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In Section 1 some lower bounds are given for the maximal number of edges of a (p - l)- 
colorable partial graph. Among others we show that a graph on n vertices with m edges has a 
(p - l)-colorable partiai graph with at least mT,.$(;) edges, where T,,p denotes the so called 
Turin number. These results are used to obtain upper bounds for special edge covering 
numbers of graphs. In Section 2 we prove the following theorem: If G is a simple graph and or. is 
the maximal cardinality of a triangle-free edge set of G, then the edges of G can be covered by 
p triangles and edges. In Section 3 related questions are examined. 

We will consider only loopless graphs withlout multiple edg.zs. If G = (X, E) is a 
graph, then the edge set Fc E together with the spanned vertices define a partial 
graph of G which will be denoted by the same letter F for simplicity reasons. 

KP stands for a p-clique (compiete graph on p vertices); K3 will be called a 
triangle. 

The graph G will be called F-free if G has no partial graph isomorphic to the 
graph F. 

The copies of a given graph F are graphs isomorphic to F. 
y(F) denotes the chromatic number of thie graph F. 
A k-partition of the graph G = (X, E) is a partition of X into k classes; a 

k-partition is said to be almost eqtcipatite if each of its classes contains [.IXl/kJ or 
[1X1/k J + 1 vertices. 

Tur6n in [l] determined Tn,P, the maximal number of edges in a K&ree graph 

on n vertice;. (The vaEue Tn,P is about (p -1-, ‘+z2/2(p - I).) On the other hand it is 

known (remarked by Erdss) that every graph with no edges c;Qntains a cut of more 
than am edges. is statement giving a s 

bound for the number o -free partial grap 
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Suppose that every edge e E E of the %graph G has a real weight w(e) and put 

W(E’) = c w(e) where E’c E. 
eEE’ 

.I. For all p 3 3 every graph on n vertices has a (p -- l)-cobrrlble 
partial graph with edge set E’ satisfying 

W(E’) 2 W(EK,p 
IO 2” - 

roof. The nonedges of G will be considered as weighted edges with weight 0. 
Then every almost equipartite (p - l)-partition F of the vertices of G contains 

exactly T;2,P weighted edges joining vertices of different classes in P. Let t be the 
number of all almost equipartite Cp- l)-partitions and let Ei be the set of 
weighted edges between different classes in the i th partition (i = 1,2, . . . , t). 

Obviously S = S(e) = \{ i : e E &}I does not depend on the choice of e, therefore 

On the other hand: 

t W(Ei n E)= i W(Ei)= i C w(e) 
i=i i=l i=l e6e 

= c Wk?)=S c w(e)= s c w(e)= S l W(E). 
(4 e&tEIEt eEE 
eEj-3 

From this: 

f c 
‘ic ( w EinE) i = W(E) 9 S/t = W(E)T,, n 

i=l IG) 

This implies that for some i (1~1 i < t) 

W(Ei n E) 2 W(E)T,,,, 

Every graph of n vertices and IPP edges contains a P&,-f&: partial 
graph with at ieast mTJ(T) edges. 

Let w(e) = 1 for each e E E. In this case W(E’) = \E’I thus Theorem I.1 
gives @us a (p - l)-colorable partial graph G’ with at least mT,,&) edges. G’ 
cannot contain the p-chromatic graph KP. 0 

th m edges contains a bipartite partial 

ch e’s razore ttan $I). 
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. core . A graph on n vertices with rn edges contains a &,-free partial graph 
with more than m (p - 2)/(p - 1) edges. 

oof. Suppose n=(p-l)k+r where O~rcp-2 and na2. Then 

T = p-2 .(n2-r2)+ r 
n-P 2(p- 1) 0 2 

= (n2-n) p-2 +Cn-r2)*2~W:)+(~) 
2(P - 1) - 

0 n p-2+(n-r)(p-2)+r2-r> nap-2 .- 
= 2 p-l 2(P - 1) t 2!p-1. c3 

In Se :tion 3 we will use the following strengthening of Corollary 1.3. 

1.5. Proposition. A graph G = (X, E) with 2k + 1 edges (k 2 2) has a bipartite 
partial graph with at least k + 2 edges. 

Proof. Corollary 1.3 gives us a bipartite partial graph G =(X’, E’) with lE’l= 
k + 1. If none of the remaining k edges can be added to E’, then each of them 
completes an odd circuit with some edges of G’, thus X = X’. Since IE’I = k + 1, 
IX’1 2 2k + 1 would imply that G’ has at most two adjacent edges, therefore in this 
case we could not obtain k 2 2 odd cncuits. Conseauently iX( c 2k and Corollary 
1.3 states that G contains a bipartite partial graph with at least 

(2k + 1)” = 
4k 

>k+l edges. 0 

One can see that Theorem 1.1 and Corolfary l.Z? are true in a 
when T”J(2n) is replaced by T v(G),P/(V~‘). This fact with the obviouti 

(Y(F)) s m results in the following sharpening of Corollary 1.3. 
a graph of m e ges contains a triangle-free partial graph with at least 

&n -t (m - 1)/8 edges. 

For a simple graph G = ( E) we define the following values: 
A is the minimum number of cliques with size ~3 whit 

y is the aXill? of a 
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p1 is the maximum cardinality 04 the subsets of E which contain at most one 
edge of the triangles of 6. (We remark that none of the spanned triangle-free 
subgraphs of G can contain moz than p1 edgts of G.) The following result was 
motivated by a question of Erdiils. 

. (a) If MT c E is a set of cardinality pl containing at most one edge of the 
triangles of G, then we need at least vl 2- and 3-cliques to cover ils edges: pl s A. 

(b) Let M c E be a maximal traingle-free set (IA41 = p). Consider the edges 
e E E \ M. We define r(e) c M as the set of edges e’ for which there exists a 
triande of G containing both e annd e’. We will prove the existence of an injection 
g : E \ M + M satisfy,ing the property: g(e) E r(e) holds for each e E E\ M. In this 
case the \E \ M\ triangles containing e and g(e) cover all the edges of G with the 
exception of at most IMI - IE\MI edges of M (because the g(e)‘s are different). 
Obviously a covering of E has been gained with at most \M( edges and triangles 
which implies A s CL. 

If IlJecK r(d( a /Ii:\ holds for each K c E \ M than the well-known Kijnig-Hall 
Theorem [2] gives us the injection g. 

Suppose contrarily that for some Kc E\M we have lUeeK r(e)/+]. Put 
M’=U e GK r(e). Chose a maximal triangle-free edge set M* in the partial graph 
defined by KU _M’. 

because of Corollary 1.3 and our assumption on 1~1. 
On the other hand n/r” and M\M’ are disj&t subsets of MU K, therefore 

l(M\ M’) U M*[ = \A41 - /Ad’\ + 11M*la \MI. 

Because of the maximal@ of M the set (M\ M’) U M* contains a triangle of G. A4 
is triangle-free thus for an edge e of this triangle e E K. Consequently all the edges 
of the triangle are contained by KU T(e), that is M* contains this triangle- a 
contradiction. Cl 

Graphs with A = p will be characterized in Theorem 3.3. 

. It seems to be true that one can tid edge-disjoirlt covering of E as 
well by p e:dges and triangles. (We have prcjved it for planar graphs in a more 
general forum.) This result woul3 be a generid ation of a theorem of Erdcs- 
Goodman-P&a [3] which st,tes that the edges of 2 grar.h on n vertices can be 
covered by at most [$?I pairwise disjoint 2- :dnd %cliques. 

es, we propose em of edge coverings by copies 
ected) ed 
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graph. For a graph G = (X, E): 
& denotes the m~n~um number of copies of F and edges covering E; 
pP is the m~~rnurn num~r of edges in the F-free partial graphs of G. Zf G is a 

graph on R vertices and F is bipartite then @F = o(n2) hoods [4]. Because most of 
the graphs on n vertices have cut* edges, one can not expect a good relation 
between QF and pP Therefore we suppose that the ~~ornat~~ n~b~r of 6: is not 
less than 3. 

To obtain a proof one can amuse himself replacing the word “triangle” by Y?” 
and the number lu by &P in the proof of Theorem 2.1. 

If F is a d&angle (a directed circuit of length 3), then from Theorem 3.1 we can 
get a result analogous to Theorem 2.1. 

A question arises in a natural way: is our upper bound for AF the best possible? 
A slight modi~cation of the proof of Theorem 3.1 gives: 

of. (a) If G =(X, E} is F-free, then J,+ = lEl= Ap 
(b) Let MC E be a rn~irna~ F-free= partial graph ~l~l= &. One supposes that 

E\ mW# 8; then each edge of E \ M forms an F with some edges of M (M is 
maximal F-free) . 

Let e. E E \ M and eoE FO where FO is a copy of F and FQ\ M = {e,). Let el and 
e2 be two other edges of FO. 

Rx e~(~~M~~{e~} let ~~e)~{~~~M~{e~, c,)): eEF, F’ is a copy of F). We 
will verify the Hall condition between (E \ M) \ {eO} and M \ {e,, ez) as welt as we 
did it in the proof of Theo~~rn 2.1 between E ‘\N and 

Suppose contrarily that there exists a set # c: (E\ \{eo) with Ptolemy: 
[KI = q + I and for the set M’ = ULeK r(e), llbl’l = 4 (q 2 1 is clear). It follows from 

oposition :‘, .5 that one can choose at least 4 + 3 edges from the 24 + 3 ones of 
U Mu U{e,, ez) which form a bipartite ~nse~uent~y F-free partial graph 

Put 
N = (tM\{e~, e&1\ 

Applying the observations that 1 *[34+3 and (I 
obtain: 

therefore N contains a oo 
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The Hall condition is true: and Kijnig-Hall Theorem gives now the existence of 
an injection g : ((E \ M) \(eO}) + ( (e,, e,}) satisfying that g(e) E r(e) holds for 
each e E (E \ M) \ (eo). This injection guaantees that at most 1 M \{el, ez}! = & - 2 
copies .of F and edges from M cover all edges of G except the edges eo, el, e2 
which are covered by Fo. Consequently AF G /+ - 1. 0 

Let F be Kb, the p-clique (p 23 and IFI = @). Ij G contains a 
b+~~-;iFJ+2. 

. For p = 3 our assertion is given by Theorem 3.3. Let p 2 4 and M c E be a 
maxima’: &-free set (\MI := pl:). Let e. E E\ M and Co be a p-clique of G for 
which CO\ M = {e,). We w i;‘r pj:ove the existence of an injection g : (E \ M) \ Co + 
M\C, satisfying that for each e E (E\M)\C,, g(e) and e are contained in a 
p-clique of G. In this case we have at most lM\ Co1 + 1 = &kF -(IF\- l)+ 1 = 
&+ - \E;I +2 p-cliques and edges which cover E. Supposing that the Hall condition 
does not hold, o an find the edge sets K c (E \ M)\ Co with IKl = q + 1 and 
M’ c M\ CO with = q satisfying that each e E M \ Co contained in a p-clique 
meeting K is an element of M’. We observe that 

qsp-2. (1) 

Indeed, if e, E M and C1 is p-clique of G for which C1\M = {e,}, then C1 # Co; 
thus one vertex ul spanned by C1 is not spanned by Co; since there are at least 
p - 2 edges of C1 starting from ul, and contained in M\ Co, IC, n (M\ Co)1 > p - 2; 
finally since M’ contains C1 n (M\C,), thus 

q = \M’la !c, n (_M\ Co)1 2 p - 2 

which gives (1). Let us consider the graph G’ = (X’, E’) defined by the edge set 
E’ = MU M’U (Co\(eo]) and denote by M* its maximal Q-free partial graph. 
klsing Corollary 1.4 we have: 

lM*l>lE’lo~=(2q+(~~)*~. - I 

It is easy to see that ((M\Co)\M’)U M* is &-freb?, therefore 

lM( 2 I((M\ Co) \ M’) U M*l 

= :MI - (ICol - 1) - \M’I -I- IM*\ 

(2) 

*1-q- $)+l. 

From this: 

(3) 
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Comlbining (3) and (2) we have 

q+Pw) -2 PIP-3 
2 

-1>2q -f7+ 
2 l 

For p 3 4 the last inequality is equivalent to 

(P a( 1 1 - 
&-3 >q* J 

65 

(4) 

It can be seen immediately that (1) an’d (4) have only one common integer 
solution: p = 4, q = 2. In this case there is only one vertex of X’ which does not 
belong to the vertex set spanned by C (see the argument ?fter ~.l)), therefore 
IX’1 = 5 thus X’ can span at most 10 different edges in G. But the fact is that it 
spans at least 

IE’U{e,}l=2qi- 2” + l= 11 
0 

edges-ontradiction. Cl 
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