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In a previous work, we defined a family of subcomplexes of the
n-dimensional half cube by removing the interiors of all half cube
shaped faces of dimension at least k, and we proved that the re-
duced homology of such a subcomplex is concentrated in degree
k − 1. This homology module supports a natural action of the Cox-
eter group W (Dn) of type D . In this paper, we explicitly determine
the characters (over C) of these homology representations, which
turn out to be multiplicity free. Regarded as representations of
the symmetric group Sn by restriction, the homology represen-
tations turn out to be direct sums of certain representations in-
duced from parabolic subgroups. The latter representations of Sn

agree (over C) with the representations of Sn on the (k − 2)-nd
homology of the complement of the k-equal real hyperplane ar-
rangement.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

As a graph, the n-dimensional hypercube is bipartite and connected. This induces a partition of its
vertex set V = Vn = {±1}n into two pieces, V e ∪ V o = V e

n ∪ V o
n , where V e

n (respectively, V o
n ) consists

of those vertices whose coordinates contain an even (respectively, odd) number of occurrences of −1.
We define the half cube, Γn , to be the convex hull of the 2n−1 points in V e

n . Using V o
n in place of V e

n
in this construction gives rise to an isometric copy of the half cube.

The half cube is sometimes known as the demihypercube. It is described in Coxeter’s classic text [7],
where it is denoted by hγn . In the case n = 5, it was described by Gosset in his seminal work on
polytopes [9].

In a previous work [11], we showed that the k-faces of the half cube Γn are of two types: regular
simplices and, for k � 3, isometric copies of half cubes of lower dimensions. These faces assemble
naturally into a regular CW complex, Cn , which is homeomorphic to a ball. Furthermore, for each
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3 � k � n, there is an interesting subcomplex Cn,k of Cn obtained by deleting the interiors of all the
half cube shaped faces of dimensions l � k. We also showed in [11, Theorem 3.3.2] that the reduced
homology of Cn,k is free over Z and concentrated in degree k − 1.

The nonzero Betti numbers B(n,k) of Cn,k can be characterized by simple recurrence relations:
B(n,0) = B(n,n) = 1 and, for 0 < k < n,

B(n,k) = 2B(n − 1,k) + B(n − 1,k − 1).

There are also nonrecursive formulae for B(n,k); for example, Björner–Welker [6, Theorem 1.1(c)]
prove that

B(n,k) =
n∑

i=k

(
n

i

)(
i − 1

k − 1

)
,

where we interpret
(−1
−1

)
to mean 1. The numbers B(n,k) are interesting because they occur in a di-

verse range of contexts, such as:

(i) in the problem of finding, given n real numbers, a lower bound for the complexity of determining
whether some k of them are equal ([4,5], [6, §1]),

(ii) as the (k − 2)-nd Betti numbers of the k-equal real hyperplane arrangement in R
n [6],

(iii) as the ranks of A-groups appearing in combinatorial homotopy theory [1,2],
(iv) as the number of nodes used by the Kronrod–Patterson–Smolyak cubature formula in numerical

analysis [17, Table 3], and
(v) (when k = 3) in engineering, as the number of three-dimensional block structures associated to

n joint systems in the construction of stable underground structures [14].

The connections between (i)–(iii) above are now well understood. Although the half cube polytope
has no obvious direct relationship with any of the phenomena in (i)–(v), its associated homology
modules share an intriguing feature in common with those appearing in (ii) and (iii): they all support
natural actions of the symmetric group Sn . One possible way to forge a link between the half cube
and the situations in (ii) or (iii) is to try to understand the various homology modules in terms of
group representations.

The k-equal real hyperplane arrangement V R

n,k is the set of points (x1, . . . , xn) ∈ R
n such that xi1 =

xi2 = · · · = xik for some set of indices 1 � i1 < i2 < · · · < ik � n. The complement R
n − V R

n,k , denoted

by MR

n,k , is a manifold whose homology is concentrated in degrees t(k − 2), where t ∈ Z satisfies

0 � t � �n
k � (see [6, Theorem 1.1(b)]). It is clear from the definition that MR

n,k supports an action
of Sn via permutation of coordinates, and this action endows the nonzero homology modules with
the structure of Sn-modules. The characters of these modules (over C) were computed explicitly by
Peeva, Reiner and Welker in [16, Theorem 4.4].

The signed permutation group G = Z2 � Sn acts naturally on the symbols {±1,±2, . . . ,±n}. The
group G is sometimes called the octahedral group, because it is the automorphism group of the dual
of the n-dimensional hypercube. It is also the automorphism group of the hypercube itself, where the
signed objects may be identified with the possible coordinate entries of the vertices. The group G also
acts as automorphisms of the hypercube regarded as a graph, and the subsets V e

n and V o
n are blocks

of imprimitivity for this action. The subgroup H fixing V e
n setwise has index 2 in G . It can be shown

that the groups G and H coincide with the Coxeter groups W (Bn) and W (Dn) of types Bn and Dn ,
respectively.

The group W (Dn) acts on the n-dimensional half cube by continuous transformations sending
vertices to vertices and k-faces to k-faces. It follows that the group acts via cellular automorphisms
on the CW complex associated to the half cube. In the special case n = 4, the half cube and the
dual of the hypercube turn out to be isometric, so the 4-dimensional half cube has twice as many
automorphisms as usual. It follows from the definitions that for all n, the group W (Dn) contains
a subgroup isomorphic to Sn .

Because the action of W (Dn) on Γn is by cellular automorphisms, it follows that it induces, for
each k, an action on the nonzero homology modules of Cn,k . In this paper, we will compute the
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Fig. 1. Coxeter graphs of type An−1, Bn and Dn .

characters (over C) of these homology representations. Regarded as modules for W (Dn), the repre-
sentations turn out to be multiplicity free (Theorem 4.4). These modules are not generally induced
modules in any nontrivial sense. In contrast, if the homology representations are regarded as mod-
ules for the symmetric group Sn by restriction, then they are no longer multiplicity free, but they
do turn out to be isomorphic to direct sums of modules induced from maximal Young subgroups
(Theorem 4.7). Furthermore, over the complex numbers, the action of Sn on the (k − 1)-st homology
of Cn,k agrees with the action of Sn on the (k − 2)-nd homology of MR

n,k . It would be interesting to
have an explicit description of the corresponding integral homology representations in each case.

In particular, the characters of the homology representations of this paper, when considered as
CSn-modules, agree precisely with those considered by Peeva, Reiner and Welker. (There are two
obvious ways to regard W (Dn)-modules as modules for Sn , but one obtains isomorphic modules in
each case.) It would be interesting to find a conceptual explanation for this, and for the fact that the
degree in which these homology representations is shifted by 1. One consequence of Theorem 4.7
is that the (k − 2)-nd homology of MR

n,k admits an action of W (Dn); it is not clear to me why this
should be so.

Another consequence of our results (Corollary 4.6) is that if we restrict the representation of
W (Dn) on the (k − 1)-st homology of Cn,k to the subgroup W (Dn−1), then the corresponding branch-
ing rule categorifies the usual recurrence relation for the Betti numbers B(n,k). Furthermore, if one
computes the dimension of the homology representations from a knowledge of their characters, then
one obtains a combinatorial proof of the Björner–Welker formula for B(n,k) mentioned above.

2. Character theory of Coxeter groups of classical type

The main groups of interest in this paper are the finite Coxeter groups of classical types An−1, Bn

and Dn . It will be convenient to number the vertices of the corresponding Coxeter graphs as shown
in Fig. 1.

We now summarize some well-known properties of these groups. More details may be found
in [13] or [3].

The Coxeter group W = W (Γ ) corresponding to a Coxeter graph Γ with vertices S = S(Γ ) is given
by the presentation〈

si: i ∈ S(Γ ): (si s j)
mij = 1

〉
.

The numbers mij are defined to satisfy mii = 1 and mij = m ji for all i, j ∈ S . Furthermore, we have
mij = 2 if i and j are not adjacent in the graph; mij = 3 if i and j are connected by an unlabeled
edge; and mij = k if i and j are connected by an edge labeled k > 3.

If S ′ ⊂ S , then we refer to the subgroup W ′ of W that is generated by S ′ as a parabolic subgroup
of W . In this case, W ′ inherits the structure of a Coxeter group from W .

The Coxeter group W (An−1) is isomorphic (as an abstract group) to the symmetric group Sn , and
the Coxeter generator si may be identified with the transposition (i, i + 1).

The Coxeter group W (Bn) is isomorphic to the wreath product Z2 � Sn of order 2nn!. This may
be regarded as a group of permutations of n signed objects, in which si acts by the transposition
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(i, i + 1) for 1 � i < n, and s0 acts by changing the sign of the object numbered 1. As mentioned ear-
lier, W (Bn) is the group of automorphisms of the n-dimensional hypercube. The parabolic subgroup
of W (Bn) obtained by omitting the generator s0 is canonically isomorphic (as a Coxeter group) to
W (An−1).

The Coxeter group W (Dn) will be our main group of interest, because it is the group of auto-
morphisms of the n-dimensional half cube (if n > 4). The group can be identified with the index 2
subgroup of W (Bn) consisting of those elements effecting an even number of sign changes. As before,
we may identify si with the permutation (i, i + 1) for 1 � i < n. The other generator, s1′ , can be iden-
tified with the element s0s1s0 of W (Bn). It therefore acts by changing the sign of each of objects 1
and 2, followed by the transposition (1,2). The parabolic subgroup of W (Dn) obtained by omitting
the generator s1′ is canonically isomorphic (as a Coxeter group) to W (An−1). We will often abuse
notation slightly and refer to this subgroup as Sn .

For any Coxeter group (W , S), there is a unique homomorphism ε : W → {±1} to the multiplica-
tive group of 2 elements sending each element of S to −1. This homomorphism is known as the sign
representation. We will write sgnn (respectively, idn) to denote the sign (respectively, trivial) represen-
tation of any of the Coxeter groups of types An−1, Bn or Dn .

The character theory of finite Coxeter groups of classical type is well understood. It is described in
Geck and Pfeiffer’s book [8, §5] and, more explicitly, in Stembridge’s notes on the topic [19]. We now
summarize some of the key properties of the theory for later use.

The irreducible representations of W (An−1) (over C) are indexed by the partitions of n, or equiv-
alently, the set of Young diagrams of size n. We will write the corresponding set of characters as{

χλ: |λ| = n
}
.

The degree, χλ(1), of χλ is the number of standard Young tableaux of shape λ; that is, the number of
ways of filling a Young diagram of shape λ with the numbers 1,2, . . . ,n once each in such a way that
the entries increase along rows and down columns. The identity character corresponds to the parti-
tion λ = [n], whose Young diagram has one row, and the sign character corresponds to the partition
λ = [1n], whose Young diagram has one column.

Another important character for our purposes corresponds to the partition

[n − 1,1],
which gives the character of the reflection representation associated to the Coxeter group of type An−1.
This representation may also be constructed by first taking the n-dimensional representation
of Sn corresponding to the natural action of the group on n letters, and then quotienting by the
1-dimensional submodule spanned by the all-ones vector.

The irreducible characters of W (Bn) are indexed by the set{
χ(μ,ν): |μ| + |ν| = n

}
.

The dimensions of the irreducibles may be obtained from the corresponding dimensions in type A via
the formula

χ(μ,ν)(1) =
(

n

|μ|
)
χμ(1)χν(1).

The identity character corresponds to the pair ([n], [0]), and the sign character to the pair ([0], [1n]).
As described above, we may regard W (Dn) as a subgroup of W (Bn). Under this identification, the

irreducible characters χ(μ,ν) and χ(ν,μ) (where μ 
= ν) both restrict to the same irreducible character
of W (Dn), which we denote by χ {μ,ν} . On the other hand, the irreducible character χ(μ,μ) of W (Bn)

restricts to a sum of two nonisomorphic irreducible characters of W (Dn) of the same degree; we
denote the latter by χ

{μ,μ}
+ and χ

{μ,μ}
− . These exhaust all the irreducible characters of W (Dn). In

other words, the irreducible characters of W (Dn) are indexed by the set{
χ {μ,ν}: |μ| + |ν| = n

} ∪ {
χ

{μ,μ}
± : |μ| = n/2

}
,
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where the second subset is empty if n is odd. The identity character corresponds to the pair {[n], [0]}
and the sign character corresponds to the pair {[1n], [0]}. It is immediate from the above remarks that
the dimensions of the corresponding irreducibles are given by

χ {μ,ν}(1) =
(

n

|μ|
)
χμ(1)χν(1)

and

χ
{μ,μ}
± (1) = 1

2

(
n

|μ|
)
χμ(1)2.

The following two lemmas concerning characters of W (Dn) will be important in the sequel. It will
sometimes be convenient to write χ

{μ,ν}
ε to refer to the irreducible character χ {μ,ν} if μ 
= ν , and to

refer to either of the irreducible characters χ
{μ,ν}
+ or χ

{μ,ν}
− if μ = ν .

Lemma 2.1. Let Sn be the parabolic subgroup of G = W (Dn) obtained by omitting the generator s1′ . Let
m = � n

2 �.

(i) If μ 
= ν , then we have

χ {μ,ν}↓G
Sn

=
∑
λ

cλ
μνχ

λ,

where the cλ
μν are the Littlewood–Richardson coefficients.

(ii) If n is odd, then we have

idn↑G
Sn

=
∑
l�m

χ {[l],[n−l]}.

(iii) If n is even, then we have

idn↑G
Sn

= χ
{[m],[m]}
+ +

∑
l<m

χ {[l],[n−l]}.

Proof. Part (i) appears in [19, §3A]. Under the hypotheses of part (ii), we must have μ 
= ν because n
is odd. The conclusion of (ii) then follows from (i) by using Frobenius reciprocity and the Pieri rule.
Part (iii) appears in [19, §3C]. �
Lemma 2.2. Let G = W (Dn), let 3 � k � n, and let Dk (respectively, Dn−k) be the parabolic subgroup of G
generated by the set

{s1′ } ∪ {si: 1 � i < k}
(respectively, {si: i > k}). Denote the usual inner product on characters by 〈 , 〉. Suppose below that the ordered
pairs (α,ψ) and (β, θ) are not equal.

(i) If μ 
= ν then we have〈
χ {μ,ν}↓G

Dk×Dn−k
,χ

{α,β}
ε × χ

{ψ,θ}
ε′

〉 = cμ
αψcν

βθ + cμ
αθ cν

βψ + cμ
βψcν

αθ + cμ
βθ cν

αψ .

(ii) We have〈
χ

{μ,μ}
± ↓G

Dk×Dn−k
,χ

{α,β}
ε × χ

{ψ,θ}
ε′

〉 = cμ
αψcμ

βθ + cμ
αθ cμ

βψ .

Proof. After applying Frobenius reciprocity, this becomes a restatement of results in [19, §3A,
§3D]. �

The irreducible characters in type Bn have the following well-known branching rule, which will be
useful in the sequel.
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Lemma 2.3. Let χ(λ,μ) be an irreducible character for W (Bn). Then we have

χ(λ,μ)↓W (Bn)
W (Bn−1) =

∑
d∈I(λ)

χ(λ(d),μ) +
∑

d∈I(μ)

χ(λ,μ(d)),

where I(λ) is the set of removable boxes in the Young diagram corresponding to λ, and λ(d) is the result of
removing box d from the Young diagram.

Proof. This appears in [8, §6.1.9]. �
Corollary 2.4. Maintain the notation of Lemma 2.3. Suppose in addition that each character χ(α,β) appearing
in Lemma 2.3 satisfies α 
= β . Then we have

χ {λ,μ}↓W (Dn)
W (Dn−1) =

∑
d∈I(λ)

χ {λ(d),μ} +
∑

d∈I(μ)

χ {λ,μ(d)}.

Proof. Recall that each type B character χ(α,β) appearing in the statement restricts to the irreducible
type D character χ {α,β} . The result now follows from Lemma 2.3 and the fact that, under the usual
identifications, we have W (Bn−1) ∩ W (Dn) = W (Dn−1). �
3. The half cube

An n-dimensional (Euclidean) polytope Πn is a closed, bounded, convex subset of R
n obtained by

intersecting finitely many closed half-spaces associated to hyperplanes. The part of Πn that lies in
one of the hyperplanes is called a facet, and each facet is an (n − 1)-dimensional polytope. A polytope
is homeomorphic to an n-ball (which follows, for example, from [15, Lemma 1.1]), and the boundary
of the polytope, which is equal to the union of its facets, is identified with the (n − 1)-sphere by this
homeomorphism.

Iterating this construction gives rise to a set of k-dimensional polytopes Πk (called k-faces) for
each 0 � k � n. The elements of Π0 are called vertices and the elements of Π1 are called edges. It
is not hard to show that a polytope is the convex hull of its set of vertices, and that the bound-
ary of a polytope is precisely the union of its k-faces for 0 � k < n. What is less obvious, but still
true [20, Theorem 1.1], is that the convex hull of an arbitrary finite subset of R

n is a polytope in the
above sense. It follows that a polytope is determined by its vertex set, and we write Π(V ) for the
polytope whose vertex set is V . In particular, the n-dimensional hypercube is Π(Vn), and the half
cube Γn is by definition Π(V e

n).
The dimension of a face is the dimension of its affine hull. The interior of a face refers to its interior

with respect to the induced topology on its affine hull.

Definition 3.1. Let n � 4 be an integer, and let n = {1,2, . . . ,n}.
Let v ′ ∈ V o

n and S ⊆ n. We define the subset K (v ′, S) of V e
n by the condition that v ∈ K (v ′, S) if

and only if there exists i ∈ S such that v and v ′ differ only in the i-th coordinate.
Let v ∈ V e

n and let S ⊆ n. We define the subset L(v, S) of V e
n by the condition that v ′ ∈ L(v, S) if

and only if for all i /∈ S , v and v ′ agree in the i-th coordinate. The set S is characterized as the set of
coordinates at which not all points of L(v, S) agree.

The k-faces of the half cube were classified in [11].

Theorem 3.2. (See [11].) The k-faces of Γn for k � n are as follows:

(i) 2n−1 0-faces (vertices) given by the elements of V e
n ;

(ii) 2n−2
(n

2

)
1-faces Π(K (v ′, S)), where v ′ ∈ V o

n and |S| = 2;

(iii) 2n−1
(n

3

)
simplex shaped 2-faces Π(K (v ′, S)), where v ′ ∈ V o

n and |S| = 3;
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(iv) 2n−1
( n

k+1

)
simplex shaped k-faces Π(K (v ′, S)), where v ′ ∈ V o

n and |S| = k + 1 for 3 � k < n;

(v) 2n−k
(n

k

)
half cube shaped k-faces Π(L(v, S)), where v ∈ V e

n and |S| = k for 3 � k � n.

Furthermore, two faces are conjugate under the action of W (Dn) if and only if they have the same dimen-
sion and the same shape.

Proof. The classification of the k-faces is given in [11, Theorem 2.3.6], and the classification of the
orbits under the action of W (Dn) is given in [11, Theorem 4.2.3(ii)]. �

The unique n-face in (v) above corresponds to the interior of the polytope. Notice that a k-dimen-
sional half cube has 2k facets, and a k-dimensional simplex has k + 1 facets. The k-faces assemble
naturally into a regular CW complex, Cn .

Definition 3.3. For each integer k with 3 � k � n, let Xk (respectively, Yk) be the set of simplex shaped
(respectively, half cube shaped) faces of dimension k. We write CXk (respectively, CYk , CG) for the
C-span of Xk (respectively, Yk , G).

Let Zk be the k-th chain module in the complex Cn with coefficients in C. For k � 3, we have
Zk = CXk ⊕ CYk , with the conventions that if −1 � k < 3, we define CXk = Zk and CYk = 0.

We now recall some of the key properties of this complex; the reader is referred to [11] for full
details.

For any fixed k such that 3 � k � n, one may form a CW subcomplex Cn,k by removing the interiors
of all the half cube shaped l-faces for l � k. In other words, the l-th chain module of Cn,k is equal to Zk
if l < k, and to CXk if l � k. The reduced (cellular) homology of Cn,k is free over Z and concentrated
in degree k − 1 [11, Theorem 3.3.2].

The Coxeter group W (Dn) acts naturally on V e
n (and also on V o

n ) via signed permutations of the
coordinates. This induces an action of W (Dn) on the half cube Γn via cellular automorphisms. In
particular, elements of W (Dn) send k-faces of Γn to other k-faces of the same type (i.e., simplex
shaped or half cube shaped), which means that the C-modules CXk and CYk of Definition 3.3 acquire
the structure of W (Dn)-modules. In turn, there is an induced action of W (Dn) on the subcomplex Cn,k
via cellular automorphisms, as well as on the homology modules of Cn,k [11, Theorem 4.2.3].

The following basic result will be of key importance in the sequel.

Lemma 3.4. Let n � 3 and let s be a Coxeter generator of the group G = W (Dn). The element s acts on the
half cube Γn by a reflection in a hyperplane through the origin. The induced action of s on Hn−1(Cn,n) and on
the n-th chain module of Cn is negation.

Proof. The first assertion follows from [10, Proposition 3.6, Lemma 5.3].
The CW space corresponding to the subcomplex Cn,n is obtained from Cn by deleting the (in-

terior of the) unique n-cell. It follows that this space is homeomorphic to Sn−1. A well-known
result [12, 2.2(e)] then shows that s acts on Hn−1(Sn−1;Z) by negation, proving the first part of
the second assertion. For the final assertion, we use the fact that s acts continuously on Γn , which
means that it acts on the chain complex of Cn by a chain map. Since the n-th chain module of Cn has
rank 1, the fact that s acts by negation on Hn−1(Sn−1;Z) forces it to act by negation on Cn , which
completes the proof. �
Lemma 3.5. Let n � 4, G = W (Dn) and let k satisfy 3 � k � n. Let Dk denote the parabolic subgroup of
W (Dn) generated by the set

{s1′ } ∪ {si: 1 � i < k},
and let Sn−k denote the parabolic subgroup of W (Dn) generated by the set

{si: i > k}.
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Regarding CYk as the natural CG permutation module, we have

CYk
∼=G (sgnk ⊗ idn−k)↑G

Dk×Sn−k
.

Proof. By Theorem 3.2, there is one orbit of half cube shaped faces for each 3 � k � n. One of these
has vertex set L(v, S), where

v = (1,1, . . . ,1)

and

S = {1,2, . . . ,k}.
Let e be the k-cell of the CW complex Cn corresponding to L(v, S). It is clear from the definitions
of the action of G as signed permutations that the set L(v, S) is fixed setwise by all the si other
than sk . The group generated by this subset of the generators is Gk := Dk × Sn−k , which has order
2k−1k!(n − k)! and index

2n−k
(

n

k

)

in G . It now follows from Theorem 3.2(v) that Gk is the full set stabilizer of L(v, S).
The Coxeter generators s1′ , s1, . . . , sk−1 of Dk act as reflections in hyperplanes through the origin.

Lemma 3.4 then shows that each of these generators sends e to −e. In contrast, the Coxeter generators
sk+1, sk+2, . . . , sn fix L(v, S) (and its convex hull) pointwise. These generators fix e.

The assertion follows from the above observations. �
Lemma 3.6. Maintain the notation of Lemma 3.5, and let η(k, e) denote the partition [e +1,1, . . . ,1] of k +e.
The character of the module CYk is given by∑

e�n−k

χ {η(k,e),[n−k−e]} +
∑

e′�n−(k+1)

χ {η(k+1,e′),[n−(k+1)−e′]}.

Proof. By transitivity of induction and Lemma 3.5, we have

CYk
∼=G

(
(sgnk ⊗ idn−k)↑Dk×Dn−k

Dk×Sn−k

)↑G
Dk×Dn−k

.

Let m = �n−k
2 �. By Lemma 2.1, we have

(sgnk ⊗ idn−k)↑Dk×Dn−k
Dk×Sn−k

=
∑
l�m

χ {[1k],[0]} × χ {[l],[n−k−l]}

if n − k is odd, and

(sgnk ⊗ idn−k)↑Dk×Dn−k
Dk×Sn−k

= χ {[1k],[0]} × χ
{[m],[m]}
+ +

∑
l<m

χ {[1k],[0]} × χ {[l],[n−k−l]}

if n − k is even. Lemma 2.2 is applicable in this situation, because neither of the partitions [1k] or [0]
has one row. The assertion now follows from Lemma 2.2 and the Pieri rule. (Observe that the numbers
appearing in Lemma 2.2(ii) are always zero in this case.) �
Remark 3.7. The methods used in Lemma 3.6 to determine the characters of the modules CYk can
be extended to compute the characters of the modules CXk , as well as the characters of all the
representations corresponding to cycles and to boundaries in the subcomplexes Cn,k .
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4. Main results

In order to prove our main results, we require a version of the Hopf trace formula that applies in
contexts more general than simplicial complexes.

Theorem 4.1 (Hopf trace formula). (See [15, Theorem 22.1].) Let K be a finite complex with chain modules
C p(K ) (over C) and homology modules H p(K ). Let φ : C p(K ) → C p(K ) be a chain map, and let φ∗ be the
induced map on homology. Then we have∑

p

(−1)p tr
(
φ, C p(K )

) =
∑

p

(−1)p tr
(
φ∗, H p(K )

)
. �

Lemma 4.2. Consider the CW complex Cn of Definition 3.3; its chain modules are the Zl for −1 � l � n. Let φ

be a chain map of this chain complex. Then we have∑
p

(−1)p tr(φ, Z p) = 0.

Proof. The chain complex Cn is a CW decomposition of the half cube, which is a contractible space
and has trivial reduced homology. Theorem 4.1 applies to the complex Cn , and the previous observa-
tion shows that the right-hand side of the Hopf trace formula is zero, completing the proof. �
Lemma 4.3. Consider the CW subcomplex Cn,k of Cn; its chain modules are Zl for −1 � l < k and CXl for
k � l � n, where Zl = CXl ⊕ CYl for l � 3. Let φ be a chain map of this chain complex. Then we have

tr
(
φ∗, Hk−1(Cn,k)

) =
∑
l�k

(−1)l−k tr(φ,CYl).

Proof. We first apply the Hopf trace formula to Cn,k to obtain∑
p

(−1)p tr
(
φ, C p(Cn,k)

) =
∑

p

(−1)p tr
(
φ∗, H p(Cn,k)

)
.

Since, by [11, Theorem 3.3.2], the reduced homology of Cn,k is concentrated in degree k − 1, this
simplifies to

(−1)k−1 tr
(
φ∗, Hk−1(Cn,k)

) =
∑

p

(−1)p tr
(
φ, C p(Cn,k)

)
.

By Lemma 4.2, we have∑
p

(−1)p tr
(
φ, C p(Cn,k)

) +
∑
p�k

(−1)p tr(φ,CYk) = 0,

which, combined with the preceding equation, gives

(−1)k−1 tr
(
φ∗, Hk−1(Cn,k)

) =
∑
p�k

(−1)p+1 tr(φ,CYk) = 0.

The assertion now follows by multiplying both sides by (−1)k−1. �
Theorem 4.4. Let n � 4, G = W (Dn) and let k satisfy 3 � k � n. Let η(k, e) denote the partition [e + 1,

1, . . . ,1] of k + e. The character of the representation of G on the (k − 1)-st homology of the complex Cn,k is
given by

χD(n,k) =
∑

e�n−k

χ {η(k,e),[n−k−e]}.
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Proof. Let χk denote the character of the G-module CYk . By Lemma 4.3, the character of the homol-
ogy representation is given by the alternating sum

χk − χk+1 + χk+2 − χk+3 · · · .
The result now follows from Lemma 3.6: all of the terms appearing in the statement of that result
cancel, except those involving a partition of the form η(l, e) for l = k. �
Remark 4.5. It is known [18, §4] that the k-th exterior power of the (n-dimensional) reflection repre-
sentation of W (Dn) is irreducible and corresponds to the pair of partitions{[

1k], [n − k]} = {
η(k,0), [n − k − 0]}.

Theorem 4.4 shows that this is one of the constituents of the representation of W (Dn) on the
(k − 1)-st homology of Cn,k .

Corollary 4.6. Maintain the notation of Theorem 4.4, and assume that k < n. We have

χD(n,k)↓W (Dn)
W (Dn−1) = 2χD(n − 1,k) + χD(n − 1,k − 1).

Proof. Since k � 3, Corollary 2.4 shows that

χ {η(k,e),[n−k−e]}↓W (Dn)
W (Dn−1) = χ {η(k,e−1),[n−k−e]} + χ {η(k,e),[n−k−e−1]} + χ {η(k−1,e),[n−k−e]}

= χ {η(k,e−1),[(n−1)−k−(e−1)]} + χ {η(k,e),[(n−1)−k−e]}

+ χ {η(k−1,e),[(n−1)−(k−1)−e]},
where we ignore any terms involving partitions with negative parts. The result now follows by sum-
ming over e, as in Theorem 4.4. �
Theorem 4.7. Let n � 4 and let k satisfy 3 � k � n. Let Sn denote the parabolic subgroup of W (Dn) corre-
sponding to the omission of the generator s1′ . Let El be the (l − 1)-dimensional reflection representation for Sl
described in Section 2.

(i) Regarded as a CSn-module by restriction, the (k − 1)-st homology of the complex Cn,k is isomorphic to

⊕
e�n−k

(
idn−k−e ⊗

k−1∧
Ek+e

)
↑Sn

Sn−k−e×Sk+e
.

(ii) As CSn-modules, the (k − 1)-st homology of Cn,k is isomorphic to the (k − 2)-nd (co)homology of the
complement, MR

n,k, of the k-equal real hyperplane arrangement.

Proof. We first prove (i). By Theorem 4.4, it is enough to show that, for e � n − k, the restriction of
the character χ {η(k,e),[n−k−e]} of W (Dn) to Sn corresponds to the representation(

idn−k−e ⊗
k−1∧

Ek+e

)
↑Sn

Sn−k−e×Sk+e

of Sn .
By [8, Proposition 5.4.12], the character of the Sk+e-module

∧k−1 Ek+e is given by the partition
μ = [e + 1,1k−1]. The character of the Sn−k−e-module idn−k−e is given by the one-row partition
ν = [n − k − e]. Using standard results [8, Definition 6.1.1], the character of the induction product of
these two characters to Sn is∑

cλ
μνχ

λ.
λ
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The proof of (i) is completed by Lemma 2.1(i), which shows that we also have

χ {η(k,e),[n−k−e]}↓W (Dn)
Sn

= χ {μ,ν}↓W (Dn)
Sn

=
∑
λ

cλ
μνχ

λ.

In [16, Theorem 4.4] Peeva, Reiner and Welker proved that

Hs(k−2)(Mn,k;C) ∼=
⊕

(i0,i1,...,is)
sk+∑

j i j=n

S(i0)∗(i1+1,1k−1)∗···∗(is+1,1k−1).

The notation Sλ refers to the representation of S|λ| corresponding to the Schur function sλ . The
symbol ∗ can be identified with product (in the case of Schur functions) or induction product (in
terms of representations). The special case s = 1 gives

Hk−2(Mn,k;C) ∼=
⊕

(i0,i1)
k+i0+i1=n

S(i0)∗(i1+1,1k−1).

The argument given in the second paragraph of this proof now shows that the complex character
of the (k − 2)-nd cohomology of MR

n,k , regarded as a CSn-module, agrees with the character of the
representation described in part (i). This completes the proof of (ii). �
Remark 4.8. It is natural to ask whether there is an analogue of Theorem 4.7 if one omits the gener-
ator s1. Note that in Theorem 4.4, none of the irreducible representations of W (Dn) appearing are of
the form χ

{μ,μ}
+ or χ

{μ,μ}
− . Because of this, one obtains the same representations even if the genera-

tor s1 is omitted. (Compare with Lemma 2.1(i).)

Remark 4.9. Note that, under the usual identifications, we have

W (Dn−1) ∩ W (An) = W (An−1).

It follows that the type A homology representations described in Theorem 4.7 have a branching rule
analogous to the type D branching rule of Corollary 4.6. However, this would not be such an obvious
result in the absence of the wider context of the type D representations.

Acknowledgments

I thank Markus Pflaum and Nat Thiem for some helpful conversations, and Jacob Harper for point-
ing out an error. I also thank one of the anonymous referees for many detailed comments and
suggestions for improvements. This research was supported by NSF grant DMS-0905768.

References

[1] E. Babson, H. Barcelo, M. de Longueville, R. Laubenbacher, Homotopy theory of graphs, J. Algebraic Combin. 24 (2006)
31–44.

[2] H. Barcelo, X. Kramer, R. Laubenbacher, C. Weaver, Foundations of a connectivity theory for simplicial complexes, Adv. in
Appl. Math. 26 (2001) 97–128.

[3] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
[4] A. Björner, L. Lovász, Linear decision trees, subspace arrangements, and Möbius functions, J. Amer. Math. Soc. 7 (1994)

677–706.
[5] A. Björner, L. Lovász, A.C.C. Yao, Linear decision trees: Volume estimates and topological bounds, in: Proceedings, 24th ACM

Symp. on Theory of Computing, ACM Press, New York, 1992, pp. 170–177.
[6] A. Björner, V. Welker, The homology of “k-equal” manifolds and related partition lattices, Adv. Math. 110 (1995) 277–313.
[7] H.S.M. Coxeter, Regular Polytopes, Pitman, New York, 1947.
[8] M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, Oxford University Press, Oxford, 2000.
[9] T. Gosset, On the regular and semi-regular figures in space of n-dimensions, Messenger Math. 29 (1900) 43–48.

[10] R.M. Green, Representations of Lie algebras arising from polytopes, Int. Electron. J. Algebra 4 (2008) 27–52.
[11] R.M. Green, Homology representations arising from the half cube, Adv. Math. 222 (2009) 216–239.



1048 R.M. Green / Journal of Combinatorial Theory, Series A 117 (2010) 1037–1048
[12] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002.
[13] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[14] G.G. Kocharyan, A.M. Kulyukin, Construction of a three-dimensional block structure on the basis of jointed rock parameters

estimating the stability of underground workings, Soil Mech. Found. Eng. 31 (1994) 62–66.
[15] J.R. Munkres, Elements of Algebraic Topology, Addison–Wesley, Menlo Park, CA, 1984.
[16] I. Peeva, V. Reiner, V. Welker, Cohomology of real diagonal subspace arrangements via resolutions, Compos. Math. 117

(1999) 99–115.
[17] K. Petras, On the Smolyak cubature error for analytic functions, Adv. Comput. Math. 12 (2000) 71–93.
[18] D. Prasad, N. Sanat, On the restriction of cuspidal representations to unipotent elements, Math. Proc. Cambridge Philos. Soc.

132 (2002) 35–56.
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