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Abstract

Using techniques developed by Kuznetsov to discrete-time systems, we study the stability of the equilibrium
(0,0) and Neimark–Sacker bifurcation (also called Hopf bifurcation for map) of a discrete-time neural network
system. The obtained results are less restrictive and improve upon the existing ones on Neimark–Sacker bifurcation
of discrete-time neural network with special classes of transfer functions. The theoretical analyses are verified by
numerical simulations. Our results have potential applications in neural networks.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The investigation of dynamic behavior for neural networks has been the subject of much recent
activity since one of the models with electronic circuit implementation was proposed by Hopfield

� This work was supported by Ministry of Science and Technology of China (2001AA114180), and partially supported by
NSFC (30370416, 60171003,10371034) and Ministry of Education of China (TRAPOYT Project).∗ Corresponding author. Tel.: +86-7 31 882 7079; fax: +86-7 31 882 3056.

E-mail addresses:yzhh312@tom.com(Z. Yuan),dwhu@nudt.edu.cn(D. Hu), lhhuang@hnu.net.cn(L. Huang).

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.09.010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82606126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:yzhh312@tom.com
mailto:dwhu@nudt.edu.cn
mailto:lhhuang@hnu.net.cn


90 Z. Yuan et al. / Journal of Computational and Applied Mathematics 177 (2005) 89–100

[7]. See, for example,[4,9,14]. Due to the networks of one or two neurons are prototypes to understand
the dynamics of larger-scale networks, some progress has been made for such networks, for example
[2,5,6,10,11,13,15–18]and the references therein.

In this paper, we consider the following discrete-time neural network model with self-connection in
the form

x1(n + 1) = �x1(n) + a11f1(x1(n)) + a12f2(x2(n)),

x2(n + 1) = �x2(n) + a21f1(x1(n)) + a22f2(x2(n)), n = 0,1,2, . . . , (1.1)

wherexi (i = 1,2) denotes the activity of theith neuron,� ∈ (0,1) is internal decay of neurons. The
constantsaij (i = 1,2) denotes the connection weights.fi : R → R is a continuous transfer function
andfi(0) = 0.

The discrete-time system (1.1) can be regarded as a discrete analogy of the differential system

ẋ1(t) = −�x1(t) + w11f1(x1(t)) + w12f2(x2(t)),

ẋ2(t) = −�x2(t) + w21f1(x1(t)) + w22f2(x2(t)) (1.2)

or the system with a piecewise constant arguments

ẋ1(t) = −�x1(t) + w11f1(x1([t])) + w12f2(x2([t])),
ẋ2(t) = −�x1(t) + w21f1(x1([t])) + w22f2(x2([t])), (1.3)

where�>0 and [·] denotes the greatest integer function. One motivation of this research is system
(1.1) includes the discrete version of systems (1.2) and (1.3). On the other hand, the wide application
of differential equations with piecewise constant argument in certain biomedical models (see, example,
[1]) and much progress has been made in the study of such as system (1.3) with the piecewise arguments
since the pioneering work of Cooke and Wiener[3] and Shah and Wiener[12].

For the method of discrete analogy, we refer to[6,16,17].
For a special case of (1.1), with a transfer functionfi(u) = tanh(ciu) and no self-connections (a11 =

a22 = 0), Gopalsamy and Leung[6] gave some sufficient conditions to guarantee the stability of the
equilibrium(0,0) and the existence of bifurcation. However, as Faria in[5], here we shall only assume
fi(0) = 0, fi ∈ C1(R) for the stability analysis, andfi ∈ C3(R), f ′

i (0)f
′′′
i (0) = 0, fi(0) = f ′′

i (0) = 0
for the bifurcation analysis. Also, we shall not assume any contains on the signs of the coefficientsaij
appearing in (1.1). In this paper, by the techniques developed by Kuznetsov[8], where using “project”, the
system into the critical eigenspace and its complement, we will study the stability of the, equilibrium(0,0)
and Neimark–Sacker bifurcation (also called Hopf bifurcation for map). The conditions for asymptotical
stability of the equilibrium(0,0) of (1.1) will be established. Moreover, when the bifurcation parameter
exceeds a critical value, we find that the Neimark–Sacker bifurcation will occur and its direction and
stability are determined completely by the sign of the value ofa(D�). The approach here is more general
than the one considered in[6].

2. Stability and existence of Neimark–Sacker bifurcation

In this section, we discuss the local stability of the equilibrium(0,0) of system (1.1). For most of the
models in the literature, including the ones in[6,10,15], the transfer functionfi is fi(u) = tanh(ciu).
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However, here we only need the following hypothesis:

(H1) For i = 1,2, fi ∈ C1(R) andfi(0) = 0.

We define the parameters

T = 1
2(a11f

′
1(0) + a22f

′
2(0)), D = (a11a22 − a12a21)f

′
1(0)f

′
2(0).

ForT ∈ (−1 − �,1 − �), we let

X0 = {(T ,D) ∈ R2;L1<0, L2<0 and L3>0},

where

L1 = 2(1 − �)T − (1 − �)2 − D, L2 = −2(1 + �)T − (1 + �)2 − D,

L3 = −2�T + 1 − �2 − D.

Theorem 1. Suppose that hypothesis(H1) is satisfied and(T ,D) ∈ X0. Then the zero solution of(1.1)
is asymptotically stable.

Proof. The characteristic equation for the linearization of (1.1) at(0,0) is

�2 − 2(� + T )� + �2 + 2�T + D = 0. (2.1)

Here, we have two cases.
Case1: T 2�D. In this case, the root of characteristic equation (2.1) is given by

�1,2 = � + T ±
√
T 2 − D. (2.2)

Obviously, the eigenvalue�1,2 in (2.2) is inside the unit circle if and only if

(T ,D) ∈ X1 ∩ X2, (2.3)

where

X1
def={(T ,D) ∈ R2;D>2(1 − �)T − (1 − �)2, T <1 − �, T 2�D},

X2
def={(T ,D) ∈ R2;D> − 2(1 + �)T − (1 + �)2, T > − 1 − �, T 2�D}.

Case2: T 2<D. In this case, the characteristic equation (2.1) has a pair of conjugate complex roots

�1,2 = � + T ±
√
D − T 2i. (2.4)
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It is easy to verify that|�1,2|<1 if and only if

(T ,D) ∈ X3
def={(T ,D) ∈ R2;D< − 2�T + 1 − �2, T 2<D}. (2.5)

Combining with Cases 1 and 2, we know thatX0 = (X1 ∩X2)∪X3. Thus, the eigenvalues�1,2 of the
characteristic equation (2.1) inside the unit circle for(T ,D) ∈ X0. This implies that the zero solution of
(1.1) is asymptotically stable.�

Now, we chooseD as the bifurcation parameter to study the Neimark–Sacker bifurcation of(0,0). For
T 2<D, let

�(D) = � + T +
√
D − T 2i, (2.6)

then, the eigenvalues in (2.1) are conjugate complex pair�(D) and�(D). The modulus of the eigen-
value is

|�| =
√

�2 + 2�T + D. (2.7)

Then,|�| = 1 if and only if

D = D� = −2�T + 1 − �2. (2.8)

Obviously, we have

|�|<1 for T 2<D<D�.

Since the modulus of eigenvalue|�(D�)|=1, we knowD� is a critical value which destroy the stability
of (0,0). The following lemma is helpful to study bifurcation of(0,0).

Lemma 1. Suppose that(H1) is satisfied and−�<T <1 − �. Then

(i) ( d
dD |�(D)|)D=D� >0;

(ii) �k(D�) = 1 for k = 1,2,3,4,
where�(D) andD� are given by(2.6)and(2.8),respectively.

Proof. Obviously, we seeT 2<D� from the assumptionT ∈ (−�,1 − �). By direct calculation, we
obtain from (2.7) and (2.8) that(

d

dD
|�(D)|

)
D=D�

= 1

2
>0.

This means property (i) is true.
In what follows, we will deal with the property of (ii). Clearly,�k(D�)= 1 for somek ∈ {1,2,3,4} if

and only if the argument arg�(D�) ∈ {0,±�/2,±2�/3, �}. Since

|�(D�)| = 1, Re�(D�)>0, Im �(D�)>0,

it follows that arg�(D�) /∈ {0,±�/2,±2�/3, �}. We complete the proof of (ii). �
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By Lemma 1 and the results in[13], we have the following

Theorem 2. Suppose that(H1) is satisfied andT ∈ (−�,1 − �). Then we have

(i) if T 2<D<D�, then the equilibrium(0,0) of (1.1) is asymptotically stable;
(ii) if D>D�, then the equilibrium(0,0) of (1.1) is unstable;

(iii) the Neimark–Sacker bifurcation occurs atD=D�, that is, system(1.1)has a unique closed invariant
curve bifurcating from the equilibrium(0,0) nearD = D�,

whereD� is given by(2.8).

3. Direction and stability of the Neimark–Sacker bifurcation

In the above section, we have shown that Neimark–Sacker bifurcation occurs at some valueD=D� for
system (1.1). In this section, by using the normal form method and the center manifold theory for discrete-
time system developed by Kuznetsov[8], we will give an algorithm to study the direction, stability of
the Neimark–Sacker bifurcation. For most of the models in the literature, for example[6,10,13,15], the
transfer functionfi is fi(u)= tanh(ciu) for i = 1,2. Thus, fori = 1,2, we may assume that the transfer
functions in (1.1) satisfy:

(H2) fi ∈ C(3)(R,R), fi(0) = f ′′
i (0) = 0 andf ′

i (0)f
′′′
i (0) = 0.

Now (1.1) can be rewritten as

(
x1

x2

)
�−→

(
� + a11f

′
1(0) a12f

′
2(0)

a21f
′
1(0) � + a22f

′
2(0)

)(
x1

x2

)
+
(
F1(x,D)

F2(x,D)

)
, (3.1)

wherex = (x1, x2)
T ∈ R2. We denote

A = A(D) =
(

� + a11f
′
1(0) a12f

′
2(0)

a21f
′
1(0) � + a22f

′
2(0)

)
(3.2)

and

rj = T +
√
D − T 2i − ajjf

′
j (0), j = 1,2, (3.3)

then, from the definition ofT, we can obtain

r1 = −r2, |rj |2 = −r1r2 = −a12a21f
′
1(0)f

′
2(0), j = 1,2. (3.4)

Claim. For j = 1,2, the inequationsrj = 0 anda12a21f
′
1(0)f

′
2(0)<0 hold.
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In fact, if r1 = 0 or r2 = 0, From (3.4), we haver1r2 = a12a21f
′
1(0)f

′
2(0)= 0. Thus, by the expression

D = (a11a22 − a12a21)f
′
1(0)f

′
2(0), we seeD = a11a22f

′
1(0)f

′
2(0) and

T 2 =
[
a11f

′
1(0) + a22f

′
2(0)

2

]2

�a11a22f
′
1(0)f

′
2(0) = D,

this is a contradiction toT 2<D. Hencerj = 0 (j = 1,2) and it follows from (3.4) thata12a21f
′
1(0)

f ′
2(0)<0.
Let q(D) ∈ C2 be an eigenvector ofA(D) corresponding to eigenvalue�(D) given by (2.6). Then

A(D)q(D) = �(D)q(D).

Again letp(D) ∈ C2 be an eigenvector of the transposed matrixAT(D) corresponding to its eigenvalue,
that is�(D)

AT(D)p(D) = �(D)p(D).

By direct calculation we obtain

q ∼
(

1,
a21f

′
1(0)

r2

)T

, p ∼
(

1,
a12f

′
2(0)

r2

)T

,

whererj (j = 1,2) is given by (3.3). For the eigenvectorq = (1, a21f
′
1(0)/r2)

T, to normalizep, let

p = r2

r2 − r2

(
1,

a12f
′
2(0)

r2

)T

,

we have〈p, q〉 = 1, where〈·, ·〉 means the standard scalar product inC2 : 〈p, q〉 = p1q1 + p2q2. Any
vectorx ∈ R2 can be represented forD nearD� as

x = zq(D) + zq(D)

for some complexz. Obviously

z = 〈p(D), x〉.
Thus, system (3.1) can be transformed forD nearD� into the following form:

z �−→ �(D)z + g(z, z,D), (3.5)

where�(D) can be written as�(D)= (1+ �(D))ei�(D) (�(D) is a smooth function with�(D�)= 0) and

g(z, z,D) =
∑

k+l�2

1

k!l! gkl(D)zkzl. (3.6)
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From assumption (H2), we know thatFi (i = 1,2) in (3.1) can be expanded as

F1(�,D) = a11

6
f

′′′
1 (0)�3

1 + a21

6
f

′′′
2 (0)�3

2 + O(‖�‖4),

F2(�,D) = −a21

6
f

′′′
1 (0)�3

1 + a22

6
f

′′′
2 (0)�3

2 + O(‖�‖4).

It follows that:

Bi(x, y) :=
2∑
j,k

�2
Fi(�,D�)

��j��k

∣∣∣∣∣
�=0

xjyk = 0, i = 1,2 (3.7)

and

Ci(x, y, u) :=
2∑

j,k,l

�3
Fi(�,D�)

��j��k��l

∣∣∣∣∣
�=0

xjykul

= ai1f
′′′
1 (0)x1y1u1 + ai2f

′′′
2 (0)x2y2u2, i = 1,2. (3.8)

By (3.6)–(3.8) and the formulas

g20(D
�) = 〈p,B(q, q)〉, g11(D

�) = 〈p,B(q, q)〉, g02(D
�) = 〈p,B(q, q)〉

and

g21(D
�) = 〈p,C(q, q, q)〉,

we obtain

g20(D
�) = g11(D

�) = g02(D
�) = 0

and

g21(D
�) = p1C1(q, q, q) + p2C2(q, q, q)

= r2

r2 − r2

{
a11f

′′′
1 (0) − a2

21f
′
1(0)

2f
′′′
2 (0)

r2f
′
2(0)

+ a12a21f
′
2(0)f

′′′
1 (0)

r2
− a2

21a22f
′
1(0)

2f
′′′
2 (0)

r2
2

}

= 1

a12(r1 + r2)f
′
2(0)

{a11a12r2f
′
2(0)f

′′′
1 (0) + a21a22r2f

′
1(0)f

′′′
2 (0)

+ a2
12a21f

′
2(0)

2f
′′′
1 (0) − a12a

2
21f

′
1(0)

2f
′′′
2 (0)}

= 1

2a12
√
D� − T 2f ′

2(0)i
{a11a12f

′
2(0)f

′′′
1 (0)(T +

√
D� − T 2i − a22f

′
2(0))

+ a21a22f
′
1(0)f

′′′
2 (0)(T −

√
D� − T 2i − a22f

′
2(0))

+ a2
12a21f

′
2(0)

2f
′′′
1 (0) − a12a

2
21f

′
1(0)

2f
′′′
2 (0)},



96 Z. Yuan et al. / Journal of Computational and Applied Mathematics 177 (2005) 89–100

which, together with e−i�(D�) = �(D�) and the expressionD= (a11a22− a12a21)f
′
1(0)f

′
2(0), implies that

a(D�) = Re

(
e−i�(D�)g21

2

)
− Re

(
(1 − 2ei�(D�))e−2i�(D�)

2(1 − ei�(D�))
g20g11

)
− 1

2
|g11|2 − 1

4
|g02|2

= Re

(
e−i�(D�)

2
g21

)

= 1

4a12f
′
2(0)

{(� + T )[a11a12f
′
2(0)f

′′′
1 (0) − a21a22f

′
1(0)f

′′′
2 (0)]

− [a11a12f
′
2(0)f

′′′
1 (0) + a21a22f

′
1(0)f

′′′
2 (0)](T − a22f

′
2(0))

− a2
12a21f

′
2(0)

2f
′′′
1 (0) + a12a

2
21f

′
1(0)

2f
′′′
2 (0)}

= 1

4a12f
′
2(0)

{a11a12f
′
2(0)f

′′′
1 (0)[� + a22f

′
2(0)] − a21a22f

′
1(0)f

′′′
2 (0)[� + a11f

′
1(0)]

− a2
12a21f

′
2(0)

2f
′′′
1 (0) + a12a

2
21f

′
1(0)

2f
′′′
2 (0)}

= 1

4a12f
′
2(0)

{�[a11a12f
′
2(0)f

′′′
1 (0) − a21a22f

′
1(0)f

′′′
2 (0)]

+ [a11a22 − a12a21][a12f
′
2(0)

2f
′′′
1 (0) − a21f

′
1(0)

2f
′′′
2 (0)]}

= 1

4a12f
′
2(0)

{
�[a11a12f

′
2(0)f

′′′
1 (0) − a21a22f

′
1(0)f

′′′
2 (0)]

+ −2�T + 1 − �2

f ′
1(0)f

′
2(0)

[a12f
′
2(0)

2f
′′′
1 (0) − a21f

′
1(0)

2f
′′′
2 (0)]

}

= 1

4a12f
′
1(0)f

′
2(0)

2 {�f ′
1(0)f

′
2(0)[a11a12f

′
2(0)f

′′′
1 (0) − a21a22f

′
1(0)f

′′′
2 (0)]

+ [−�(a11f
′
1(0) + a22f

′
2(0)) + 1 − �2][a12f

′
2(0)

2f
′′′
1 (0) − a21f

′
1(0)

2f
′′′
2 (0)]}

= 1

4a12f
′
1(0)f

′
2(0)

2 {�[a11a21f
′
1(0)

3f
′′′
2 (0) − a12a22f

′
2(0)

3f
′′′
1 (0)]

+ (1 − �2)[a12f
′
2(0)

2f
′′′
1 (0) − a21f

′
1(0)

2f
′′′
2 (0)]}

= a21f
′
1(0)

4a12f
′
2(0)

· f
′′′
2 (0)

f ′
2(0)

[�a11f
′
1(0) − 1 + �2] + f

′′′
1 (0)

4f ′
1(0)

[1 − �2 − �a22f
′
2(0)]. (3.9)

From the above argument, we have the following result.



Z. Yuan et al. / Journal of Computational and Applied Mathematics 177 (2005) 89–100 97

Theorem 3. Suppose that(H2) is satisfied andT ∈ (−�,1 − �). Then the direction and stability of
Neimark–Sacker bifurcation of(1.1)can be determined by the sign ofa(D�). Indeed, if a(D�)<0(>0),
then the Neimark–Sacker bifurcation of(1.1)atD = D� is supercritical(subcritical) and unique closed
invariant curve bifurcating from(0,0) is asymptotically stable(unstable), where D� is given
by (2.8).

Remark 1. If the two neuron network (1.1) without self-connections modelled by a discrete-time system
of the from (1.1) witha11 = a22 = 0:

x1(n + 1) = �x1(n) + a12f2(x2(n)),

x2(n + 1) = �x2(n) + a21f1(x1(n)), n = 0,1,2, . . . . (3.10)

From (3.9), we can obtain

a(D�) = 1 − �2

4

(
f

′′′
1 (0)

f ′
1(0)

− a21f
′
1(0)

a12f
′
2(0)

· f
′′′
2 (0)

f ′
2(0)

)
. (3.11)

For sgn(f ′
1(0)f

′′′
1 (0)) = sgn(f ′

2(0)f
′′′
2 (0)), recalling fora12a21f

′
1(0)f

′
2(0)<0 from the analysis of pre-

vious, we have sgn(a(D�))= sgn(f ′
1(0)f

′′′
1 (0))= sgn(f ′

2(0)f
′′′
2 (0)) from (3.11). Thus we can obtain the

following result.

Corollary 1. Suppose that(H2) is satisfied andsgn{f ′
1(0)f

′′′
1 (0)} = sgn{f ′

2(0)f
′′′
2 (0)}. Then the direc-

tion and stability of Neimark–Sacker bifurcation of(3.10)can be determined by the sign off ′
k(0)f

′′′
k (0).

Indeed, if f ′
k(0)f

′′′
k (0)<0(>0), then the Neimark–Sacker bifurcation of(3.10) at D = D� is super-

critical (subcritical) and unique closed invariant curve bifurcating from(0,0) is asymptotically stable
(unstable).

Remark 2. For the case the decay ratio� and connection weightsaij in (1.1) are the functions�(�), aij (�)
such that� ∈ C(R+, (0,1)), aij ∈ C(R+,R). We can choose� as the bifurcation parameter. From (2.8),
we can obtain the critical value�� of � such that the modulus of eigenvalue|�(��)| = 1. If the derivative
(

dD(�)
d� |)�=�� = 0, it follows that( d

d� |�(�)|)�=�� = 0. Thus, we conclude that Theorem 3 and Corollary 1
are available ifD� is replaced by��. In [6], the authors consider the following system

x1(n + 1) = e−�x1(n) + 	(1 − e−�) tanh[c1x2(n)],
x2(n + 1) = e−�x2(n) − 	(1 − e−�) tanh[c2x1(n)], n = 0,1,2, · · · , (3.12)

where�, 	>0 andck >0 fork=1,2. ObviouslyT =0 and from (2.8), we can calculate��= ln((	2c1c2+
1)/(	2c1c2 − 1)) and ( d

d� |�(�)|)�=�� >0. Thus Neimark–Sacker bifurcation occurs when� = �� for
the system (3.12). On the other hand, sincef1(u) = tanh(c2u) andf2(u) = tanh(c1u), it follows that
f ′
k(0)f

′′′
k (0)<0 for k = 1,2. By corollary 1, we know that the Neimark–Sacker bifurcation of (3.12)
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Fig. 1. The equilibrium(0,0) is asymptotically stable.

at � = �� is supercritical and the unique closed invariant curve bifurcating from(0,0) is asymptotically
stable.

Our results are very convenient to determine the direction and stability of Neimark–Sacker bifurcation
of (1.1) even ifakk = 0 for k = 1,2.

Example. Choose� = 1
2, a11 = 1, a12 = −1, a22 = −1 andf1(u) = sin(u) f2(u) = arctan(u/2) in the

system (1.1). Thenf ′
1(0) = 1, f ′

2(0) = 1
2, f

′′
1 (0) = f ′′

2 (0) = 0, f
′′′
1 (0) = −1<0, f

′′′
2 (0) = −1

4. By the
simple calculation, we know

T = a11f
′
1(0) + a22f

′
2(0)

2
= 1

4
, L1 + D = 2(1 − �)T − (1 − �)2 = 0

L2 + D = −2(1 + �)T − (1 + �)2 = −3, L3 + D = −2�T + 1 − �2 = 1
2.

It follows from (2.8) thatD�= 1
2 (the corresponding valuea21=2), that is the Neimark–Sacker bifurcation

occurs whenD = 1
2. If we let a21 = 1.99, it is easy to obtainD = 99

200. Obviously,(T ,D) ∈ X0, this
implies(0,0) is asymptotically stable. Ifa21 = 2.01, thenD = 101

200>D� and we havea(D�) = −3
8 <0

from (3.9). Hence, using Theorem 3, we know that there exists an asymptotically stable invariant cycle
bifurcating from(0,0). This fact is verified by the numerical simulation inFigs. 1and2.
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Fig. 2. An invariant closed circle bifurcates from equilibrium(0,0), where(x1(0), x2(0)) = (0.01,0.05).
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