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In Section 1 some lower bounds are given for the maximal number of edges of a (p—1)-
colorable partial graph. Among others we show that a graph on n vertices with m edges has a
(p - 1)-colorable partial graph with at least mT,, /(3) edges, where T, , denotes the so called
Turan number. These results are used to obtain upper bounds for special edge covering
numbers of graphs. In Section 2 we prove the following theorem: If G is a simple graph and p is
the maximal cardinality of a triangle-free edge set of G, then the edges of G can be covered by
w triangles and edges. In Section 3 related questions are examined.

Preliminaries

We will consider only loopless graphs without multiple edgzs. If G=(X,E) is a
graph, then the edge set F < E together with the spanned vertices define a partial
graph of G which will be denoted by the same letter F for simplicity reasons.

K, stands for a p-clique (complete graph on: p vertices); K; will be called a
triangle.

The graph G will be called F-free if G has no partial graph isomorphic to the
graph F.

The copies of a given graph F are graphs isomorphic to F.

v(F) denotes the chromatic number of the graph F.

A k-partition of the graph G =(X, E) is a partition of X into k classes; a
k-partition is said to be almost equipartite if each of its classes contains {[X |/k] or
LIX|/k] +1 vertices.

1. K, -free partial graphs

Turén in [1] determined T, ,, the maximal number of edges in a K -iree graph
on n vertices. (The value T, is about (p—2)n*/2(p —1).) On the other hand it is
known (remarked by Erdos) that every graph with m edges vontains 2 cut of more
than im edges. We will prove an extension of this statement giving a sharp lower
bound for the number of edges in a maximal K,-free partial graph of an arbitrary

graph.
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Suppose that every edge e € E of the graph G has a real weight w(e) and put
W(E)= ), w(e) where E'cE.

ecE’

1.1. Theorem. For all p=3 every graph on n vertices has a (p—1)-colorable
partial graph with edge set E' satisfying

W(E)= W(E)T,, / (;) .

Proof. The nonedges of G will be considered as weighted edges with weight 0.
Then every almost equipartite (p —1)-partition P of the vertices of G contains
exactly T, , weighted edges joining vertices of different classes in P. Let t be the
number of all almost equipartite (p—1)-partitions and let E;, be the set of
weighted edges between different classes in the ith partition (i=1,2,...,1).
Obviously S = S(e)=|{i: e € E}}| does not depend on the choice of e, therefore

-Liei-()-s

On the other hand:
Z W(E,NE)= Z wE)=1 T wie)
=) we)=S Y we)=S Y wle)=S- W(E).

(e,i) eel U E ecE
eeE;

From this:

32 w(E, nE)} / W(E) Sit= W(E)T,, / (2)

This implies that for some j (1<j=<¢t)
W(E, N E)= W(E)T, / ( ) holds.

1.2. Corellary. Every graph of n vertices and r edges contains a K,-free partial
graph with at least mT, /(5) edges.

Proof. Let w(e)=1 for each ec E. In this case W(E')=|E'| thus Theorem 1.1

gives us a (p—1)-colorable partial graph G’ with at least mT, /(}) edges. G’
cannot contain the p-chromatic graph K,. [

1.3. Covollary. A graph on n vertices, with m edges contains a bipartite partial
grapn with at least m(n+1)/2n edges (which is more than im).
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/() [51/G)=5

1.4. Corollary. A graph on n vertices with m edges contains a K., -free partial graph
with more than m(p-2)/(p—1) edges.

Proof.

Proof. Suppose n=(p - 1)k +r where 0<r<p-2 and n=2. Then

T.,= zfp—_zl) “(n*-r)+ (;)

2 -2 . P=2 (r

=0 ) 560 +(3)
_(r\.p=2 (n=n(p=-2)+r’-r_(n\p-2

'(2) -1 2p-1) >(2}p—1' =

In Se:tion 3 we will use the following strengthening of Corollary 1.3.

1.5. Proposition. A graph G = (X, E) with 2k+1 edges (k=2) has a bipartite
partial graph with at least k +2 edges.

Proof. Corollary 1.3 gives us a bipartite partial graph G =(X’, E') with |E'|=
k+1. If none of the remaining k edges can be added to E', then each of them
completes an odd circuit with some edges of G', thus X = X'. Since |E'|=k+1,
| X'|=2k + 1 would imply that G’ has at most two adjacent cdges, therefore in this
case we could not obtain k=2 odd circuits. Conseauently {X|=<2k and Corollary
1.3 states that G contains a bipartite partial graph with at least

|X]+1 2k+1( 1)>.2k+1( 1)
. —_— —_— +
IE| 21X] 2 1 |X] 2 1 2k
2k +1)?
= —— + .
ik k+1 edges O

1.6. Remark. One can see that Theorem 1.1 and Corollary 1.2 are true in 2
stronger form when T, /(3) is replaced by T, ,/(*s’"). This fact with the obvious
("$”)=<m results in the following sharpening of Corollary 1.3.

A graph of m edges contains a triangle-free partial graph with at lecst

im+(V8m+1-1)/8 edges.
2. Edge covering by triangles
For a simple graph G =(X, E) we define the following values:

A is the minimum number of clicues with size <3 which cover E;
p is the maximum carcinality of a triangle-free edge set ¢f G;
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@, is the maximum cardinality of the subsets of E which contain at most one
edge of the triangles of G. (We remark that none of the spanried triangle-free
subgraphs of G can contain moie than u, edges of G.) The following result was
motivated by a question of Erdos.

2.1. Theorem. ., <A=<pu.

Proof. (a) If M, < E is a set of cardinality u, containing at most one edge of the
triangles of G, then we need at least u, 2- and 3-cliques to cover iis edges: u, <A.

(b) Let M E be a maximal traingle-free set ((M|= ). Consider the edges
ee E\M. We define I'(e)c M as the set of edges e’ for which there exists a
triangle of G containing both e and e’. We will prove the existence of an injection
g: E\M — M satisfying the property: g(e) € I'(e) holds for each e € E\ M. In this
case the |E \ M| triangles containing e and g(e) cover all the edges of G with the
exception of at most |M|—|E\ M| edges of M (because the g(e)’s are different).
Obviously a covering of E has been gained with at most |M| edges and triangles
which implies 4 < p.

If |U.cx I'(¢)|=1K] hoids for each K = E\ M than the well-known K6nig-Hall
Theorem [2] gives us the injection g.

Suppose contrarily that for some K<E\M we have ||J..x I'(e)] <|K!. Put
M’ = J.x I'(e). Cixcose a maximal triangle-free edge set M* in the partial graph
defined by KUM'.

IM¥|>3 IKUM'|=3(K|+|M')>|M|

because of Corollary 1.3 and our assumption on |K)|.
On the other hand M* and M\ M’ are disjoir:t subsets of MUK, therefore

I(M\AM)UM*| = M|~ M| +|M*| = |M|.

Because of the maximality of M the set (M\ M’) U M* contains a triangle of G. M
is triangle-free thus for an edge e of this triangle ¢ € K. Consequently all the edges

of the triangle are contained by KUI'(e), that is M* contains this triangle— a
contradiction. O

Graphs with A = i will be characterized in Theorem 3.3.

2.2. Remark. It seems to be true that one can find edge-disjoint covering of E as
well by pu edges and triangles. (We have proved it for planar graphs in a more
general form.) This result would be a generulization of a theorem of Erdos-
Goodman—Pésa [3] which stutes that the edges of = grarh on n vertices can be
covered by at most [3n*] pairwise disjoint 2- und 3-cliques.

3. General edge coverings

Like covering by triangles, we propose the problem of edge coverings by copies
of a given graph. From here F can be arbitrary (directed or undirected) but fixed
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graph. For a graph G = (X, E):

4 denotes the minimum number of copies of F and edges covering E;

p is the maximum number of edges in the F-free partial graphs of G. If G is a
graph on n vertices and F is bipartite then pr =0(n?) holds [4]. Because most of
the graphs on n vertices have cn* edges, one can not expect a good relation

between A and . Therefore we suppose that the chromatic number of F is not
less than 3.

3.1. Theorem. A< ug holds for every grapk F with y(F)=3.

To obtain a proof one can amuse himself replacing the word “triangle” by “F”
and the number u by ur in the proof of Theorem 2.1.

If F is a ditrangle (a directed circuit of length 3), then from Theorem 3.1 we can
get a result analogous to Theorem 2.1.

3.2. Corollary. if G =(X, A) is a directed graph and p' is the maximal cardinality
of a ditriangle-free arc set of G, then U can be covered by ' arcs and ditriangles.

A question arises in a natural way: is our upper bound for Ag the best possible?
A slight modification of the proof of Theorem 3.1 gives:

3.3. Theorem. Ay = py holds if and only if the graph G is F-free (y(F)=3).

Proof. (a) If G =(X, E) is F-free, then ur=|E|=A4g

(b) Let M < E be a maximal F-free partial graph ({M]= py). One supposes that
E\M#@; then each edge of E\M forms an F with some edges of M (M is
maximal F-free).

Let e;e E\M and e, F, where F, is a copy of F and Fo\ M ={eg}. Let e, and
e, be two other edges of F,.

For e (E\M)\{eg} let I'(e) = {F N(M\{e,, 2,)): ec F', F is a copy of F}. We
will verify the Hall condition between (E\ M)\{eo} and M\{e,, e;} as well as we
did it in the proof of Theorem 2.} between E\M and M.

Suppose contrarily that there exists a set K<(E\M)\{e,} with property:
[K|=q+1 and for the set M’ = {J,..x I'(e), |M’| = q (q =1 is clear). It follows from
Proposition 1.5 that one can choose at least q+3 edges from the 2q +3 ones of
K UM Ul{e,, e,} which form a bipartite consequently F-free partial graph M*.
Put

N=((M\{e;, D\ MYUM*,
Applying the observations that |M*|=q+3 and ((M\{e,, eD\MINM* =0 we
obtain:

IN| = M|~ Ke,, e}|~ (M| +|M*|=|M| -2~ q+q+3=M]|+1
therefore N contains a copy F; of F by the maximality of M. Thus there is an

edge ecF,NK, consequently F,<KUI(e), which means that F,c M*—
contradiction.



64 J. Lehel, Zs. Tuza

The Hall condition is true and Konig-Hall Theorem gives now the existence of
an injection g:((E\ M)\{eo}) = (M\e,. e,}) satirfying that g(e)< I'(e) holds for
each e e (E\ M)\{e,}. This injection guarantees that at most |M\ {e,, e;}l = up—2
copies.of F and edges from M cover all edges of G except the edges e, e, e,
which are covered by F,. Censequently Ap<pe—1. O

3.4. Theorem. Let F be K,, the p-clique (p=3 and |F|=()). If G contains a
p-clique, then Ap < pe—|F|+2.

Proof. For p =3 our assertion is given by Theorem 3.3. Let p=4and McEbe a
maxima: K,-free set (|M|:= p;:). Let e, E\M and C, be a p-clique of G for
which Co\ M ={e,}. We wiil prove the existence of an injection g:(E\ M)\ C,—
M\C, satisfying that for each ec(E\M)\C,, g(e) and e are contained in a
p-clique of G. In this case we have at most |M\Col+1=ps—(|F|-1)+1=
pr—|F|+2 p-cliques and edges which cover E. Supposing that the Hall condition
does not hold, one can find the edge sets K <(E\M)\C, with |K|=q+1 and
M' < M\ C, with |M'|= g satisfying that each ¢ee M\ C, contained in a p-clique
meeting K is an element of M’. We observe that

q=p—2. (1)

Indeed, if e;€ K and C, is p-clique of G for which C,\M={g}, then C, # C,;
thus one vertex v, spanned by C, is not spanned by C,; since there are at least
p — 2 edges of C, starting from v,, and contained ir M\ C,, |C,N(M\ Cp)|=p—~2;
finally since M' contains C, N(M\C,), thus

q=IM=IC,N(M\Cp)|=p-2

which gives (1). Let us consider the graph G’'=(X’, E') defined by the edge set
E'=KUM'U(Cy\{eo) and denote by M* its maximal K,-free partial graph.
Using Corollary 1.4 we have:

M 1222 (2a+ (5)) - 222, ®

It is easy to see that (M\Co)\M")UM™ is K, -frez, therefore
|M]=|(M\ Co)\ M) U M*|
= M| = (Gl = 1) M| +|M¥]

=M} +M% - g~ (P) 1.

From this:

IM*|<q+ (;’)- 1. 3)
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Combining (3} and (2) we have

+p(p—1)_1>2q _£_~_2+p(p-2)'

2 p—1 2

For p =4 the last inequality is equivalent to

q

(p—2)(%+;1—§)> q. 4)

It can be seenr immediately that (1) and (4) have only one common integer
solution: p=4, q=2. In this case there is only one vertex of X’ which does not
belong to the vertex set spanned by C (see the argument after (1)), therefore
|X'| =5 thus X' can span at most 10 different edges in G. But the fact is that it
spans at least

|E'U{e1}|=2q+®+1=11

edges—contradiction. []
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