslash M^{\prime}\right) \cup M^{*}\right| \\
& =|M|-\left(\left|C_{0}\right|-1\right)-\left|M^{\prime}\right|+\left|M^{*}\right| \\
& =|M|+\left|M^{*}\right|-q-\binom{p}{2}+1 .
\end{aligned}
$$

From this:

$$
\begin{equation*}
\left|M^{*}\right| \leqslant q+\binom{p}{2}-1 \tag{3}
\end{equation*}
$$

Combining (3) and (2) we have

$$
q+\frac{p(p-1)}{2}-1>2 q \cdot \frac{p-2}{p-1}+\frac{p(p-2)}{2}
$$

For $p \geqslant 4$ the last inequality is equivalent to

$$
\begin{equation*}
(p-2)\left(\frac{1}{2}+\frac{1}{p-3}\right)>q . \tag{4}
\end{equation*}
$$

It can be seen immediately that (1) and (4) have only one common integer solution: $p=4, q=2$. In this case there is only one vertex of X^{\prime} which does not belong to the vertex set spanned by C (see the argument after (1)), therefore $\left|X^{\prime}\right|=5$ thus X^{\prime} can span at most 10 different edges in G. But the fact is that it spans at least

$$
\left|E^{\prime} \cup\left\{e_{1}\right\}\right|=2 q+\binom{p}{2}+1=11
$$

edges-contradiction.

References

[1] P. Turán, An extremal problem in graph theory, Hungarian Mat. Fiz. Lapok 48 (1941) 436-452.
[2] P. Hall, On representations of subsets, J. London Math. Soc. 10 (1934) 26-30.
[3] P. Erdös, A.W. Goodman and L. Pósa, The representation of a graph by set intersection, Canad J. Math. 18 (1966) 106-112.
[4] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51-57.

