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0. Introduction

A very old and fundamental theorem concerning principal ideal domains states
that a finitely generated module over such a ring must be a direct sum of cyclic
modules. In the more restrictive setting of complete discrete valuation rings, one
gets even better results, at least in the case of torsion free modules. In fact
Kaplansky [8] shows that a countably generated torsion free module over a
complete discrete valuation ring is necessarily isomorphic with a direct sum of a
free module and a divisible module (that is, a vector space over the field of
fractions). The important point here is that a countably generated, torsion free
module over such a local ring is necessarily free as long as it is separated in its
maximal ideal topology. it is this latter statement that is the source of our motiva-
tion in the beginning of Section 1. With a rather mild adjustment of hypothesis, we
prove an analogous theorem for countably generated, torsion free modules over
complete regular local rings. This result was overlooked in our first paper [3] on this
subject. In addition we give an example as to why the strengthening of the
topological condition is necessary. Other properties of maximal Cohen-Macaulay
modules are also discussed. For example, if the local ring A is a module finite
extension of the regular local ring R and if C is an A-module which is R-free, then
every system of parameters of A is shown to be a regular sequence on C. These
results as well as others that follow are an outgrowth of the author’s paper [3] on
representations of complete local rings that followed the landmark paper of M.
Hochster [4], in which the existence of maximal Cohen-Macaulay modules was
established for equicharacteristic local rings.

In Section 2, a module-theoretic technique is given for constructing represen-
tations of complete local rings (over complete regular local rings) assuming that one
has representations modulo powers of & parameter.

* This work was partially supported by the National Sciene F undation.
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In Section 3, we give some applications of the existence of maximal Cohen-
Macaulay modules that are free over a regular local base ring. For example, we give
a short proof of H.-B. Foxby’s result [2] that, if M is a module over an essentially
equicharacteristic local ring (A, m) and if mM # M, then

dim A <dim M -+flat dim M.

The crucial point here is that one can turn finite exact projective or flat A-
complexes into exact projective or flat complexes over a regular local ring by
tensoring with the aforementioned type of maximal Cohen-Macaulay A-module.

1. A generalization of a Teorem of Kaplansky

Let (A, m) be a local r ng and let x4, ..., x; be a system of parameters for A.
After Hochster [4], an A module C is called a maximal Cohen-Macaulay module
with respect to the systein of parameters x;, . .., x4 provided mC # C and x4, is
regular on C/ {xy,...,x;)C for i=0. In his remarkablec paper [4], Hochster
showea that every equicharacteristic local ring possessed such a countably
generated module with respect to any prescribed system of parameters. In [3] we
showed that, if A is comple te and is a module finite extension of a regular local ring
R, then one can construct from Hochster’s module a new maximal Cohen-Macau-
lay A-module F which is free over R of countable rank. Ore is led to the question
as to when countably generated, maximal Cohen-Macaulay modules over regular
local rings are free. In case R is complete of dimension one (i.e. R is a complete
discrete valuation ring), Kaplansky [8] gives a remarkably easv answer to this
question. Namely, he shows that a countably generated, maximal Cohen-Macaulay
module C is free provided it is separated in its maximal idea! topology. If the
restrictions of completeness or countability are dropped, then there are all sorts of
nonfree maximal Cohen-Macaulay modules. We shall show in Example 1.3 the
condition that C be separated in its maximal ideal topology (i.e., the zero sub-
module of C is closed in the maximal ideal topology) is not sufficient to guarantee
that C be free. However, the requirement that IC be closed in the maxiral ideal
topo:ogy on C for each ideal I turns out to be sufficient to guarantee that C be free
(cf. Theorem 1.1). This result was essentially proven in our paper [3]. However, it
was not precisely stated there, and so we shall do so here. All topological references

will be with respect to the maximal ideal topology (i.e. “m-adic” topology) unless
otherwise stated.

Theorem 1.1. Let (R, m) be a complete regular local ring and suppose C is a
countably generated R-module. Then the following are equivalent:

{i) The module C is a free R-module.

(it) Cis a maximal Cohen- Maculay R-module and IC is a closed submodule of C
for each ideal I of R.

(iit) Cis a flat R-module such that IC is a closed submodule for each ideal I of R.
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Proof. The implication (i) implies (ii) is obvious and (ii) implies (iii) is a result
of Proposition 2.10 [3]. Finally, the imphcatlon (ili) implies (i) is simply Theorem
2 4 [3}

Before constructmg our example that demonstrates that sep&ratlon in the
maximal ideal topology is not sufficient to guarantee freeness of a countably
generated, maximal Cohen-Macaulay module over a compleate regular local ring,
we need a lemma on flatness. For a local ring R with a maximal ideal m and residue
field k, the notation M* denotes the Matlis dual of the R-module M, that is,
M? = Hom(M, E(k)) where E(k)denotes the injective envelope of the residue field
of R. If R is complete; a standard duality formiia (see Cartan and Eilenberg
[1; Chapter VI]) gives that

Exti(M, N)=TorR(M, N*Y,

for all i > 0 and finitely generated N.

Lemma 1.2. Let (A, m, k) be a local domain and suppose that N is a torsion free
A-module such that Np is a flat Ap-module for each prime ideal P of height one in A.
If Extia(N, k)=Torf(N, k)* =0 for each i >0, then N is a flat A-module:

Proof. The proof follows that of Proposition 2.10 [3] From our hypothesis, we get
that Tor*(N, Lj=0 for all i >0 and all modules L of finite length. We will show
that Tor;*(N, M) =0 for all i >0 and each finitely generated M by induction on the
dimension of M. At this point we may suppose dim M >0 and that our claim holds
for all finitely generated modules of lesser dimension. Since Tor;'(N, ) vanishes on
moduies of finite length for i >0, we may even suppose that depth M >0.Letac A
be a regular element on M. From the exact sequence

0->M>M->MjaM~0
we have that

“Tor{(N, M)~ Tor(N, M)

is an isomorphism for i>0, since Tor{(N, M/aM)=0 by induction for i>0.
Consequently, for i >0, Tor{*(N, M) is a-torsion free and a-divisible. On the other
hand, for any prime ideal P of height one which contains a, we have that
Tor (N, M)p =0 if i >0, since N, is a flat Ap-module. 't follows that

Tor(N, M)=0 fori>0,

and we conclude that N is a flat A-module.

Example 1.3. Let k be any countable field ain let R be the localization of the fuil
ring of polynomials k[x;, . . ., x,] at the maximul i eal m = (»,, ..., X,), where n is
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at least 2. Therefore, R is a regular local ring of dimension at least two. Now let 7
be a principal prime in R and let Q denote the field of fractions of the iategral
domain R/mR. We now observe that Q is necessarily a countably generated
R-module and from [7] that Q has projective dimension 1 as an R/7R-module
(denoted pdg,»z(Q)=1). We can now form an exact sequence -

0-K->F->0Q-0,

where F is a free R-module of countable rank and where the syzygy K is a
countably generated R-irndule. since #Q =0, it follows that

Torf(R/7R, Q)= Q.

Consequently, after appiving the functor R/7R ® — to the above short exact
sequence, we obtain the exact sequence

0->Q->K/wK > F/nF > Q‘—>O,

since Torf(R/#R, @)= Q. It follows that K/ 7K = Q@® V, where V is a nonzero
free R/wR-module. This is a result of the fact that pdg,,r(Q)= 1. Hence K cannot
be a free R-module, since Q is not 2 free R/wR-module. However, K is separated
in its m-adic topology and is free at prime ideals of height one, since K is
isomorphic with a submoaule of F. if i >0, then

Tor{(X, k)=Tor;.1(Q, k).

Moreover, if ac m and a is not divisible by =, then the map Q> Q is an iso-
morphism. Hence, so is the induced map

TorR (O, k)>TorR 1(Q, k).

However, this latter map is also zero since a annihilates k. Therefore, Tor}(K, k)=
0 for i >0, and thus by Lemma 1.2 K is a flat R-module. Of course K is also a
maximal Cohen-Macaulay R-module which is not free.

We now turn our attention to the following question. Let A be a complete local
ring which is a2 module finite extension of the complete regular local ring R.
Suppose that C is a maximal Cohen-Macaulay A-module which is free over R.
What systems of parameters of A are regular sequences on C? Hochster [6] has
shown how to modify his construction in order to obtain maximal Cohen-Macaulay
modules so that every system of parameters of A is a regular sequence on C. Our
next result establishes the iact that those maximal Cohen-Macaulay A-modules
which are free over R already have this property.

Proposition 1.4. Let A be o local ring which is a module finite extension of a
Cohen-Macaulay local ring .. Suppose the A-module C is free as an R-module.
Then every system of parameters for A is a regulur sequence on C.
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Proof. It is clear that every system of parameters of R is‘a regujar sequence on C.
So we shall argue by way of induction on the number of parameters coming from R.
Let aj,az,..., ad be the system of parameters under consnderatlon. Smce Aisa

v,,' . v,e C then v,e(a,, ces a, I)C Multnplymg ‘the precedmg ‘equation
thx‘ough by b glves the equatlon

rnv,+ a,(bv) 0.

. By inductinn, v/2 have that r,, az, ... a4 is a regular sequen,ce on C. Hence
bv.e(ry. #,...,a,-1)C, thatis,
t—1

bu,=rw+ % aw,
i=2

" hersiore, multlplymg this equation by a,, we obtain

r—l
rio, = ra;wy+ Z a;(a;w;).
=2
Uyl en v,—aywi€(ay, . .., a,-1)C, since ry, a,, . . ., a,-; is a regular sequence on
" Thus v,€(ay, ..., a-1)C, and the proof is complete.

Roamarfi. (The notation is undersiood to be the same as the preceding notation.)
All thil one needs in order that the above argument holds is that every system of
paraiz.cters for R is a regular sequence on C.

Our next result (Theorem 1.7) on maximal Cohen-Macaulay modules, which are
free over a regular local bzse ring, was attributed to the author in Hochster’s article
[6]. Since no published proof has appeared, we shall present one here.

Lemma 1.5. Let S and T be regular local rings and suppose further that S is a module
finite extension of T. If K is an S-module that is free as a T-module, then K is
necessarily free as an S-module.

Proef. First of all, it easily follows that S is free as a T-module since a system of
parameters of T will also be a system of parameters for S. Hence

depthg S =depthyS=dim T

and consequently pd+ S =0. Since K is naturally an $— T bimodule, we have the
natural equivalence of furictors on S-niodules

Homg(K ®rS, )=Hom(S, Homg(#,, )
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via the Adjoint Isomorphism Theorem. If & represents a short exact sequence of
S-modules, then the induced sequence Homg(K ®+S, ¥) remains short exact,
since both K and S are free over T. But then Hom (S, Homg(K, &)) is also short
exact by the above natural equivalence of functors. Since S is free as a T-module,
we now have that the induced sequence Homg{K, ¥) is short exact for any short
exact sequence & of S-modules. It follows that K is S-projective and, hence,
S-free, since S is a local ring.

Corollary 1.6. Let S and T be regular local rings with S a module finite extension of
T. Let M be any S-modi-le. Then pds M = pdr M.

Proof. As was noted .n thc i'roof of Lemma 1.5, $ is necessarily free as a
T-module. So let

<> Py> P> Py->M-0

be an S-projective re-olution of M and let K;,, =Ker(P;~> P;_;) be the (i+1)st
syzygy in this resoluti.n. Since S is free as a T-module, we have immediately that
pdr M = pds M. On the other hand, if some syzygy K is free as a T-module, then it
is also free as an S-module by Lemma 1.5. Therefore, pds M <pdrM and thus
pds M =pdr M.

Theorem 1.7. Let A be an equicharacteristic, complete local ring which is a module
finite extension of the complete regular local ring R. Suppose that C is a maximal
Cohen—Macaulay A-module which is free as an R-module. Let S b= an equicharac-
teristic regular local ring such that A= S/I. Then pds C =dim S —dim A.

Proof. It is sufficient to establish the result when all complete rings in question
have the same coefficient field. Let R =& [[x, . . ., x4]]. Then one can construct a
ring homomorphism ¢: R - § such that the triangle

S—A
A/
R
commutes. Moreover, there are elements y;,...,y, in I such that

d(x1), ..., d(x4), y1, ...,y is asystem of parameters for S and S is a module finite
extension of the regular local ring

T=kl[é(x1),...,d(xa), y1, -, yill.
Thus, we obtain a commutative square of ring homomorphisms

S——A

|

T'—R
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where the vertical maps are monic and the herizontal homomorphisms are sur-
jections. Since the module C is R-free and since T and R are regular, standard
“change of rings™ results yield that

pdTC dlm T——dlm R= dlm s dlm A

But by Corollary 16 ‘we. have that pdTC pdsC whlch completes our
argument : |

Corollary 1.8. Let S be a complete regular, equibharacteristic local ring and"let Pbea
prime ideal of S. Then there is a countably gererated, maximal Cohen-Macaulay
S/ P-module C such that pds C = height P.

The proof of this result is the immediate consequence of Hochster’s construction
of maximal Cohen-Maculay modules {4}, Theorem 3.1 [3] and Theorem 1.6.

2. Lifting of representations of local rings

As in the previous section, let A be a local ring which is a module finite extension
of a regular loca! ring R. With regard to finding a finitely generated maximal
Cohen-Macaulay A-module having rank n over R, it has been explained in [5] or
[3] that this is equivalent to obtaining an R-algebra homomorphism A > M, (R),
where M, (R) denotes the ring of n X n matrices over R. This of course means that
there is an aci.on of A on a free R-module of rank n which extends the action of R.
In [3] it was shown that every complete, equicharacteristic local ring A has a
represen‘ation A > My (R), where Mo (R) denotes the ring of covntable, column
finite matrices over R. In addition, Hochster [5] has established that, if x #0€ R
and if A/x"A has a representation A/x"A->M,(R/x"R) for each positive integer
n, then A itself has a representation A > M,(R). Hochster’s method is to make use
of his techniques for solving polynomial equations over commutative rings as set
forth in [4] or [6). Here we wish to demonstrate a module theoretic technique for
the lifting of “noncoherent” representations of A/x"A over R/x"R (assuming such
exist for infinitely many n) in order to obtain a representation of A over R. Suppose
that V,, is the free R/x"R-module for which A/x"A has an acticn. By noncoherent,
we simply mean that it need not be the case that V,,.1/x"V,., is isomorphic with
V,.. If this were true, then the construction could simply take the form of an inverse
limit.

Let A be a complete local ring that is 2 module finite extension of a complete
Gorenstein local ring R. Let x be a regular nonunit of R, and suppose for each
integer n >0 there is an A/x"A-module V, whicliis free as an R/x"R-module. Put
V=[], V. and let

1T'={ve V| x'v=0for some | >0}.
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There is an exact sequence

{>T->V->C-C.
Since V is an A-module, it is easy to see that T is also an A-module from which it
follows that C is an A-module. Since A is a module finite over R, it suffices to show
that a system of parameters for R is a regular sequence on C, in order to establich
that C is both a maximal Cohen-Macauiay A-module and maximal Coher-

Macaulay R-module. In o-der to facilitate the computations in our proofs to follow,
we let F, be a free R-mocule, for n >0, such that F,/x"F,=V,.

Lemma 2.1. (We use the 1otation above.) An element v ={v,) in Vis in T if and
only if there is a positive i-uteger | and w, in V, such that v, = x"w, forn=1.

Proof. The condition atove is clearly sufficient. So suppose v in T. Then there is

IV 4 3

1 >0 such that
x'v=(x'v,)=0.
Let f, in F, be such that
vn=f,+x"F,.
Then x'v, =0 implies that
x'f,=x"g, forg,eF,
Since x is regular on R and since F,, is a free R-module, this means that
fa=x""'g, forn=1l
Consequently, we may take
w,=g,+x"F, forn=l

The reverse implication is clear.

Lemma 2.2. The module C (see definition above) is a maximal Cohen—Macaulay
R-module.

Proof. Let x;, x,, ..., x; be a system of parameters of R with x = x,. Suppose that
v in V has the property that it is an x’-torsion element in V/x,V, that is, suppose
there is w=(w,) in V with x'v = x,w. Since x'v, =x,w, for each n, there are
elements f,, g,, h, € F,, with

v = [+ x"F,, v, =g, +x"F,

such that

X' = X280+ X i
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For n =1, one has that g, = x'g}., since x;, x, is a regular sequence on F,. Therefore,
‘ f’-—ng,,+x" ‘h, forn=1. B
Let w! and z, be clements of V such that A
—g +x"F, and z,=h,+x"F, forn=L
Also put

ta=x""'z, forn=l

For n <1 choose elements wj, and 1, of V,, so that v, = XWn + 1, Now let w!=(w)
and t=(t,) in V. From the preceding equations w. see that v=x,w'+¢ and, by
Lemma 2.1, that t€ T. Hence, if v in V represents an x !_torsion element in V/x,V,
then v =1t (module x, V), whe:e ¢e T. This means that the image of the natural map
T/x,T in V/x,V is the set of all elements in V/x,V that are annihilated by some
x', for 1>0. One can also easily check that x, is regular on both V and C, since
(x, x,) is a regular sequence on F, for each n. Thus, it follows that the sequence

0->T/x;,T> V/x, V—> C/x,C->0

is exact and represents the same construction over R/x,R as the original sequence
did over R. Since x will always be regular on the right hand end of any such
construction, we see that x,, . . ., X4 X is a regular sequence on C by induction.

It remains only to check that mC # C where m is the maximal ideal of R. For
each n>0 let v, be a free generator of V, and put v =(v,). Suppose v represents

an element of mC. Then there are elements a;,...,a, in m and wy,...,w,in V
such that
s
= ( ) aiwi) +1¢,
i=1

where t€ T. But from the description of T in Lemma 2.1, we observe that v, is
necessarily in mV,, for n> [, where x't = 0. However, this is a contradiction to our
choice of the v, for n>1 Thus, mC # C and C is a maximal Cohen-Macaulay
R-module.

Lemma 2.3. The module Hom(C, R) is nonzero and is also a maximal Cohen—
Macaulay R-module.

Preof. From [3; Proposition 2.6(b)] one has that Extx{C, R)=0 for i>0.
Moreover, the above claim clearly holds when dim R = 0. So suppose y is a regular
nonunit of R which is also regular on C. From the exact sequence

0->R>R-R/yR -0,
we obtain the exact sequence

0-Hom(C, R)>Hom(C, R)~Hom(C/) 7, R/yR)->0,
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since Ext (C, R)=0. By induction on dim R we obtain the desired conclusions.
We now return to the exact sequence

0-»T->V->C-0.
There is a flat resolution of V=[] V,,
0+11F, ——T1E.~T1 Va0,
where (x") denotes the me: (f,)—(x"f,). Composing the homomorphisms [] F, -
V and V - C, one obtains an epimorphism [] F, - C with kernel K. Then
[Ix"F, <K an! K/(]x"F,)=T.
If v =(v,)e T, we have b Lemma 2.1 that
v,=x""'w, forw,eV, and n=|,
where x'v =0. Consequently, K = Ui K, where
Ki=F® - - ®F®xF.,®x*F.,@®- - - (direct product).

Hence K is the ascendin: union of fiat R-modules, and therefore K is a flat
R-module. Consequently, the module C has flat dimension <1 over R. By a result
of Raynaud and Gruson [9}, it follows that C has finite projective dimension as
well.

Lemma 2.4. The module Hom(C, R)= C* is naturally an A-module. As an R-
module C* is flat and can be embedded as a pure submodule in a direct product of
copies of R.

Proof. Since C is an A-module, one puts an A-module structure on C* via
(af) (c) =: f(c). From above we have that C' has a finite R-projective resolution

0->P,»->P,_,>--->P>Py>C-0.
Also as noted above, we have that
Extix(C, R)=0 fori>0.
Hence we obtain an exact sequence
0- C*->Hom(P,, R)»Hom(#;, R)~- - ->Hom(P, R)->".

Since each Hom(P, R) is a flat R-module, it follows that C* is also flat. For the
same reason, C* is isomorphic with a pure submodule of Hom(P,, R)=[] R, that
is. the natural map

C* ®Wr M -sHom(P,, R)®r M

1s monic for each R-module M.
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Lenuna 2.5. The A-module C* is a direct limit of countably generated A-modules
which are pure and free in C* as R-modules.

“Proof. From the preceding discussion, we have that there is a'pure exact sequence,
_ .()->C*—¥P3‘§‘P’1"—>- <> P¥ >0,

where the P¥ are each direct products of copies of R. From [3; Lemma 1'.5] it
follows that each P¥ is a direct limit of its countably generated pure R-submodules.

It now suffices to show that, if one has a pure exact sequence 0> K - M i N-0of
flat R-modules, where both M and N are direct lim.is of their countably generated
pure (necessarily flat) R-submodules, then K is also such a direct limit. Then by
induction it will follow that C* is a direct limit of its countably generated pure
R-submoduies. Let K, be any countably generated j2-submodule of K. Then one
may choose countably generated pure R-submodules {M;};~, and {N;};~, of M and
N, respectively, such that

Ko=sM,c M,,,, foreachi=0,
and such that
N sd(M)=N,,,, fori=0.

Put M, =J; M; and N, =J; N. Then M, and N, are countably generated pure
R-submodules of M and N, respectively, and moreover we have that ¢(My)= N
with Ko M,. Let Ko=KnM,. It easily follows that K, is a countably
generated, pure flat R-submoduie of X containing K,. By using the “interlacing”
technique above and the fact that A is a module finite extension of R, it follows that
a cofinal subset of the countably generated pure R-submodules in the direct limit of
C* are in fact A-modules as well. The remaining fact that these countably
generated pure R-submodules are free as R-modules foilows from the fact that C*
is pure in P§ =[] R and a result of Raynaud ard Gruson [9] (see also [3; Corollary
1.6]).
We have now established the main theorem of this section.

Theorem 2.6. Let the compleie local ring A be ¢ module finite extension of the
comple:e local Gorenstein ring R. Suppose that x is a regular nonunit of R and that
some nonzero A/x" A-module is free as an R/x" R-module for each positive integer n.
Then some countably generated nonzero A-module is free as an R-module.

Perhaps the crucial point in the proof of the above theorem is the fact that, in
order to establish that C is a Cochen-Macauiay module (Lemma 2.2), it was
necessary to be working with free R/x"K-imodules so that one could lift them back
to R when doing computations involving R-sequer es. To replace the free R/x"R-
modules by Cohen-Macaulay R-modules does not eem to work. Moreover, even
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with Theorem 2.6 in hand, it appears to be nontrivial to reduce the existence (in all
characteristics) of masimal Cohen-Macaulay modules down to dimension zero. As
Hochster points out in [5], there are module finite extensions of zero dimensional
Gorenstein rings without representations over the Gorenstein ring.

3. Applications

In this section we shall discuss some applications of maximal Cohen-Macaulay
modules which are free ‘nodules over & base regular local ring. The advantage of
these modules is that ti-ey turn projective complexes into projective complexes
over the base regular rirg. It is often the case that the conclusions desired can be
easily obtained over the egular ring and then translated back to the original ring.
The basis for these resu its are Lemma 3.1 {due to H.-B. Foxby [2]) and Theorem
3.2. Although our stat.ment of the next lemma differs slightly from Foxby’s [2;
Proposition 6.3}, the proof is exactly the same.

Lemma 3.1 (Foxby). Let A be a local ring having an ideal I with dim A =dim A/
such that A/ is a module finite extension of a regular local ring R. Moreover, assume
that some A/I-module C is free over R. If M is an A-module of finite flat dimension
over A, then Tor{(C, M) =0 for all i >0.

Theorem 3.2. Let the local ring A be a module finite extension of the regular local
ring R and suppose that C is a maximal Cohen—Macaulay A-module which is free
over R. Suppose that M is an A-module and that the complex

F:-- '—)Fz—)Fl“)FO

represents an A-free resolution of M.

(a) The complex C® 4 F is then an R-free complex with homology Tor}(C, M) for
i=0. Moreover, H(C®F)=C®, M #0.

(b) If M has finite flat dimensicn over A, then C ® 4 F is an acyclic free complex
over R.

(c) If K is an A-module, then C®,4 K is R-free if and only if K is A-free.
Consequently, if pda M <00, then pda M = pdr(C ® M).

Proof. Part (a)is clear except perhaps for the fact that C ® 4, M # 0. However, this
is a consequence of the isomorphism

ARRr(COAM)=(ARrC)®s M

and the fact that A ®g C is isomorphic to a free A-module, since C is R-free. Part
(b) follows easily from Lemma 3.1.

Now suppose that K is an A-module such that C ®4 K is R-free. Then neces-
sarily A ®p (C®4 K)is A-frice. But also

ABr(COAK)=(ABRC)®L K
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is isomorphic with a direct sum of copies bf K, since A ®g C is necessarily A-free.
Hence, K is isomorphic to an A-direct summand of a free A-module and thus is
itself free.

The above theorem gives an easy proof of the result of Raynaud and Gruson [9]
in a special case of complete local rings.

Corollary 3.3 (Raynaud-Gruson). Suppose that A is an equicharacteristic complete
loca! ring which is a module finite extension of the complete regular local ring R. If M
is a flat A-module, then M has A-projective dimension -<dim A.

Proof. From [3] we have that there is an A-module C which is free as an R-
module. Let F > M be an A-free resolution of M. Then C ®g Fis an R-free
resolution of C ®r M. By Theorem 3.2(c), we have that

pda M =pdg C ®x M <dim R =dim A.

We now apply Theorem 3.2 to give a rather short proof of Foxby’s result [2;
Theorem 6.2]. Let A be a local ring and let M be a (not necessarily finitely
generated A-module). For the purposes of our next theorem, we define the dimen-
sion of M to be dim(A/ann(M)). If A is a module finite extension of the local ring
R, we observe that dim4 M =dimz M. The local ring A is calied essentially equi-
characteristic provided there is an ideal I in .A with dim A =dim(A/I) and such
that A/I contains a field as a subring.

Theorem 3.4 (Foxby). Let (A, m) be an essenticlly equicharacteristic local ring and
let M be an A-module such that mM # M. Ther: dim A <dim M +flat dim M.

Proof. Of course we may assume that flat dim M <00, that is, that M has a finite
flat resolution F> M. As was observed by Foxby [2|, we may assume that A is
complete. We can now find a minimal prime P in A so that dim A =dim A/P and
such that A/P is a module finite extension of an equicharacteristic complete,
regular local ring R. From [3], there is an A/P-module C such that C is free as an
R-module. From Lemma 3.1, we have that

Tor{(C,M)=0, fori>0,

and consequently that C ® 4 F is a finite flat resclution of the R-module C &4 M.
We now have the inequalities

dim R =dim A, dims M <dimg C®x M
and

flat dmg(C ®4 M)<flat dim, M.
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Thus, it suffices to establish the result for A a complete regular local ring. If the
maximal ideal m is in Ass M, then

Exta(M, A)=Torj(M, E)* #0,

where d =dim A and E = A" is the injective envelope of the residue field of A.
Hence the conclusion holds in this case. Mcreover, using localization, one can use
that

Tor (M. E(A/QY)#0, for h=htQ,
where E(A/Q) is the inje« tive envelope of A/Q, for Q € Ass M. Thus,
dim A = h+dim \/Q < h+dim M <flat dim M +dim M,

which completes our proc .

Note added in proof

The hypothesis of Lemma 1.2 is too weak as stated. The hypothesis should read
that **Np is a flat Ap-module for each nonmaximal 'prime ideal P in A.” With this
strengthening of the hypothesis, Leinma 1.2 becomes correct with the proof given.
Further, the application of Lemma 1.2 in Example 1.3 "emains correct with this
change. The same error is also committed in Proposition 1.10 [3]. Here the
hypothesis should state that M is a maximal Cohen-Macaulay R-module for every
system of parameters of R. The conclusion that M is a flat module over the regular
local ring then f-»lows. The author would like to thank H.-B. Foxby for pointing out
these deficiencies in the aforementioned statements.
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