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This paper concerns extensions of Cayley’s enumeration formula to a class of multi-
dimensional tree-like simplicial complexes.

i. Introduction

In 1889 Cayley proved that the number of distinct trees whose
vertices are labelled with the integers 1,2, ..., n is given by the formula
n"—2 Many authors have considered extensions and refinements of
Cayley’s formula (see Moon {7]). Included among *hese results are a
number of higher-dimensional analogs. For example, Harary and
Palmer [5] defined a k-tree to be a simpliciai complex constructed in
the following way: Start with a (kK — 1)-simplex and add a sequence
of new vertices, each suspended over a (k — 1)-face formed by preceding
vertices. Beineke and Pippert [ 1] proved that the number of k-trees
with n labelled vertices is exactly (§) (kn — k2 + 1y?~*~2_a formula
which reduces to Cayley’s when & = 1. Husimi [6] and Ford and
Uhlenbeck {4] considered another class of objects, called mixed com-
plete star trees (in the language of [4]). These are constructed induc-
tively from a single vertex, adding new simplices of varying size at each
step, with each new simplex connected to exactly one old vertex.

Husimi proved that the number of mixed complete star trees with
n vertices and ¢; simplices of size i,i = 1,2, ..., n, is given by the expres-
sion
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which again reduces to Cayley’s formula if c; =n — 1 and all other ¢;’s
are zero. '

in this naper, we derive 2 common extension of these two formulas,
by enumerating a mo.¢ general class of structures called (a,d )-trees.
Intuitively, an (a,d)-tree is a simpliciai complex formed by successively
adding simplices whose size is specified by a multiset & of positive in-
tegers. Each new simiplex intersects an old simplex in a set of size d,
and the rest of its vertices are new.

Our main result is the following: the number of (&,d)-trees on n
labelled vertices (with n determined by @ and d) is

Tola.d) am—1

where m s the number of maximial simplices, A is the number of sim-
plices of size d occurring in such a tree, and 7T((a,d) is the number of
(a.d)trees in which all of the maximal simplices meet in a set of size d.

We give two proofs of our formula: the first is based on one of the
many known proofs of Cayley’s formula (see [7]), and is the shortest
proof we know. The second is obtained by showing that each (a,d)-
tree can be canonically associated with an ordinary tree (calied its
sxeleten) in such a way that Cayley’s formula can be applied directly.
in: 2 sense, this explains why “Cayley formulas” exist for (&, d)-trees.
It also shows that — in principle, at least — all of the known methods
for proving Cayley’s formula in the ordinary case can be extended to
{&,cl)-trees in some form.

We conclude with a discussion of another such method — the Priifer
coding scheiue, which permits a purely combinatorial proof of our
formula by associating (a,d )-trees with certain sequences of symbois.
This section extends work of C. and A. Rényi [9].

2. Main results

Let K be a finite simplicial complex with maximal simpiices
Ay W4 = e, 0= 1, ., m, we refer to the multiset {ay, ..., a, }
as the £ype of K. Letd be a positive integer. A d-rertex of K is any set
of d vertices contained entirely in some 4 ; (usually called a (d ~ 1)-face
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of K'). We say K is d-connected if each point is contained in some
d-vertex, and for any two d-vertices Iy ana D5, there exists a sequence
Ay, ..., A4 of maximal simplices, such that [y C 4y, Dy C 4, and

IA; N A i=2dfori=1, ..., q - 1. We observe that if K has » vertices
and is d-connected, then 7 < d + Z”i, (@~ d).Mfa={ay, .. a,}isa
multiset of integers, and 0 < d < min a. then an (a.d)-tree ( or d-free of
fype o) is a d-connected sunplicial complex of type & with n vertices,
such thatn =d + Z(a; - 4).

Intuitively, an (@.d)-tree i a complex formed from a (d - 1)-simplex
by adding successive maxima, simpiices A;, where 2ach 4, consists of
an old d-vertex together with 7; - d new points. An (a.d)-tree may be
constructed in this manner using anv of its d-vertices as a starting point
orroo:. Ifweseta= {k +1, ..,k + 1} then (& k)trees are k-trees in
the sense of Harary and Palmer [5]. Mixed complete star trees (Ford
and Uhlenbeck [4], Husimi {6]) correspond to (&,d)-trees withd = 1.

It is clear from the definition that the numbei 1 of vertices of an
(a,c')-tree is determined by the tvpe @ and the integer d. If we denote
by A the number of d-vertices of an (a,d)-tree, then A also depends
only on& and d. In fact, A= 1+ Z2;((%) ~ 1), as can be seen by
counting the number of new d-vertices which are added along with
each new moximal simplex.

Theorem 2.1 (Cayley’s formula for {&@ d)-trees). Let T(&,d) denote the
number of (a,d)-trees with n labelled vertices (n =d + T 1 (a; — d)).
Let To(a,d) be the number of (a.d)-trees in which all of the maximal
simplices meet in a single d-vertex.* Then T(a,d) = Ty(a, d)A™ 2.

For ordinary trees this reduces to Cayley’s formula since in this case
m=n-1VA=nandTyg=n lfd=kanda= {k+1,..,k+ 1} then
m=n - k & = 1+k(n--k), Tog=(}), and we have Tm d) =
(})kn — k2 + 12k~ 2 which is the -ormula for k-trees discovered by
Beineke and Pippert [ 1]. For (&, 1)-trees with @ given by 17t 2°2 k%
we have
[
m = Z ¢, A=n, Tg=n- (n j);
f H (!!} z(. 4

3

* L a= 1902 % ‘k (in the usual notation for partitions), then Tg(zd) =
(J) n - a’i'/m(g'} e, i
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and our result reduces to

("“_ l)? nzifi“"l )

') ie;!

This is Husimi’s formula for the number of mixed complete star trees
with block sizes specified by a.

First Proof. This is based on the idea of Clarke’s proof [3] o Cayley’s
formula and makes use of the following simple lemma, casily proved
by induction.

Lemma 2.2. Let fik), k= 1... m, be a function which satisfies
(m - ky kY= kiD - DYk + 1) for some integer Dand k =1, ....m - 1.
Then

L m-—1 k.
f(k;-f(m)(m 3 k.} @D - m and
m
331 flky = fim) D71

To apply this lemma we let Dg be a specitic d-subset of vertices, and
et fik), k= 1. ..., m, denote the number of (&, 4)-trees with labelled
vertices for which Dy is 3 d-vertex of degree k {that is, Dy is contained
in exactly & maximat simplices). Next, we compute the numboer of
pairs (4,8) of (@.d)-trees such that D, has degree k in A, degree k + |
in B, and A is obtained from B by removing one of the k + 1 “‘branches”
of the tree attached to Dy and reattaching it at a d-vertex D; different
from Dg (to insure that reattachment is a well-defined operation let
us specify a linear ordering of all the veriex labels, and require that the
correspondence between vertices of Dg and D, be order-preserving).

To begin with, there are f{k) ways of choosing 4. For each such
choice there are m — k simplices not attached to Dy, each of which can
be removed and attached to Dy to form an (&,d)-tree B which stands
in the requived refation to 4. {i=nce there are (i — k) flk) related
pairs (A4,B}. On the other hand, there are f{k + 1) ways of first choosing
B. For each choice we can obtain an A by removing one of the k + 1
branches attached 1o Dg and reattaching it elsewhere. There are A — 1
choices +.f a d-vertex D; (j # 0) for reattachment, and for cach such
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choice there are £ dai'ferent ways o choose a branch to remove from
Dg and reattach te 7. So for each B there arc £(A - 1) choices of 4,
hetice A(A — 1) Ak + 1) also counts the number of pairs (4,8). Thus
we have the recursion (m - KYHKY=k(A ~ DAL+ Dfork =1, ...,

m - 1. By the lemma the number of (&.d)-trees rooted at Dy, is given by

m
Rpta.dy= kz;v; fiky=fimyam-1

Multiplying Rota.d) by ;) for the ways of selecting Dy, and dividing
by A to eliminate the root, yields

oy = (3) fim) Am- 2= To(a, dy Am-2 .
This proot contains (as in the case of ordinary trees) the following

Corollary 2.3. The number of ta,d¥trees which concain .1 specific
d-vertex Dy, and for which D has degree k is given by

Y ﬂ? i 1) ) nz_k
ﬂm)(m_ﬂk‘_m i) .
where fim) is the number of (&.d¥trees in which Do has maximal de-
gres m.

Second Proof, We begin by expanding our remarks on the construction
of trees, and making a few more definitions.

Supposc that an (@.d)-tree K is constructed according to the rule
described earlier by starting with a d-vertex D (as 2 “‘root”) and ad-
ding maximal simplices 44, .... 4,, in order. Thatis 4y D Dy and for
i> 1,

i1

A0 ( U 4 )

18 a d-vertex IJ); contained in some A; withj < i 1t can be shown that
the sets 2; C 4, which arise in this construction are independent of

the ordering of the A;’s - any “admissible” ordering with root D will
associate D; with 4; in every <ase. We can alsc define the sets

A; = A; - D; without reference to a particular construction. Intuitively.
D; is the d-vertex “closest™ to the root £y hence we refer to D; as the
m-vertex of A; with respect to the root Dy. The other d-vertices of 4;
will be called out-vertices. We say that A; is attached to A; if A; N A;
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is an out-vertex of A4;. Clearl’ it 4; 2 Dy, there exists a unique j <
stich that. -g' is attacied to. 1! if )5 ) 1)} We sdy that 4, Is attache
D,. For notational convenience. we also write D = Ag. The sets
Ag. Ay .. . 4, form a partition of the vertices of K which we call the

partition of K with respect to Dy and denote by #{K, D). (Actually,

since the block A nl:mc a special role, we think of (K I).} as a rooted

FEi%w LIl RJERS RS JlU Pray o W UpilwIted ANAavy sEen Nr W AL TY =g P T At A

partition.) If @ is any partition with oot D, we say that K is partitioned
by wif D is a d-vertex of K and 7 = n(K,D).

Tke z2ssential idea of the proof is to associate with K .. ordinary tree
whose vertices are in c~e-to-one correspondence with the sets 4y, A7, ...,
A,,. We define the skeleton of K with respect to D, (denoted 7(K.Dy))
to b., the tree whose vertices ace the integers 0 1, ..., m and whose edges
are the pairs {i,j; suck that A; s attached to A, It is easy to verify that
this indeed defines a tree by corsidering its construction in parallel
with the construction of K.

Now let 7 be a tree with vertex set {0,1,..,m} and letm =

}30, Ag, ... A, } be a partition (of n labelled vertices) with |4l =d,
A d i=1,..,m We compute the number of (a,d)trees K such
that 1:(1( Ag)=m and K. Ap) = 1.

Suppose that, in 7, the vertex i has degree e;. If we regard 7 as rooted
at 0. then every vertex j # O has exactly ¢; ~ I “outward™ edges. If K
is an (a&,d -tree with partition m and skeieton 7. and j # 0, there must
ve exactly €; — 1 indices i such that A, is attached to. 4 There are
exactly ("1) — | ways to choose D; so that A, is attached to A If
i 0 then there is only one poss;ble choice — that is, if A4, is attachr.d
toA then D; must be Aj. The collection of all K’s with ’ﬂ(K Ag)=m
and 7(1( AO)‘ =7 is obtained by choosing the D;’s in all admissible ways.
Hence the total number of X’s is

er} 1 6’,—} e’ -1
& gl

bhod tn
€ 4

Fic L L4

ai A
wherefg=1,§; = d)-—l,...,sm (d) 1.

Next, we compute the total number of (&.d)-trees with partition 7.
By the above argument, this is egual to

v e -1 -1 -1
4..,.:: g o7}~ si:(T) . Ef’;n(f} ’

where the sim is taken over all trees 7 on m + | labelled vertices. We
now apply Cayley’s formula in its “‘generating function” form (sce
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Moon {7]). This is a refinement of Cayley’s result which asserts that
] g
=(xgtagt..+x Yyt

Under the substitution x; < §;
I+ E:?;l {{":,'\ - 1)= u Hence the total
partition 7 is A™~

The number of rooted partitions 7 = {30, Tl, Am 1 with L:fol =d

and |A;l =a; ~ d, i= L. ..., m, is easily seen to be T)(x,d). On the other

hand, every T(a, d) ;--!ree can be partitioned in exactly A ways (one for

each choice of the root AO) Hence the total number of labelled (a, d)-
trees T(&, d) = Tyla, drA™ -

Because cur main intermediate result has independent interest, we
state it as a separate thzorem.

Theorem 2.4. Let n = {Ay, A;, ..., Ay e arooted partition of n
labelled vertices such that \Agi =dand |7\ =a; - d, i =1, ...,m. Then
the number of (a,d)-trees partitioned by m is AMm—1,

In the case of ordinary trees this reduc s to the usual ‘ormula n"~2.
The partition # must be tne trivial partiticn into singletens, and every
tree is partitioned by n. Hence, in this case the expression A™~' enu-
merates all labelled trees. In the case of k-trees a partition 7 consists of
a d-vertex 30 chosen as root and singletons for the remaining points.
Hence (, ny Am-1 epumerates rooted k-trees, and dividing by A vields
Nad) = (§)am-2,

3. Coding (&,d)-trees

For ordinary trees, a purely “‘combinatorial” proof of Cayley’s
formula can be given by associating trees with (n — 2)-tuples of in-
tegers from the set {1, ..., n}. The resulting corresponcence is known
as the Prifer code for trees {7, 8]. It provides a compact way of repre-
senting trees, and also contains expiicitly information as to the degree
of cach vertex. If T is a tree whose vertices are lab:lied 1, ..., n, then
the Priifer code for T can be described as follows:

Make alist {ay.by -, {a2.b2}, .., lap_1,b,_;} of the edgesof T
with the property that g is the smallest endpoint (in the case of arooted
tree the root is never onsidered an endpoint} of the tree obtained from
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T by removingay, ..., a;_; and all incident edges. This can be done by
finding a;, removing it, then linding ¢,, and so forth. The Priifer code
of T is the sequence (by, ..., b, 1)

The Rényis [9] extended the idea of the Priifer correspondence to
k-trees, and their methods extend further to (a,d)-trees with only minor
modifications. However, the situation is more complicated. and the
results are only partially satisfactory.

Ideally. a generalized Priifer code would consist of a rule for associa-
ting (&, trees having a fixed partition 7 with (m - 1) tuples of inte-
geve 1.2, ..., A. However, the principal difficulty is this: while the ordi-
nary code is made up of actual vertices, it is di ficult to predict which
set of & d-subsets will form the d-vertices of an (&,d)-tree. There are
always 4 of them, but they ar: different for each tres. The Renyis’
procedure leads to an {m — 1)-tuple of d-vertices from which the tree
can be reconstructed. However, since the d-sets are not chosen from a
fixed domain, it cannot be immediately deduced that the total number
of (&,d)-trees with partition 7 is A" —1. One of the main results of the
Rényis’ y aper is to derive this by careful analysis of which (m — 1)-
tuples of d-scts are “‘admissible” — that is, which ones arise from a tiee.
Another problem is that since the condition for admissibility is rather
complicated, it is hard to generate trees from scratch — for example,
to list all trees with certain degree sequencss.

We present now a slightly different coding scheme for (& d)-trees
which Circumvents most of these difficulties. In what follows, let
7= { Ay, X«;, X,,, } be a partition rooted at XO with {A4,] =d,

Al =a; ~ d, i=1, ..., m We ultimately associate (&,d)-trees partitioned
by 7 w:fh {m — i)-*upies of symbols taken from a set X = { x
p=0....m q=1,..§, where

1 if p=0,

e

p M) ~1 ifp>o0.

Clearly the set X has cardinality A as desired.

We supruse that the collection of all (") d-subsets of vertices is given
sore 325‘56}1‘ order — say iexuograplhxc We also assume that the blocks
‘4 [+ 4y are ordered so that A; < A it and only if i < j.

‘%ow ‘et K be an (@ d)-tree wuch is parunoned by 7. A block 4 of
K will be culled an endpoint if no out-vertex of A, is the in-vertex oé"
another siv plex {2quivalently, nf/il M A, is empty for i different fromj).



C Greene, G.A. Iba [ Mul-idimensional rrees 9

We construct a permutation o o7 the indices 1, ... m as foilows: let
‘TU”-, b the smalicst cndpoint ¢ AL Remove .Tu(”. and let .30(2) be
the smallest endpoirnt in the rem ainin, tree. Centinue in this fashion
until each of the blocks 4. .....4,, has been removed. If D is the
in-vertex of A ;. we call the sequence (Dyeqy, Doy o Dy - 1y the
Rényi code for K. (Note that while Ay(1ye s Agomy 15 @ permutation of
the A;’. the D y's need not be distinct.) Thls sequence is the result of
extendig the Rényr’s coding scheme to (a.d)-trees. Let us define the
degrec of a d-vertex to be the number of maximal simplices which con-
tain it. Then the degree of a given d-vertex D in K is one greater than
the number of occurrences of 7 in the Rénvi code for K. However, as
mentioned. not all sequences ar:se as vodes for trees.

We proceed iurther. and assoviate with each Dy a symbol x w3
feilows. Suppose that for each i =1.. . m, 4“‘-,) is attached to
4p(, - thatis. D, s an out- urte\ ¢ t Apiy I pt) > 0, and
Dy, = Ag if p(i) = 0. Moreover suppose that D ¢y is the g()th out-
veriex of A4 p(;) in the linear orderiag of d-subsets. if p(i) = 0, we as-
sume that q}(:) = 1. The Prz'éj'ef code for K is defined to be the sequence
(o b ot )

ﬁ\t thn poini we inakt two asserticns. The first is that different
(@ d)-trees give rise to different Priifc - codes - that is, K can be recon-
stracted from its code. The second i~ that every possible (m — 1)-tuple
of xf;‘s occurs as the Prifer code of o tree. By Theorem 2.4, these
statements are equivaleni. However, «ince proving them separately pro-
vides a new proof of Theorem 2.4, « will do so. The key to both
assertions is the following lemma.

Lemma 3.1. If (xp( iy x”} ; .ng,n 2) is the generalized Priifer code
of an (a,d)-tree K partt!zonea' by = t en (p(1), p(2), ....p0m — 1)) is
the ordinary Priifer code of its skelerton v(K, AO) rooted at O(thus Qis

never removed as an endpoint in constructing the code).

The lemma follows easily from the definition of 7(K,4). Clearly
the edges of 7(K,Ay) must be the pairs { (1), p(1)},{ o(2), p(2)],.
{a(m— 1),p(m — D}, [a(m), 9}. We observe that (i} is an endpomt
of the remaining skeleton if arnd only ‘on(x) is an endpoint of the re-
maining (a, d)-tree, hence the smallest endpoints ilso correspond. Thus
a(i) fori= 1, ...,m - 1 gives the order of encoding edges in constructing
the ordinary Priifer code for 7(K, 4 ' rooted at C, as required.



10 C Greene, G.A. Iha | Multidimensional trees

In crder to prove that the correspondence is one-to-one, we produce
a decoding schemsz. Based on the lemma, we describe it as follows: use
the sequence {p(l), ..., p(m - 1)) to reconstruct T(K.:‘?TQ‘). Then use
the numbers ¢(i) to construct X from its skeleton.

More specifically we use {p(1), ..., p(m — 1)) to reconstruct the
permwtdtx«rm a(1)}, ..., o(m). Then defme Dymy = Ao, and fer
j=m- o L, Dy(jy = the q(th out-vertex of Ap(jy U Dy ;). Since
pij) = (3’(] ) fnr some j > j, the set Dp‘ i has already been determined,
so the definition of D, ;) makes sense. We attach each A‘,( j) 1o Dy
It the Priifer code comes from an (a, d)-tree K, this process clearly recon-
structs it. Hence the correspondence is one-to-one.

To show that every (m — 1)-tuple arises, we first observe that the
above decoding procedure always produces (& d)-trees. If (x”‘ig,

ggﬁ 8) is an arbitrary sequence, then (p(1), ..., p(m — 1)) decodes

into an crdinary tree 7, and the rest of che decoding procedure gives a
specific way cf constructing an (a,q ytree X with skeleton 7. It remains
to show that the generalized Priifer code of this K is the same as the
sequence with which we started, Since K has skeletor: 7, and the ordi-
nary Prufer ccde for 7 (rooted at 0) is (p(1), ..., p{m — 1)) the p(;)’s
must be the sume. Once these are determined it is clear that the ¢(j)’s
must agree. This proves that each of the A™ ~!1 possible (m - 1)-tuples
appears as the code for some (&,d)-tree.

We can cordense the above results into a single statement about the
generating function for {u,d)-trees with a fixed partition.

Theorem 3.2. Let @ = {ay, ..., 4,y }, d< ming n=d + 2”" l(a,- —d).
Eg = 1, E,“f"g)-" fori=1,..,m Let {x}},p=0,.
qg=1,..% bea se tof dzsrmct mde!ermmates Tken
m m—1
(£ 5 ) -5 T g
1 X A.J XL
p=0 g=1 2 i= a4)
where the sum on the right is taken over all (a,d)-trees K with a fixed

partition, ai.d xl’?% is the ith symbol appearing in the generalized
Priifer code for '}(
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