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Abstract

In this paper we determine the multifractal nature of almost every function (in the prevalence setting)
in a given Sobolev or Besov space according to different regularity exponents. These regularity criteria
are based on local Lp regularity or on wavelet coefficients and give a precise information on pointwise
behavior.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The study of regularity, and more precisely of pointwise regularity of signals or functions
raised a large amount of interest in scientific communities. This topic allows a better understand-
ing of behavior of functions and it gives also a powerful classification tool in various domains.
A recent theory, based on the study of pointwise smoothness is supplied by the multifractal anal-
ysis. The multifractal analysis was introduced in order to study the velocity of turbulent flows and
was initially applied to understand the behavior of some invariant measures [14,32]. It was then
used in several fields, such as signal or image processing [1,2]. But in each case, the criterium of
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regularity taken into account is the Hölder exponent, and this exponent is only well defined for
locally bounded functions. It would be convenient to define new criteria on more general cases.
For instance, the velocity of turbulent fluids is now known not to be bounded near vorticity fila-
ments, see [3]. In the study of turbulent flows, in [27], Leray conjectured that self-similar weak
solutions of Navier–Stokes equations with initial value in L2(R3) may develop singularities in
a finite time. This problem was then widely studied [26] and different behaviors were produced
following the initial value problem involved. Since [8] it is known that the set of singularities of
these solutions is of vanishing Hausdorff dimension. In [9], an alternative definition of regularity
was supplied which can give better results in elliptic PDEs and especially when viscous solu-
tions occur. It would thus be natural to take this notion, which involves local Lp norms to study
irregularities of Navier–Stokes solutions when initial data are supposed in Lp .

Furthermore, it would be convenient to establish regularity criteria in image processing, where
those properties are widely used. A natural idea would be to determine properties of the charac-
teristic function of sets. But Hölder regularity is not adapted for classification of natural images
as it does not take into account the geometry of sets and takes only two values when it is applied
to characteristic functions. Furthermore, most natural images, such as clouds images or medical
images are discontinuous, see [3] and thus need to be studied in a more general framework.

Let us recall the principle of multifractal analysis. The natural notion of regularity used in the
study of pointwise behavior is provided by the Hölder exponent, defined as follows.

Definition 1. Let α � 0; a function f : R
d → R is Cα(x0) if for each x ∈ R

d such that
|x − x0| � 1 there exists a polynomial P of degree less than [α] and a constant C such that,

∣∣f (x) − P(x − x0)
∣∣ � C|x − x0|α. (1)

The Hölder exponent of f at x0 is

hf (x0) = sup
{
α: f ∈ Cα(x0)

}
.

In some cases, functions may have an Hölder regularity which changes wildly from point to
point. Rather than measure the exact value of the Hölder exponent, one studies the fractal dimen-
sion of sets where it takes a given value. The spectrum of singularities, also called multifractal
spectrum and denoted d(H), is the function which gives for each H the Hausdorff dimension of
those sets. A function is then called multifractal if the support of its spectrum of singularities is
an interval with no empty interior.

However, the Hölder exponent has some drawbacks that prevent from using it in any situation.
First, it is only defined for locally bounded functions. If a function f belongs only to L

p

loc this
exponent is no more defined. Furthermore, as pointed by Calderòn and Zygmund in [9], it is not
preserved under pseudodifferential operator of order zero, and as stated in [30] cannot thus be
characterized with conditions on wavelet coefficients.

Another drawback can be emphasized with the example of Raleigh–Taylor instability. This
phenomenon occurs when two fluids which are not miscible are placed on top of each other. In
this case, thin filaments appear giving to the interface between the two fluids a fractal structure,
see [31] for a study. To study geometric properties of this interface, one would be interested
on multifractal properties of its characteristic function. Nonetheless as such functions are not
continuous and take only two values, their Hölder exponent is not define, and a multifractal
approach cannot be carry out.
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For all these reasons, it would be convenient to define a new kind of multifractal analysis con-
structed with more general exponents. Such construction is started in [23,24], where the authors
proposed a multifractal formalism based on Calderòn–Zygmund exponents. These exponents
were introduced in [9] as an extension of Hölder exponent to L

p

loc functions, invariant under
pseudodifferential operator of order 0.

Definition 2. Let p ∈ [1,∞] and u � − d
p

be fixed. A function f ∈ L
p

loc(R
d) belongs to T

p
u (x0)

if there exist a real R > 0 and a polynomial P , such that deg(P ) < u + d
p

, and c > 0 such that:

∀ρ � R:
(

1

ρd

∫
‖x−x0‖�ρ

∣∣f (x) − P(x)
∣∣p dx

)1/p

� cρu. (2)

The p-exponent of f at x0 is u
p
f (x0) = sup{u: f ∈ T

p
u (x0)}.

With this definition, the usual Hölder condition f ∈ Cs(x0) corresponds to f ∈ T
p
u (x0) where

p = ∞. One can also check that the p-exponent is decreasing as a function of p. As it was
done for the Hölder exponent one can define for each p the p-spectrum of singularities as the
Hausdorff dimension of the set of points where the p-exponent takes a given value. In [23], the
authors defined the weak accessibility exponent, given as a parameter of the geometry of the
set. Specifically, this weak-scaling exponent deals with the local behavior of the boundary of a
set. It is thus well adapted for fractal interfaces that might appear in experimental settings. They
showed that this geometrical based exponent coincides with Calderòn–Zygmund exponents of
the characteristic function of the boundary of the set.

Another regularity criterium, closely related to the previous ones is given by the following
definition from [30]. With this exponent we can have a better understanding of the link between
Calderòn–Zygmund exponents, Hölder exponent and the pointwise behavior of functions.

Definition 3. Let f : R
d → R be a function or a distribution and x0 ∈ R

d be fixed. The weak-
scaling exponent of f at x0 is the smallest real number β(f, x0) satisfying:

1. β(f, x0) � u
p
f (x0) ∀p � 1.

2. β(f, x0) = s ⇔ β(
∂f
∂xj

, x0) = s − 1, j = 1, . . . , d .

Similarly, we define the weak-scaling spectrum, denoted by dws(β) as the Hausdorff dimen-
sion of sets of points where β(f, x) takes a given value β . As we will see later, the weak-scaling
exponent can be fully characterized by conditions on wavelet coefficients.

In practical applications, the classical multifractal spectrum cannot be computed directly, as
it takes into account intricate limits. Thus, some formulas, called multifractal formalisms were
introduced in purpose to link the spectrum of singularities to some calculable quantities. There
are indeed two formalisms based on conditions on wavelet coefficients. Historically the classi-
cal multifractal formalism stated in [13] was based directly on wavelet coefficients. Actually,
this formula gave unexpected results and was shown to be false in several cases. It is nowadays
known that it is the weak-scaling exponent which is involved in this formula. A second mul-
tifractal formalism, developed in [22] is based on “wavelet leaders”, which can be seen as the
theoretical counterpart of the “Wavelet Transform Modulus Maxima” used in [4]. This “wavelet
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leader” based formalism actually gives the spectrum of singularities in term of Hölder expo-
nent. The weak-scaling exponent is thus more appropriated in order to understand the classical
multifractal formalism. This exponent is also more stable under the action of differential oper-
ators. Furthermore it gives an additional information on the behavior of functions thanks to the
following definition.

Definition 4. Let f : R
d → R be a function and x0 ∈ R

d . We say that x0 is a cusp singularity
for f if β(f, x0) = hf (x0). If β(f, x0) > hf (x0), x0 is said to be an oscillating singularity.

An example of oscillating function at x0 = 0 is given by f (x) = |x| sin(1/|x|). Here,
hf (0) = 1 while β(f,0) = +∞. And we have a cusp singularity when the behavior of the func-
tion at x0 is like |x|α but also like |x|α + |x| sin(1/|x|). Indeed we talk about a cusp singularity
when the function does not have oscillations at a point, or if those oscillations are hidden by the
Hölder behavior.

Many authors have studied generic values of the Hölder exponent in function spaces. In 1931
Banach [5], proved that the pointwise regularity of quasi-all, in a topological sense, continuous
functions is zero. Here quasi-all means that this property is true in a countable intersection of
dense open sets. Since then, Hunt in [15] showed that the same result is satisfied by measure
theoretic almost every continuous functions. Recently, results such as those of [25] and [12]
studied Hölder regularity of generic functions in Sobolev spaces in both senses. Whereas a large
study of regularity properties for generic sets, there exists no result on genericity of Calderòn–
Zygmund exponents or of weak-scaling exponent. Our purpose here is to provide a genericity
result of those exponents in given Sobolev and Besov spaces, with the measure-theoretic notion
of genericity supplied by prevalence.

Prevalence is a measure-theoretic notion of genericity on infinite dimensional spaces. In a
finite dimensional space, the notion of genericity in a measure theoretic sense is supplied by the
Lebesgue measure. The particular role played by this measure is justified by the fact that this is
the only one which is σ -finite and invariant under translation. In a metric infinite dimensional
space no measure enjoys these properties. The proposed alternative is to replace conditions on
the measure by conditions on sets, see [6,10,17,16] and to take the following definition.

Definition 5. Let V be a complete metric vector space. A Borel set B in V is called Haar-null if
there exists a probability measure μ with compact support such that

μ(B + v) = 0 ∀v ∈ V. (3)

In this case the measure μ is said to be transverse to B .
A subset of V is called Haar-null if it is contained in a Borel Haar-null set.
The complement of a Haar-null set is called a prevalent set.

With a slight abuse of language we will say that a property is satisfied almost everywhere
when it holds on a prevalent set.

Let us recall properties of Haar-null sets, see [10,17] and show how they generalize notion of
Lebesgue measure zero sets.
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Proposition 1.

1. If S is Haar-null, then ∀x ∈ V , x + S is Haar-null.
2. If dim(V ) < ∞, S is Haar-null if and only if meas(S) = 0 (where meas denotes the Lebesgue

measure).
3. Prevalent sets are dense.
4. If S is Haar-null and S′ ⊂ S then S′ is Haar null.
5. The union of a countable collection of Haar-null sets is Haar null.
6. If dim(V ) = ∞, compact subsets of V are Haar-null.

Remarks. Several kinds of measures can be used as transverse measures for a Borel set. Let us
give two examples of transverse measure.

1. A finite dimensional space P is called a probe for a set T ⊂ V if the Lebesgue measure
on P is transverse to the complement of T . Those measures are not compactly supported
probability measures. However one immediately checks that this notion can also be defined
in the same way but stated with the Lebesgue measure defined on the unit ball of P . Note
that in this case, the support of the measure is included in the unit ball of a finite dimensional
subspace. The compactness assumption is therefore fulfilled.

2. If V is a function space, a probability measure on V can be defined by a random process
Xt whose sample paths are almost surely in V . The condition μ(f + A) = 0 means that the
event Xt − f ∈ A has probability zero. Therefore, a way to check that a property P holds
only on a Haar-null set is to exhibit a random process Xt whose sample paths are in V and
is such that

∀f ∈ V, a.s. Xt + f does not satisfy P .

These properties, such as several examples of prevalent results can be found in the survey [16].

1.1. Statement of main results

The purpose of this paper is stated by the two following theorems which give the multifractal
properties of almost every functions with regard to exponents defined in the previous section.

Theorem 1. Let s0 � 0 and 1 � p0 < ∞ be fixed.

1. For all p � 1 such that s0 − d
p0

> − d
p

the p-spectrum of singularities of almost every func-

tion in Ls0,p0(Rd) is given by

∀u ∈
[
s0 − d

p0
, s0

]
dp(u) = p0(u − s0) + d. (4)

2. For almost every function in Ls0,q0(Rd) the spectrum of singularities for the weak-scaling
exponent is given by

∀β ∈
[
s0 − d

p0
, s0

]
dws(β) = p0(β − s0) + d. (5)
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This result in Sobolev spaces has an analogous in the Besov setting. Furthermore, Besov
spaces are useful when wavelets are involved as it is the case here, those spaces having a simpler
characterization.

Theorem 2. Let s0 � 0 and 0 < q,p0 < ∞ be fixed.

1. For all p � 1 such that s0 − d
p0

> − d
p

the p-spectrum of singularities of almost every func-

tion in B
s0,q
p0 (Rd) is given by

∀u ∈
[
s0 − d

p0
, s0

]
dp(u) = p0(u − s0) + d. (6)

2. For almost every function in B
s0,q
p0 (Rd) the spectrum of singularities for the weak-scaling

exponent is given by

∀β ∈
[
s0 − d

p0
, s0

]
dws(β) = p0(β − s0) + d. (7)

These theorems seem a bit surprising. Let us compare them with the following proposition
from [12].

Proposition 2.

• If s −d/p � 0, then almost every function in Lp,s is nowhere locally bounded, and therefore
its spectrum of singularities is not defined.

• If s − d/p > 0, then the Hölder exponent of almost every function f of Lp,s takes values in
[s − d/p, s] and

∀H ∈ [s − d/p, s] df (H) = Hp − sp + d. (8)

Thus the main change from [12] is given by the fact that here β can take negative values.
Indeed, our present theorems give a generic regularity in Sobolev or in Besov spaces that are not
imbedded in global Hölder spaces. Even if in such spaces, the classical spectrum of singularities
is not define for a prevalent set, we have an idea of the pointwise behavior of almost every
distribution. In the other case, when s0 − d

p0
> 0 and the spectrum of singularities exists, it

coincides with the above spectra for almost every function in Besov spaces. Therefore, in the
second case we generalize in this paper the result of [12] to more stable exponents.

In [28], it was also proved that in those spaces quasi-all functions, in the Baire’s sense, have
no oscillating singularities. Furthermore, presence of oscillating singularities is linked with the
failure of the multifractal formalism in [33]. And in [11], it was already proven that almost
every function in Besov spaces satisfies the multifractal formalism. The main result of this paper
together with Definition 4 show that even if weak-scaling and Hölder exponents do not coincide
they share the same spectrum. Thus, in the prevalence setting, oscillating singularities appear as
an exceptional behavior in regular Sobolev or Besov spaces.

Another remark can be made thanks to the following proposition from [24] and from [34] that
gives an upper bound for the p-spectrum.
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Proposition 3. Let f ∈ B
s0,p0
p0 (Rd), where s0 > 0 and let p � 1 be such that s0 − d

p0
> − d

p
. Then

∀u ∈
[
s0 − d

p0
, s0

]
dp(u) � p0u − s0p0 + d. (9)

This proposition together with Theorem 2 show that the generic regularity for p criteria is as
bad as possible.

In Section 2 we will prove Theorems 1 and 2. For the sake of completeness, we first have
to define our main tool which is given by wavelet expansions of functions. Wavelets are natu-
rally present in multifractal analysis, see for instance [2]. Furthermore, in our case it allows a
characterization of both functional spaces and pointwise regularities.

1.2. Wavelet expansions

There exist 2d − 1 oscillating functions (ψ(i))i∈{1,...,2d−1} in the Schwartz class such that the
functions

2djψ(i)
(
2j x − k

)
, j ∈ Z, k ∈ Z

d

form an orthonormal basis of L2(Rd), see [29]. Wavelets are indexed by dyadic cubes λ =
[ k

2j ; k+1
2j [d . Thus, any function f ∈ L2(Rd) can be written:

f (x) =
∑

c
(i)
j,kψ

(i)
(
2j x − k

)
where

c
(i)
j,k = 2dj

∫
f (x)ψ(i)

(
2j x − k

)
dx.

(Note that we use an L∞ normalization instead of an L2 one, which simplifies the formulas.) If
p > 1 and s > 0, Sobolev spaces have thus the following characterization, see [29]:

f ∈ Ls,p
(
R

d
) ⇐⇒

( ∑
λ∈Λ

|cλ|2
(
1 + 4js

)
χλ(x)

)1/2

∈ Lp
(
R

d
)
, (10)

where χλ(x) denotes the characteristic function of the cube λ and Λ is the set of all dyadics cubes.
Homogeneous Besov spaces, which will also be considered, are characterized (for p,q > 0 and
s ∈ R) by

f ∈ B
s,q
p

(
R

d
) ⇐⇒

∑
j

( ∑
λ∈Λj

|cλ|p2(sp−d)j

)q/p

� C (11)

where Λj denotes the set of dyadics cubes at scale j , see [29].
Hölder pointwise regularity can also be expressed in term of wavelet coefficients, see [18].
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Proposition 4. Let x be in R
d . If f is in Cα(x) then there exists c > 0 such that for each λ:

|cλ| � c2−αj
(
1 + ∣∣2j x − k

∣∣)α
. (12)

This proposition is not a characterization. If for any ε > 0, a function does not belong to
Cε(Rd) one cannot express its pointwise Hölder regularity in term of condition on wavelet coef-
ficients. This is an advantage of Calderòn–Zygmund exponent since, as showed in [21], it can be
linked to wavelet expansion without global regularity assumption.

Definition 6. Let x0 be in R
d and j � 0. We denote by λj (x0) the unique dyadic cube of width

2−j which contains x0. And we denote

3λj (x0) = λj (x0) +
[
− 1

2j
,

1

2j

]d

.

Furthermore, we define the local square function by

Sf (j, x0)(x) =
( ∑

λ⊂3λj (x0)

|cλ|21λ(x)

)1/2

.

Proposition 5. Let p � 1 and s � 0; if f ∈ T
p

s− d
p

(x0), then ∃C > 0 such that wavelet coefficients

of f satisfy for all j � 0

∥∥Sf (j, x0)
∥∥

Lp � c2−j (u+d/p). (13)

Conversely if (13) holds and if s − d
p

/∈ N then f ∈ T
p

s− d
p

(x0).

As far as we are concerned, we do not need a characterization but a weaker condition which
is given by the following proposition from [23].

Proposition 6. Let p � 1 and s � 0; if f ∈ T
p

s− d
p

(x0), then ∃A,C > 0 such that wavelet coeffi-

cients of f satisfy

∃C ∀j 2j (sp−d)
∑

|k−2j x0|�A2j

|cj,k|p
(
1 + ∣∣k − 2j x0

∣∣)−sp � Cj. (14)

Furthermore, it is also proved in [23] that the p-exponent can be derived from wavelet coeffi-
cients.

Proposition 7. Let p � 1 and f ∈ L
p

loc. Define

Σ
p
j (s,A) = 2j (sp−d)

∑
j j

|cj,k|p
(
1 + ∣∣k − 2j x0

∣∣)−sp
, (15)
|k−2 x0|�A2
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for A > 0 small enough. And denote

ip(x0) = sup

{
s: lim inf

log(Σ
p
j (s,A)1/p)

−j log 2
� 0

}
. (16)

Then the following inequality always holds

u
p
f (x0) � ip(x0) − d

p
. (17)

If furthermore there exists δ > 0 such that f ∈ B
δ,p
p then the p-exponent of f satisfies

u
p
f (x0) = ip(x0) − d

p
. (18)

As seen previously, the p-exponent is also related to the weak-scaling exponent. This one
can also be expressed in term of wavelet coefficients, thanks to its relation with two-microlocal
spaces, defined in [7].

Definition 7. Let s and s′ be two real numbers. A distribution f : R
d → R belongs to the two-

microlocal space Cs,s′
(x0) if its wavelet coefficients satisfy that there exists c > 0 such that

∀j, k |cj,k| � c2−sj
(
1 + ∣∣2j x0 − k

∣∣)−s′
. (19)

In [30] the following characterization of the weak-scaling exponent is given.

Proposition 8. A tempered distribution f belongs to Γ s(x0) if and only if there exists s′ < 0 such
that f belongs to Cs,s′

(x0).
The weak-scaling exponent of f is

β(f, x0) = sup
{
s: f ∈ Γ s(x0)

}
. (20)

But we will rather take the following alternative characterization from [23] that gives a simpler
condition in term of wavelet coefficients.

Proposition 9. Let f be a tempered distribution. The weak-scaling exponent of f at x0 is the
supremum of s > 0 such that:

∀ε > 0 ∃c > 0 ∀(j, k) such that
∣∣2j x0 − k

∣∣ < 2εj , |cj,k| � c2−(s−ε)j . (21)

2. Proofs of Theorems 1 and 2

2.1. The p-spectrum

In this section, we only prove the first point of Theorem 2. We will see how this proof can be
adapted to Theorem 1 in a second time.
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In a first part, the result that we prove is more precise than the one stated. Indeed, we prove that
for each α ∈ (1,∞) and for each p � 1, the p-exponent of almost every function of B

s0,p0
p0 (Rd)

is smaller than

s − d

p
+ d

αp
(22)

on a set of Hausdorff dimension greater than d
α

.
These fractal sets are closely related to the dyadic approximation of points.

Definition 8. Let α ∈ (1,∞) be fixed. We denote

Fα =
{
x: ∃ a sequence

(
(kn, jn)

)
n∈N

∣∣∣∣x − kn

2jn

∣∣∣∣ � 1

2αjn

}
. (23)

This set Fα can also be defined as

lim sup
i→∞

⋃
l∈Nd

F i,l
α

where F i,l
α denotes the cube l

2i + [− 1
2αi ; 1

2αi ]d .
If x ∈ Fα it is said α-approximable by dyadics. The dyadic exponent of x is defined by

α(x0) = sup{α: x0 is α-approximable by dyadics}.

As stated in [20], the Hausdorff dimension of Fα is at least d
α

.
In order to prove our result we show that the set of functions where for α and p � 1 given,

the p-exponent is larger than (22) at a point of Fα is included in a countable union of Haar-null
Borel sets.

Let p � 1 be given such that s0 − d
p0

> − d
p

. For α � 1 fixed we denote s(α) = s0 − d
p0

+ d
αp0

+
d
p

. For ε > 0 fixed, let β = s(α) + ε. We first check that the set of functions in B
s0,p0
p0 satisfying

(14) with exponent β at a point in Fα is a Haar-null Borel set. This set can be included in a
countable union over A > 0 and c > 0 of sets M(A,c) which are sets of functions in B

s0,p0
p0 (Rd)

satisfying

∃x ∈ Fα ∀j 2j (βp−d)
∑

|k−2j x|�A2j

|cλ|p
(
1 + ∣∣k − 2j x

∣∣)−βp � c.

And for each i ∈ N these sets can be included in the countable union over l ∈ {0, . . . ,2i − 1}d
of Mi,l(A, c), defined by the set of f such that

∃x ∈ F i,l
α ∀j 2j (βp−d)

∑
|k−2j x|�A2j

|cλ|p
(
1 + ∣∣k − 2j x

∣∣)−βp � c.

Each Mi,l(A, c) is a closed set. Indeed, suppose that a sequence (fn) of elements of Mi,l(A, c)

converges to f in B
s0,p0
p0 (Rd). Denote cn

j,k the wavelet coefficients of fn, for each n ∈ N, and
cj,k those of f . The mapping giving the wavelet coefficients of a function f in a Besov space is
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continuous, thus for each j, k cn
j,k converge to cj,k . Furthermore for each n there exists xn ∈ F i,l

α

such that fn satisfies (14) at xn. Thus

∀j 2j (βp−d)
∑

|kn−2j xn|�A2j

∣∣cn
λ

∣∣p(
1 + ∣∣kn − 2j xn

∣∣)−βp � c. (24)

As F i,l
α is a compact set, there exists an accumulation point x ∈ F i,l

α of xn. Furthermore, if kn is
such that |kn − 2j xn| � A2j for a subsequence xφ(n) such that limxφ(n) = x, the corresponding
kφ(n) converges to k with |k − 2j x| � A2j . Thus up to a subsequence, when n tends to infinity,
(24) becomes

∀j 2j (βp−d)
∑

|k−2j x|�A2j

|cλ|p
(
1 + ∣∣k − 2j x

∣∣)−βp � c.

Consequently f belongs to Mi,l(A, c) and M(A,c) is a Borel set.
To prove that it is also a Haar-null set, we construct a probe as transverse measure, in this way

the compactness assumption is clearly satisfied. This probe is based on a slight modification of
the “saturating function” introduced in [20].

Let i ∈ N and l ∈ {0, . . . ,2i − 1}d be fixed. Let n ∈ N be fixed large enough such that N =
2dn > d

pαε
+ 1. Each dyadic cube λ is split into M subcubes of size 2−d(j+n). For each index

m ∈ {1, . . . ,N}, we choose a subcube i(λ) and the wavelet coefficient of gi is given by:

dm
λ =

{
1
ja 2

( d
p0

−s0)j 2
− d

p0
J

if m = i(λ),

0 else,
(25)

where a = 2
p0

and J � j and K ∈ {0, . . .2J − 1}d are such that

k

2j
= K

2J

is an irreducible form. It is proven in [12] that these functions belong to B
s0,p0
p0 .

Furthermore, if a point x ∈ (0,1)d is α-approximable by dyadics, there exists a subsequence
(jn, kn) where jn = [Jnα], Jn and Kn being defined in (23) and kn is such that kn

2jn
= Kn

2Jn
. The

corresponding wavelet coefficients of all functions gm satisfy that there exists a constant c > 0
such that if (j, k) satisfy |x0 − k

2j | < A:

dm
j,k > c(A)

2
( d

p0
−s0)j 2

− d
αp0

j

ja
. (26)

Let f = ∑
cj,kψj,k be an arbitrary function in B

s0,p0
p0 (Rd). Suppose that there exist two points

γ1 ∈ R
N and γ2 ∈ R

N such that for a = 1,2, f + ∑
m γ m

a gm belong to Mi,l(A, c). By definition
there also exist two points x1 and x2 in F i,l

α such that, for a = 1,2,

∀j 2j (βp−d)
∑
j j

∣∣∣∣∣cλ +
N∑

m=1

γ m
a dm

λ

∣∣∣∣∣
p(

1 + ∣∣k − 2j x
∣∣)−βp � c.
|k−2 xa |�A2
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As β > 0, this condition implies:

∀j 2j (βp−d)
∑

|k−2j xa |�A2j

∣∣∣∣∣cλ +
N∑

m=1

γ m
a dm

λ

∣∣∣∣∣
p(

1 + A2j
)−βp � c.

But x1 and x2 belong to same dyadic cubes of size j > i. Thus the same k satisfies |k−2j xa| �
A2j for a = 1,2 and wavelet coefficients of f1 − f2 are such that for all j > αi

2j (βp−d)
∑

|k−2j xa |�A2j

∣∣∣∣∣
N∑

m=1

(
γ m

1 − γ m
2

)
dm
λ

∣∣∣∣∣
p(

1 + A2j
)−βp � 2c.

It is obvious that

2j (βp−d)
∑

| k

2j −x1|�A

∣∣∣∣∑
m

(
γ m

1 − γ m
2

)
dm
λ

∣∣∣∣
p

2−βpj

(
2−j +

∣∣∣∣ k

2j
− x1

∣∣∣∣
)−βp

� 2j (s̃p−d) sup
| k

2j −x1|�A

∣∣∣∣∑
m

(
γ m

1 − γ m
2

)
dm
λ

∣∣∣∣
p

2−s̃pj

(
2−j +

∣∣∣∣ k

2j
− x1

∣∣∣∣
)−s̃p

.

Using definition of function gm, if for each j we define j ′ = j + n, at scale j ′ there is only
one function gm with nonzero coefficient. And with (26) one finally obtains that there exists a
subsequence j such that

2n(βp−d)2j (βp−d) sup
| k

2j −x1|�A

∣∣∣∣∑
m

(
γ m

1 − γ m
2

)
dm
λ

∣∣∣∣
p

2−βpj

(
2−j +

∣∣∣∣ k

2j
− x1

∣∣∣∣
)−s̃p

�
∣∣γ i

1 − γ i
2

∣∣pc̃p 1

jpa
2pεj ,

where c̃ depends only on n and A.
Those two inequalities imply that

‖γ1 − γ2‖p∞ � 2cc(N)i1/p0 2−εαpi . (27)

Therefore the set of γ such that f + ∑
i γ

mgm belongs to Mi,l(A, c) is included in a ball of
radius less than (2cc(N))N iN/p02−εαpNi . Taking the countable union over l, we obtain that for
each i0 fixed, the set of γ satisfying

∃x ∈ F i0
α such that f +

∑
m

γ mgm satisfies (24) at x

is of Lebesgue measure bounded by
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∞∑
i=i0

(
2cc(N)

)N
iN/p02di−εαpNi.

As N is large enough, this measure tends to zero when i0 tends to infinity. And M(A,c) is then
a Haar-null set.

As this result does not depend on c or on A, we can take the union over countable cn > 0
and An > 0. Then the set of functions in B

s0,p0
p0 (Rd) belonging to T

p
β (x) at a point x ∈ Fα is a

Haar-null set.
Thus,

∀p � 1, ∀α � 1 ∀β > s(α) a.s. in B
s0,p0
p0 ∀x ∈ Fα u

p
f (x) � β.

Taking ε → 0 it follows by countable intersection that

∀p � 1, ∀α � 1 a.s. in B
s0,p0
p0 ∀x ∈ Fα u

p
f (x) � s(α).

Therefore, if αn is a dense sequence in (1,∞), using the same argument, one obtains that

∀p � 1, a.s. in B
s0,p0
p0 ∀n ∈ N ∀x ∈ Fαn u

p
f (x) � s(αn). (28)

Let f be a function satisfying (28) and α � 1 be fixed. Let αφ(n) be a nondecreasing subse-
quence of αn converging to α. Then the intersection Eα of Fαn contains Fα and for all x ∈ Eα ,
and thus for all x ∈ Fα , u

p
f (x) � s(α). Furthermore, see [19], there exists a measure mα posi-

tive on Fα but such that every set of dimension less than d
α

is of measure zero. Let us denote
by GH the set of points where up(x) < H . According to Proposition 3, this set can be written as
a countable union of sets of mα measure zero. Thus, we obtain

mα

({
x: up(x) = H

}) = mα(Fα\GH ) > 0.

Which gives us the p spectrum of singularities

∀u ∈
[
s0 − d

p0
, s0

]
dp(u) = p0u + d − s0p0.

This proof does not depend on the choice of q . It can then be extended in the same way for
any Besov space B

s0,q
p0 for 0 � q < ∞.

The proof for the Sobolev case is similar. The functions gm defined in (25) also belong
to B

s0,1
p0 . Since B

s0,1
p0 ↪→ Ls0,p0 , the gm belong to Ls0,p0 and the remaining of the proof is un-

changed.

2.2. Generic values of the weak-scaling spectrum

We now prove of the second point of Theorems 1 and 2. As in the previous case, we prove
Theorem 2 using the same argument as in the previous part giving the Sobolev case.
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Proposition 10. Let s0 > 0 and 0 � p0, q < ∞ be fixed. For almost every function in B
s0,q
p0 the

spectrum of singularities for the weak-scaling exponent is given by

∀β ∈
[
s0 − d

p0
, s0

]
dws(β) = p0(β − s0) + d. (29)

Proof. Let α � 1 be fixed and denote by Fα the set of Definition 8. Let ε > 0 be fixed and define
β = s0 − d

p0
+ d

p0α
+ ε.

According to Proposition 9, we first have to show that for a given c > 0 the set:

Mα,c =
{
f =

∑
cλψλ ∈ B

s0,q
p0 : ∃x ∈ Fα ∀ε′ > 0 ∀(j, k)

∣∣2j x − k
∣∣ � 2ε′j |cλ| � c2−(β−ε′)j

}
(30)

is a Borel Haar-null set.
Let us remark that for all i ∈ N, this set is included in the countable union of:

Mα,c(i, l) = {
f ∈ B

s0,q
p0 : ∃x ∈ F i,l

α ∀ε′ > 0 ∀(j, k)
∣∣2j x − k

∣∣ � 2ε′j |cλ| � c2−(β−ε′)j}. (31)

One easily checks that Mα,c(i, l) is closed and therefore that Mα,c is a Borel set.
To prove that Mα,c is also Haar-null, we use a different transverse measure than in the previous

section, by taking the measure induced by a stochastic process. As Mα,c depends only on the
dyadic properties of points, we can also restrict the proof to [0,1]d . Consider the following
stochastic process on [0,1]d :

Xx =
∞∑

j=0

∑
λ∈[0,1]d

εj,k

2
−(s0− d

p0
)j

2
− d

p0
J

ja
ψ

(
2j x − k

)
(32)

where J and a are defined as in (25) and {εj,k}j,k is a Rademacher sequence. That is the εj,k are
i.i.d. random variables such that

P(εj,k = 1) = P(εj,k = −1) = 1

2
.

This process belongs to B
s0,q
p0 . Furthermore, the measure defined by this stochastic process is

supported by the continuous image of a compact set. Thus, (Xx)x∈[0,1]d defines a compactly
supported probability measure on B

s0,q
p0 .

Let f be an arbitrary function in B
s0,q
p0 (Rd). Thanks to Fubini’s theorem, it is sufficient to

prove that for all x ∈ Fα , almost surely, condition (21) is not satisfied by f + X.
Let x0 ∈ Fα be fixed and suppose that f + X satisfies condition (21) at x0. Then for all ε′ > 0

and for all (j, k) such that |k − 2j x0| � 2ε′j ,

∣∣∣∣cj,k + εj,k

2
−(s0− d

p0
)j

2
− d

p0
J

a

∣∣∣∣ � c2−(β−ε′)j .

j
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Taking (Jn,Kn) the sequence of Definition 8, j = [αJn] and k = Kn2j

2Jn
one obtains that there

exists a sequence (j, k) such that |2j x0 − k| � 1 and the following property holds:

εj,k = cj,kj
a2

(s0− d
p0

+ d
p0α

)j + o
(
2−(ε−ε′)j ).

Taking ε′ = ε
2 , one obtains that εj,k ∼ cj,kj

a2
(s0− d

p0
+ d

p0α
)jn when jn → ∞. Since the cj,k are

deterministic, this result implies that there exists an infinite sequence of independent stochastic
variables which are deterministic. This event is of probability zero and Mα,c is a Haar-null set.

Therefore, taking countable unions over c > 0 and ε → 0, it follows that for all α � 1, the
set of functions in B

s0,q
p0 with a weak-scaling exponent greater than s0 − d

p0
+ d

p0α
at some point

of Fα is a Haar-null set.
Let (αn)n∈N be a dense sequence in (1,∞) and take a countable union over αn. We finally

obtain

a.s. in B
s0,q
p0

(
R

d
) ∀n ∈ N ∀x ∈ Fαn β(f, x) � s0 − d

p0
+ d

p0αn

.

With a similar argument as in Section 2.1, one can prove that:

a.s. in B
s0,q
p0

(
R

d
) ∀α � 1 ∀x ∈ Fα β(f, x) � s0 − d

p0
+ d

p0α
. (33)

Furthermore, we saw in Section 2.1 that there exists a measure mα which is positive on Fα

and such that

mα

({
x; up(x) = s0 − d

p0
+ d

p0α

})
> 0.

And by definition, ∀p � 1, β(f, x) � up(x), thus

mα

({
x; β(f, x) = s0 − d

p0
+ d

p0α

})
> 0.

Which states that the spectrum of singularities for the weak-scaling exponent of almost every
function in B

s0,q
p0 (Rd) is given by

∀β ∈
[
s0 − d

p0
, s0

]
dws(β) = p0β + d − s0p0. �
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