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Abstract In the present paper, we introduce the spaces ¢)(4/) and ¢(47), which are BK-spaces of
non-absolute type and prove that these spaces are linearly isomorphic to the spaces ¢y and ¢, respec-
tively. We also compute their a-, - and y-duals and construct their basis. Finally, we characterize
some matrix classes concerning with these spaces.
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1. Preliminaries, background and notation

A sequence space is defined to be a linear space of real or com-
plex sequences. Throughout the paper N, R and C denotes the
set of non-negative integers, the set of real numbers and the set
of complex numbers, respectively. Let o denote the space of all
sequences (real or complex); /.., ¢ and ¢y denotes the space of
all bounded, convergent and null sequences, respectively. Also,
by bs, cs, I, and [, we denote the space of all bounded,
convergent, absolutely and p-absolutely convergent series,
respectively.

Let X, Y be two sequence spaces and let 4 = (a,) be an
infinite matrix of real or complex numbers a,,, where
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n,k € N. Then, the matrix 4 defines the A- transformation
from X into Y, if for every sequence x = (x;) € X, the se-
quence Ax = {(A4x),}, the A-transform of x exists and is in
Y; where (Ax), =Y, aux; (see, [1]). For simplicity in nota-
tion, here and in what follows, the summation without limits
runs from 0 to co. By (X:Y), we denote the class of all such
matrices. A sequence x is said to be 4-summable to /if Ax con-
verges to /, which is called as the A-limit of x. For a sequence
space X, the matrix domain X4 of an infinite matrix 4 is de-
fined as

Xy={x=(x): x=(x) € 0} (1)

We shall denote the collection of all finite subsets of N by
F. Also, we shall write ¢ for the sequence whose only
non-zero term is 1 at the kth place for each k € N. The ap-
proach of constructing a new sequence space by means of ma-
trix domain of a particular limitation mehtod has been studied
by several authors. They introduced the sequence spaces (/) N,

and cy, (see, [2]), (f)¢, =X, and (lo), = X (see, [3]),
() = For (g =1 and (c,)p = 1) (e [4D. () =1,
(see, [5]), (co)p =€ and (¢)p =€’ (see, [6]), (L,)p = e, and
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(lo)p =€, (see, [1,8]), (o) =ay and cy =d. (see, [9]),
[eo(u.p)] = di(u,p) and  [c(u,p)], = a@(u,p) (sce, [10]
(L) =da, and (o), =da, (see, [l1], (co)¢, = o, ¢, =¢
(see, [12], cj(4)=(c}), and c'(4) = (s (see, [13],
ug = Z(u,v, 1) (see, [14]), Neyaz and Hamid
1 (u,p) = {I(p)} g (see, [15]); where N, C;, R" and E" denotes
the Norland, Cesdro, Riesz and Eular means, respectively, A4
and C are respectively defined in [14,16], u = {co, ¢, [,} and
1 <p < oo. Also, ¢o(u, p) and c(u, p) denote the sequence
spaces generated from the Maddox’s spaces co(p) and c(p) by
Basarir (see, [16]). In the present paper, following (see, [2—
12,14,15]), we introduce the sequence spaces cy(4’) and
c(A;‘) and derive some inclusion relations. Furthermore, we

u
determine the o-, - and y-duals of these spaces. In the last sec-
tion of the paper we characterize some matrix classes concern-

ing these spaces.

2. The sequence spaces ¢y(*) and ¢(*) of non-absolute type

In the present section we introduce the sequence spaces
¢o(4]) and ¢(4;) and show that these spaces are BK-spaces
of non-absolute type which are linearly isomorphic to the
spaces ¢y and ¢, respectively. A sequence space X with a lin-
ear topology is called a K-space if each map p, : X — C de-
fined by pi(x) = x; is continuous for all i € N. A K-space X
is called an FK-space provided X is complete linear metric
space. An FK-space whose topology is normable is called a
BK-space.

Let 1 = ()=, be a strictly increasing sequence of positive
reals tending to 1nﬁty, ie.,

0<ly<A <--- and 4 — o0 ask — oo. 2)

The sequence ¢* and ¢} have been introduced by Mursaleen
and Noman (see, [17]) as follows:

= {x cCw: li’{n/\,,(x) exists}
and

¢t = {x cw: li’r’n/\n(x) = 0},
where

An(x) = i i()hk — Jd1) X,

M=o

(k e N).

With the notation of (1) that ¢* = (¢), and ¢} = (cy),.

Now, following Basar and Altay (see [18]), Ayden and Ba-
sar (see, [19]) and Mursaleen and Mohiuddine (see, [20-23]),
we treat slightly more different than Kizmaz (see, [24]) and
the other authors following him and employ the technique
obtaining a new sequence space by means of the matrix do-
main of a triangle limitation method. Let u = (u;) be a se-
quence such that u;, # 0 for all £k € N. We thus introduce the
sequence spaces ¢(47) and ¢,(47) as follows:

o(4l) = {x € o : limA,(x) exists}
and

co(4]) = {x cw: lign/i,,(x) = 0},

where

. 1 &
Au(x) :TZ(Ak—zk_l)uk(xk—xk_l), (k € N). (3)
" %=0
Here and in sequel, we shall use the convention that any
term with a negative subscript is equal to naught.

With the notation of (1) that, ¢(4}) = (c); and
C()(A:I) = (C())/(.
If w, = (1,1,...), these spaces reduces to c(AA) and CO(AA)
(see, [15]).
We define,
(}~k*?~k7|)j(}~A+1*/ir<)uh if k < n,
Doie = —2”’2f;"*‘ Uy, if k =n, (4)
0, if k> n.

It is clear that the matrix A = ink is a triangle. We shall as-
sume throughout the text that the sequences x = (x;) and
¥ = () are cocnnected by the relation, that is y is A-transform
of x, where

S
— Aie Aig1 — Ai e — A
()= Z ) Ak )u,-+ k 2k Ly forkeN,

i=0 M
()

where here and in what follows, the summation running from 0
to k-1 is equal to zero when k = 0. It is clear from (3) that the
relation (5) can be written as follows:

k p— .
yk()") = Z(%) u,-(x,- — X[,]) for k € N.

i=0 “k

Now, we may begin with the following theorem which is
essential in the text.

Theorem 2.1. The spaces c (Aﬁ) and C(Ai) are BK-spaces with
the norm
= [[AM)]I,,

1x6lley (a2 = ¥y = sup||A, (x)]|.
n

Proof. The proof is a routine rerificaion, so is left as an easy
exercise to the reader. [

Remark. One can easily check that @he absolute property does
not hold on the spaces c¢y(4;) and c(Al’;), that is
x Cﬂ(Af;)%H‘x'”f'n(Af)) and H’f”c(A{;) for alteast one
sequence in the spaces ¢(4;) and ¢(4 ;) &nd this shows that
¢o(47) and cﬁA

;") are sequence spaces of non-absolute type,
where | =

).

Theorem 2.2. The spaces co(4.) and c(A%) of non-absolute type
are linearly isomorphic to the spaces cy and c, respectively, that
is ¢o(42) = ¢ and ¢(4]) = c.

Proof. We only consider the case ¢y(4}) = ¢, and the case
¢(4%) = ¢ will follow similarly. Thus, to prove the theorem,
we must show the existence of linear bijection between
¢o(47) and ¢,. For, consider the transformation T deﬁned,
with the notation (5), from ¢(4}) to co by x = y(2) =

Then Tx = y(4) = A(x) € ¢y for every x € ¢o(47). Also, the
linearty of T is obvious. Further, it is trivial that x = 0 when-
ever Tx =0 and hence T is injective. Furthermore, let

y = () € ¢o and define the sequence x = {x; (1)} by
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xk()»)=ZZ(fl)/f[ﬁy, for k € N. (6)

J=0 i=j—1

Then, we obtain that

k L
=
i=k—

xk() — Xj— 1 F-
| k L—1

[§

Thus, for every k € N, we have by (3) that

n k
"AO[ I

k l)z}’ _l Z MYk — Me1Vio1) = Vo
I'Ik 0

This shows that A(x) =y and since y € ¢y, we obtain that
A(x) € ¢. Thus, we deduce that x € ¢y(47) and that Tx = y.
Hence, T is surjective.

Further, we have for every x € ¢y (4?%) that

ITxl, = 1Txll,, = IACI,, =

which means that ¢y(47) and ¢, are linearly isomorphic.

It can similarly shown that if the spaces ¢o(47) and ¢, are
respectively replaced by the spaces C(Au) and ¢, then we obtain
the fact that c(Ai) = ¢ and this concludes the proof. [

¥l

3. The inclusion relations

In the present section, we establish some inclusion relations
concerning with the spaces ¢o(47) and ¢(47).

Theorem 3.1. The inclusion co(4}) C ¢(A7) strictly holds.

Proof. It is obvious that co(A;;‘) C c(A}”) holds defined by

u

X, = ! for all k € N. Then, we have by (3) that
Uge

Aul) = -3 -

k=0

)"k—l) = ]

for all k€N, which shows that A(x)=e¢ and hence
A(x) = ¢ — ¢y where e = (1, 1 ..). Thus, the sequence x
is in ¢(4]) but not in ¢y(4]). Hence, the inclusion
¢o(4]) C ¢(A47) is strict and the proof is complete. [

4. The bases for the spaces ¢y (%) and c(?)

In the present section, we give two sequences of the points of
the spaces ¢y (47) ¢(4%) which form the bases for these spaces.

If the normed space X contains a sequence (b,) with the
property that for every x € X, there is a unique sequence of
scalars (o) such that

n

lim||x =} “ouby|| = 0

" k=0
then (b,) is called a Schauder basis (or briefly basis) for X. The
series y_, obx which has the sum x is then called the expansion
of x with respect to b, and is written as x = >, ob;. Now, be-
cause of the isomorphism 7 defined from c¢y(4.)to ¢y, in the
proof of Theorem 2.2, is onto, the inverse image of the bases

e® of the space ¢, is the bases for the new space co( ) There-
fore, we have the following result:

Theorem 4.1. Define the sequence b*(1) = {b(k) (A)} N
ne

n

of the
elements of the space cy (Ag) for every fixed k € N by

b)) = ( ! )uk, if k= n, (7)
A= A1
0, if k > n.

Then, the sequence {b\(2)} is a bases for the space ¢, (42) for
any x € co(A") has a unique representation of the form

x= Zock A) (8)
where oy (1) = Ar(x) for all k € N.
Theorem 4.2. The set {b, bi(A)} is a bases for the space

c(4%) for any x € ¢(4.) has a unique representation of the

form

x—lb—i-Zock

where | = lim, A, (x) and oy (2) = A(x) for all k € N.

—6"(2) ©)

5. The a-, B- and y-duals of the spaces ¢y (%) and c(%)

In the present section, we state and prove the theorems deter-
mining a-, - and - duals of the spaces ¢(4;) and ¢(47)of
non-absolute type.

For the sequence space X and Y, define the set
S(X:Y)={z=(2z): xz2=(xxz) € Y} (10)

With the notation of (10), the o-, - and y- duals of a se-
quence space X, which are respectively denoted by X* X*
and X” and are defined by

X =8SX:1), X =8X:cs) and X' = S(X : bs).

We now state some lemmas which are used in proving the
theorems.

Lemma 5.1 (see, 15). A € (cp:l;) =

S| <

KelF ke

(c:l;) if and only if

Lemma 5.2 (see, 15). A € (cyp:c) if and only if

lima,,k exists for all k € N, (11)
su Q| < oo. 12
NEVEZ‘ k‘ ( )

Lemma 5.3 (see, 15). A € (c:c) if and only if (11) and (12) hold
and

limZa,,k exists. (13)
" k

Lemma 5.4 (see, 15). A€ (cp:ly) =
holds. We now prove the following:

(c:lo) if and only if (12)
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Theorem 5.5. The o-dual of the spaces cy(A%) and ¢(AL) is the
set

-}

where the matrix B = (b},) is defined via the sequence a = (ay)

Z bnk

KeF keK

a{‘{a Clk cEw: supz

by
(o - i), ifk<n,
A —Aj—1 Ak1— M ) Uk
k R
ba(2) = (+)ﬂ7 ifk=n; (nkeN),
Ak—k—1 ) Un
0, if k> n

Proof. Let a = (a,) € w. Then, by bearing in mind the rela-
tions (5) and (6), we immediately derive that

an =33

k=0 j=k—1

)v]'
sy e (14)

Thus, we observe by (14) that ax = (a,,x,,)611 whenever
x = (x¢) € ¢o(4]) or ¢(47) if and only if B’y € I, whenever
¥ = (yr) € ¢p or c. This means that the sequence a = (a,) is
in the o-dual of the spaces ¢y(4;) and c(4%) if and only if
B* e (cp:lh) = (c:l}). We, therefore, obtain by Lemma 5.1
with B’ instead of A that a € {c¢o(4])}* = {c(4})}" if and
only if

Z Zbi‘k < 00

n | kek

sup
KelF

which leads  us to the consequence that
{co(47)} = {c(4])}" = ai. This completes the proof of the
theorem. [

Theorem 5.6. Define the sets a}, da%, a} and a’ as follows:

aé {a = () €Ew: Zaj exists for each k € N}

Jj=k
|<oo}

14 (Zk

a= () €cw: supZ|ak

[(—

-~}

a= () €w: lill(n(k + Dag converges}7

K | A — Ak

a = {a:(a,() € w:sup|=
{

where

~ | Ay 1 _ 1 - .
uln) = At [zk—m* (Ak—AH P —Ak) Z"’}

(k <n).

Then {co(Ai‘)}ﬂ =dnd:Nna; and {c(Af;)}’z =dndna.

Proof. Consider the equation,

k J o 5
n— _1 joi_ M i )
Zakx ;{IZOLJZI( ) “i()~/_/1/|)y]}a,
1
(;Lk*/lk L A 7/1,() Za,} Vi

ael
Ak 43

Sl
Uy | Ax — Ar—1 ]

k=0
A
(/1/1 - ;vn—] ) "}"

Uy
n—1 1
~ A .
=D amy+ s, = D),
k=0 n—l)

Uy (/Ln -

J’_

(15)
where D* = (d’

nk

) is defined by

if kK <n,
7 n . _
dy = wom)an iTk=n,

0, if k> n,

ar(n)

where n,k € N. Then, we deduce by (15) ax = (arxi) € cs
whenever ax = (a.x;) € ¢o(47) if and only if D"y € ¢ whenever
¥y = (») € ¢p. This means that a = (a) € {co(42)}' if and
only if D* € (¢y:¢). Therefore, by using Lemma 5.2, we derive
from (11) and (12) that

Zaj exists for each k € N, (16)

Jj=k

n)| < oo, (17)

supz |k (n

[—

Ak

— < 00. 18
P uk(/bk - /Lk—l) ( )

aj

su
k
Hence, we conclude that {¢)(4%)} = & Ndi N dj.
Similarly, we deduce from Lemma 5.3 with (15) that
a=(a) € {c(4%)} if and only if D* € (cic). Therefore, we
derive from (11) and (12) that (16)—(18) hold. Further, it can
easily be seen that the equality,

n n—1 . )\'n
D (k+ Dag = aw(n) +ma (meN), (19)

k=0 k=0

holds which can be written as follows:

n

2k +Na=3

k=

(neN).

Consequently, we obtain from (13) that
{(k+ Dai} € cs.
Hence, we deduce that, {c(4})}} =dindjnai. O

Theorem 5.7. The y dual of the spaces c(A.) and c¢(4) is the
set a N .

Proof. This result can be proved similarly as the proof of the
Theorem 5.6 with Lemma 5.4 instead of Lemma 5.2. O

6. Certain matrix mappings on the spaces ¢y (%) and ¢(%)

For brevity in notation, we shall write
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1
+ | =
Uy — Ak (/Lk — Ak
(k < m)

Ak 0
dnk(m) - _A |:/’{k Gk

m
a
/Lk+1 - ﬂk) Z v

J=k+1

J=k+1

) z]

~ j'k Apjc 1
Ay = — |5 3 + 7 7
U | Ak — M-t ke — M—1

for all n,k,m € N provided the convergence of the series.
We first state some lemmas which are used in proving the
Theorems 6.5, 6.6, 6.7.

Lemma 6.1 (see, 25). The matrix mappings between the BK-
spaces are continuous.

Lemma 6.2 (see, 26). A € (c:l,) if and only if

supz

FelF

E njc

keF

<oo; (1<p<o).

Lemma 6.3 (see, 26). A € (c:cy) if and only if

supZank < 00, (20)
n k

lima, =0, forallkeN, (21)

lim au = 0. (22)
n k

Lemma 6.4 (see, 26). A € (cp:cy) if and only if (20) and (21)
holds.

We now results on matrix

tranformations:

prove the following

Theorem 6.5.

(i): Let 1 <p < o0. Then A € (C(A;) :1,) if and only if

P
su Aol < 003 23
2|2 )
supZ\ank ) <oo; (meN), (24)
m k 0
{tk+ Day} s €cs; (neN), (25)
lim—% o, —a (neN) (26)
p UI\(AI\ _AA 1) nk ny
and
(an) €1,. (27)
(il) 4 € (c(A;) : 1) if and only if (25) and (26) holds and
Sup» Jau| < oo (28)

and (a,) € L.

Proof. Suppose the conditions (23)—(27) holds and x € L(A’)
Then, we have by Theorem 5.6 that {a,},cy € [c(4 )]ﬂ for all
n € N and this implies the existence of the A-transform of x,
i.e., Ax exists. Also, it is clear that the associated sequence
y = (yi) 1s in the space ¢ and hence y, — [ as k — oo for some
suitable /. Further, it follows by combining Lemma 6.2 with
(23) that the matrix 4 = (a,) is in the class (c:/,), where
1<p < 0.

Let us now consider the following eqquality derived by
using the relation (5) from the m™ partial sum of the series

> ke X
— 4, a2 N anmym; (I’I, k

§ Uy Xje = E ank m .}k
um(/Lm - j-m—l)

€ N). (29)

«

Then, since y € cand 4 € (c: L), Ay exists and so the ser-
ies Y, auy, converges for every n € N. Furthermore, it follows
by (25) that the series Zf'ika,,,- converges for all n,k € N and
hence d,.(m) — a,. as m — oco. Therefore, if we pass to the
limit in (29) as m — oo, then we obtain by (26) that

§ i X =
k

which can be written as follows:
Ay(x) = A,(y) + lay;  (neN). (31)
This yields by taking the /,-norm that

> awyy +lay;  (neN), (30)
k

l[Axl,, < [[4¥1l;, + llanll, < oo,

which leads us to the consequence that Ax €/, and hence
A€ (c(4) 1)

Conversely, suppose that A€ (c(4%):1,). Then
{@u}pen € le(42)) for all n e N and this with Theorem 5.6
implies the necessity of the conditions (24) and (25). On the
hand, since ¢(4?) and 1, are BK-spaces; we have by Lemma 6.1
that there is a constant M > 0 such that

], < Ml . (32)

holds for x € c(A;) Now, let FeF. Then, the sequence
=3 b pM(2) is in ¢(47), where, the sequence pPG) =
{b W)} en 18 deﬁned by (7) for every fixed k € N. Further,
we by (9) that
Dl = 1€,

||Z||/ *H/\ ||/ *HZ/\ k)

keF keF
Furthermore, for ever n € N, we obtain by (7) that
2= 4,0692)) =3 a, (6 (2) =Y .
keF keF j keF

Hence, since the inequality (32) is satisfied for the sequence
z € ¢(4), we have for any f € [ that

Ial;
[ n

which shows the necessity of (23). Thus, it follows by Lemma
6.2 that 4 = (@) € (c: 1,).

§ &nk

keF

>

n
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Now, let y = (yx) € ¢/co and consider the sequence x = (x)
defined by (6) for every k € N. Then, x € ¢(47%) and y = A(x),
that is the sequences x and y are connected by the relation (5).
Therefore, the transforms Ax and Zy exists. This leads us to
the convergence of the series Y auxi and Y auy, for every
n € N. Thus, we deduce that

m—1
limY au(m)y, = > aw(m)y  (n,k € N).
k=0 k
Consequently, we obtain from (29) as m — oo that

A
lim———"——a,,p,; (@mEN
m um()”m - /Abm—l) Yo ( )7

exists and since y € ¢/cy, we conclude that limmmanm
exists, which shows the necessity of (26) and so the relation
(31) holds, where / = lim;y.

Finally, since Ax € [, and Ax e p» the necessity of (27) is
immediate by (31) and the proof of part (i) of the theorem is

complete.

Since the part(ii) can be proved by using the similar way of
that used in the proof of the part (i) with Lemma 5.4 instead of
Lemma 6.2. O

Remark. It is obvious by (28) that the limit

m—1
lig}lzmnk(mﬂ = law(m);
k=0 k

exists for each n € N. This just says us that the condition (28)
implies the condition (24).

Now, we may note that (co:/,) = (c:l,) for 1 < p < oo (see,
[21]). Thus, by means of the Theorem 5.6 and Lemma 5.4, we
immmediately conclude the following theorem:

Theorem 6.6.

(i) Let I <p < oo. Then A € (co(Ai) :1,) if and only if (23)
and (24) holds and

Za,,, exists, (n,k,m € N); (33)
=

L
— i ¢ € I e N). 34
{uk()kaﬂ,k,])al} (n ) ( )

(ii) 4 € (co(4]) : 1) if and only if (25)(27) hold.

Proof. It is natural thing that the present theorem can be
proved by the same technique used in the proof of Theo-
rem 6.5, above and so we omit the proof. O

Theorem 6.7.
(1) Let 1<p <oo. Then A€ (c(A;) :c) if and only if

(25),(26) and (28) hold and
lima, = 0, (35)

n

lima, = a; (ke N), (36)

and

lim = o (37)
" x

Proof. Suppose A4 satisfies the conditions (25), (26), (28), (39),
(36) and (37) and take any x € ¢(47). Then, since (28) implies
(24), we have by Theorem 5.6 that {au},. € [c(47)]’ for all
n € N and this implies the existence of the A4-transform of x,
i.e., Ax exists. We also osberve from (28) and (36) that

k

E oy < supE |, < oo
n n
J

=0

holds for every n € N. This implies that («;) € /; and hence the
series Y, (v, — I) converges, where y = (y) € c is the sequence
connected with x = (x;) by the relation (5)such that y, — [ as
k — oo. Further, it is obvious by combining Lemma 5.3 with
the conditions (28), (36) and (37) that the matrix A= Ay 18
in the class (c:c).

Now, by the similar proof used in the proof of the
Theorem 6.5, we obtain that the relation (30) holds which can
be written as follows:

Zankxk = Z&nk(yk - 1) + [Zdnk + lay; (I’l,k € N)' (38)
k k k

In this situation, we see by passing to the limit in (38) as
n — oo that the first term on the right tends to Y, (v, — /)
by (28) and (36), the second term tends to /« by (37) and the
last term tends to /a by (35). Consequently, we have that

A,(x) — szk(yk —D4+l(e—a) asn— oo,
k

which shows that Ax € ¢ and hence 4 € (c(42) : ¢).
Conversely, suppose that 4 € (c(A:,) : ¢). Then, since the
inclusion ¢ /., holds, we have that A4 € (¢(4}) :[x). This
leads us with Theorem 6.5 to the necessity of the conditions
(25), (26) and (28). Furthermore, let %) (1) = {1 (1)},cn
€ ¢(4]) and hence by (7) for every k € N. Then, it can be
easily seen that 4b* (1) = {du },cn and hence {d},cp € ¢ for
every k € N, which shows the necessity of (36). Next, let
z= Zkb<k)(),). Then, since the linear transformation
T:c(4}) — ¢ defined by analogy as in the proof of the

u
Theorem 22 is continuous, we obtain by (9) that

R = SR () = Sow =15 (ke N),

which shows that A(z) = e € ¢ and hence z € ¢(4]). On the
other hand, sicne ¢(47) and ¢ are BK spaces, Lemma 6.1, im-

plies the continuity of the matrix mapping 4 : ¢(4]) — c.
Thus, we have for every n € N that

A"(Z) = ZAn(bk(/{)) = Z&nh
k k

which shows the necessity of (37).

Now, it follows by (28),(36) and (37) with Lemma 5.3 that
A =ay € (c:c). This leads us with (25) and (26) to the
consequence that the relation (31) holds for all sequences
x € ¢(47) and y € ¢ which are connected by the relation (5)
such that y, — / as k — oo.
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Further, since Ax € ¢ and /zl\y € ¢, the necessity of (35) is
immediate by (31) and this completes the proof. [J

Corollary 6.8. Let 1 <p < co. Then A€ (c(4) :co) if and
only if (25),(26) and (28) hold and

lima, = a,
lima, = 0; (ke N), (39)
and

lim E awe = 0.
n

Proof. The proof can be obtained on similar lines as in Theo-
rem 6.7 with Lemma 6.3 instead of Lemma 5.3. [

Corollary 6.9. A4 € (co(4]) : ¢) if and only if (28). (32), (33) and
(36) hold

Proof. This result can be proved similarly by using Lemma 5.2
and Theorems 5.6 and 6.6. [

Corollary 6.10. 4 € (co(47) : ¢y) if and only if (28), (33), (34)
and (39) hold

Proof. This result can be proved similarly by using Lemma 6.4
and Theorem 5.6 and Corollary 6.9. [
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