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Abstract In the present paper, we introduce the spaces c0 Dk
u

� �
and c Dk

u

� �
, which are BK-spaces of

non-absolute type and prove that these spaces are linearly isomorphic to the spaces c0 and c, respec-

tively. We also compute their a-, b- and c-duals and construct their basis. Finally, we characterize

some matrix classes concerning with these spaces.
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1. Preliminaries, background and notation

A sequence space is defined to be a linear space of real or com-
plex sequences. Throughout the paper N; R and C denotes the
set of non-negative integers, the set of real numbers and the set
of complex numbers, respectively. Let x denote the space of all

sequences (real or complex); l1, c and c0 denotes the space of
all bounded, convergent and null sequences, respectively. Also,
by bs, cs, l1 and lp we denote the space of all bounded,

convergent, absolutely and p-absolutely convergent series,
respectively.

Let X, Y be two sequence spaces and let A= (ank) be an

infinite matrix of real or complex numbers ank, where
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n; k 2 N. Then, the matrix A defines the A- transformation
from X into Y, if for every sequence x = (xk) 2 X, the se-

quence Ax= {(Ax)n}, the A-transform of x exists and is in
Y; where ðAxÞn ¼

P
kankxk (see, [1]). For simplicity in nota-

tion, here and in what follows, the summation without limits

runs from 0 to 1. By (X:Y), we denote the class of all such
matrices. A sequence x is said to be A-summable to l if Ax con-
verges to l, which is called as the A-limit of x. For a sequence

space X, the matrix domain XA of an infinite matrix A is de-
fined as

XA ¼ fx ¼ ðxkÞ : x ¼ ðxkÞ 2 xg: ð1Þ

We shall denote the collection of all finite subsets of N by
F. Also, we shall write e(k) for the sequence whose only

non-zero term is 1 at the kth place for each k 2 N. The ap-
proach of constructing a new sequence space by means of ma-
trix domain of a particular limitation mehtod has been studied

by several authors. They introduced the sequence spaces ðl1ÞNq

and cNq
(see, [2]), ðlpÞC1

¼ Xp and ðl1ÞC1
¼ X1 (see, [3]),

ðl1ÞRt ¼ rt1; ðcÞRt ¼ rtc and ðcoÞRt ¼ rt0 (see, [4]), ðlpÞRt ¼ rtp
(see, [5]), ðc0ÞEr ¼ er0 and ðcÞEr ¼ erc (see, [6]), ðlpÞEr ¼ erp and
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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ðl1ÞEr ¼ er1 (see, [7,8]), ðc0ÞAr ¼ ar0 and cAr ¼ arc (see, [9]),

½c0ðu; pÞ�Ar ¼ ar0ðu; pÞ and ½cðu; pÞ�Ar ¼ arcðu; pÞ (see, [10],

ðlpÞAr ¼ arp and ðl1ÞAr ¼ ar1 (see, [11], ðc0ÞC1
¼ ĉ0; cC1

¼ ĉ

(see, [12], ck
0ðDÞ ¼ ck

0

� �
D

and ck(D) = (ck)D (see, [13],

lG = Z(u,v,l) (see, [14]), Neyaz and Hamid

rqðu; pÞ ¼ flðpÞgRq (see, [15]); where Nq, C1, R
t and Er denotes

the Nörland, Cesäro, Riesz and Eular means, respectively, Ar

and C are respectively defined in [14,16], l = {c0, c, lp} and
1 6 p<1. Also, c0(u, p) and c(u, p) denote the sequence
spaces generated from the Maddox’s spaces c0(p) and c(p) by

Basarir (see, [16]). In the present paper, following (see, [2–

12,14,15]), we introduce the sequence spaces c0 Dk
u

� �
and

c Dk
u

� �
and derive some inclusion relations. Furthermore, we

determine the a-, b- and c-duals of these spaces. In the last sec-
tion of the paper we characterize some matrix classes concern-
ing these spaces.
2. The sequence spaces c0ðkuÞ and cðkuÞ of non-absolute type

In the present section we introduce the sequence spaces

c0 Dk
u

� �
and c Dk

u

� �
and show that these spaces are BK-spaces

of non-absolute type which are linearly isomorphic to the
spaces c0 and c, respectively. A sequence space X with a lin-
ear topology is called a K-space if each map pi : X! C de-

fined by pi(x) = xi is continuous for all i 2 N. A K-space X
is called an FK-space provided X is complete linear metric
space. An FK-space whose topology is normable is called a

BK-space.
Let k ¼ ðkkÞ1k¼0 be a strictly increasing sequence of positive

reals tending to infity, i.e.,

0 < k0 < k1 < � � � and kk !1 as k!1: ð2Þ

The sequence ck and ck
0 have been introduced by Mursaleen

and Noman (see, [17]) as follows:

ck ¼ x 2 x : lim
n
^nðxÞ exists

n o
and

ck
0 ¼ x 2 x : lim

n
^nðxÞ ¼ 0

n o
;

where

^nðxÞ ¼
1

kn

Xn
k¼0
ðkk � kk�1Þxk; ðk 2 NÞ:

With the notation of (1) that ck = (c)� and ck
0 ¼ ðc0Þ^.

Now, following Basar and Altay (see [18]), Ayden and Ba-

sar (see, [19]) and Mursaleen and Mohiuddine (see, [20–23]),
we treat slightly more different than Kizmaz (see, [24]) and
the other authors following him and employ the technique

obtaining a new sequence space by means of the matrix do-
main of a triangle limitation method. Let u= (uk) be a se-
quence such that uk „ 0 for all k 2 N. We thus introduce the

sequence spaces c Dk
u

� �
and c0 Dk

u

� �
as follows:

c Dk
u

� �
¼ x 2 x : lim

n
^̂nðxÞ exists

n o
and

c0 Dk
u

� �
¼ x 2 x : lim

n
^̂nðxÞ ¼ 0

n o
;

where
^̂nðxÞ ¼
1

kn

Xn
k¼0
ðkk � kk�1Þukðxk � xk�1Þ; ðk 2 NÞ: ð3Þ

Here and in sequel, we shall use the convention that any
term with a negative subscript is equal to naught.

With the notation of (1) that, c Dk
u

� �
¼ ðcÞ ^̂ and

c0 Dk
u

� �
¼ ðc0Þ ^̂.

If uk = (1,1,. . .), these spaces reduces to c(Dk) and c0(D
k)

(see, [15]).
We define,

k̂nk ¼

ðkk�kk�1Þ�ðkkþ1�kkÞ
kn

uk; if k < n;

kn�kn�1
kn

un; if k ¼ n;

0; if k > n:

8><>: ð4Þ

It is clear that the matrix ^̂¼ k̂nk is a triangle. We shall as-
sume throughout the text that the sequences x = (xk) and
y= (yk) are cocnnected by the relation, that is y is ^̂-transform
of x, where

ykðkÞ ¼
Xk�1
i¼0

ðki� ki�1Þ� ðkiþ1� kiÞ
kk

uiþ
kk� kk�1

kk

ukxk for k2N;

ð5Þ

where here and in what follows, the summation running from 0

to k-1 is equal to zero when k= 0. It is clear from (3) that the
relation (5) can be written as follows:

ykðkÞ ¼
Xk
i¼0

ki � ki�1

kk

� �
uiðxi � xi�1Þ for k 2 N:

Now, we may begin with the following theorem which is
essential in the text.

Theorem 2.1. The spaces c0 Dk
u

� �
and c Dk

u

� �
are BK-spaces with

the norm

kxkc0 Dk
uð Þ ¼ kxkcðDk

uÞ ¼ k ^̂ðxÞkl1 ¼ sup
n

k ^̂nðxÞk:

Proof. The proof is a routine rerificaion, so is left as an easy
exercise to the reader. h

Remark. One can easily check that the absolute property does
not hold on the spaces c0 Dk

u

� �
and c Dk

u

� �
, that is

kxkc0 Dk
uð Þ–kjxjkc0 Dk

uð Þ and kxkc Dk
uð Þ–kjxjkc Dk

uð Þ for alteast one
sequence in the spaces c0 Dk

u

� �
and c Dk

u

� �
and this shows that

c0 Dk
u

� �
and c Dk

u

� �
are sequence spaces of non-absolute type,

where ŒxŒ = (ŒxŒ).

Theorem 2.2. The spaces c0 Dk
u

� �
and c Dk

u

� �
of non-absolute type

are linearly isomorphic to the spaces c0 and c, respectively, that
is c0 Dk

u

� �
ffi c0 and c Dk

u

� �
ffi c.

Proof. We only consider the case c0 Dk
u

� �
ffi c0 and the case

c Dk
u

� �
ffi c will follow similarly. Thus, to prove the theorem,

we must show the existence of linear bijection between

c0 Dk
u

� �
and c0. For, consider the transformation T defined,

with the notation (5), from c0 Dk
u

� �
to c0 by x fi y(k) = Tx.

Then Tx ¼ yðkÞ ¼ ^̂ðxÞ 2 c0 for every x 2 c0 Dk
u

� �
. Also, the

linearty of T is obvious. Further, it is trivial that x = 0 when-

ever Tx= 0 and hence T is injective. Furthermore, let
y= (yk) 2 c0 and define the sequence x = {xk(k)} by
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xkðkÞ ¼
Xk
j¼0

Xj

i¼j�1
ð�1Þj�i ki

ujðkj � kj�1Þ
yi for k 2 N: ð6Þ

Then, we obtain that

xkðkÞ � xk�1ðkÞ ¼
Xk
i¼k�1
ð�1Þk�i ki

ukðkk � kk�1Þ
yi:

Thus, for every k 2 N, we have by (3) that

^̂nðxÞ ¼
1

kn

Xn
k¼0

Xk
i¼k�1
ð�1Þk�ikiyi ¼

1

kn

Xn
k¼0
ðkkyk � kk�1yk�1Þ ¼ yn:

This shows that ^̂ðxÞ ¼ y and since y 2 c0, we obtain that
^̂ðxÞ 2 c0. Thus, we deduce that x 2 c0 Dk

u

� �
and that Tx = y.

Hence, T is surjective.
Further, we have for every x 2 c0 Dk

u

� �
that

kTxkc0 ¼ kTxkl1 ¼ k ^̂ðxÞkl1 ¼ kxkc0 Dk
uð Þ;

which means that c0 Dk
u

� �
and c0 are linearly isomorphic.

It can similarly shown that if the spaces c0 Dk
u

� �
and c0 are

respectively replaced by the spaces c Dk
u

� �
and c, then we obtain

the fact that c Dk
u

� �
ffi c and this concludes the proof. h
3. The inclusion relations

In the present section, we establish some inclusion relations
concerning with the spaces c0 Dk

u

� �
and c Dk

u

� �
.

Theorem 3.1. The inclusion c0 Dk
u

� �
� c Dk

u

� �
strictly holds.

Proof. It is obvious that c0 Dk
u

� �
� c Dk

u

� �
holds defined by

xk ¼ kþ1
uk

for all k 2 N. Then, we have by (3) that

^̂nðxÞ ¼
1

kn

Xn
k¼0
ðkk � kk�1Þ ¼ 1

for all k 2 N, which shows that ^̂ðxÞ ¼ e and hence
^̂ðxÞ ¼ c� c0 where e= (1, 1, 1, . . .). Thus, the sequence x
is in c Dk

u

� �
but not in c0 Dk

u

� �
. Hence, the inclusion

c0 Dk
u

� �
� c Dk

u

� �
is strict and the proof is complete. h
4. The bases for the spaces c0
k
u

� �
and c k

u

� �
In the present section, we give two sequences of the points of
the spaces c0 Dk

u

� �
c Dk

u

� �
which form the bases for these spaces.

If the normed space X contains a sequence (bn) with the

property that for every x 2 X, there is a unique sequence of
scalars (an) such that

lim
n
kx�

Xn
k¼0

akbkk ¼ 0

then (bn) is called a Schauder basis (or briefly basis) for X. The
series

P
kakbk which has the sum x is then called the expansion

of x with respect to bn and is written as x ¼
P

kakbk. Now, be-
cause of the isomorphism T defined from c0 Dk

u

� �
to c0, in the

proof of Theorem 2.2, is onto, the inverse image of the bases

e(k) of the space c0 is the bases for the new space c0 Dk
u

� �
. There-

fore, we have the following result:
Theorem 4.1. Define the sequence bkðkÞ ¼ bðkÞn ðkÞ
n o

n2N
of the

elements of the space c0 Dk
u

� �
for every fixed k 2 N by

bknðkÞ ¼

kk
kk�kk�1

� kk
kk�kk�1

� �
uk; if k < n;

kk
kk�kk�1

� �
uk; if k ¼ n;

0; if k > n:

8>>><>>>: ð7Þ

Then, the sequence fbknðkÞg is a bases for the space c0 Dk
u

� �
for

any x 2 c0 Dk
u

� �
has a unique representation of the form

x ¼
X
k

akðkÞbkðkÞ ð8Þ

where akðkÞ ¼ ^̂kðxÞ for all k 2 N.

Theorem 4.2. The set {b, bk(k)} is a bases for the space
c Dk

u

� �
for any x 2 c Dk

u

� �
has a unique representation of the

form

x ¼ lbþ
X
k

½akðkÞ � l�bkðkÞ ð9Þ

where l ¼ limn ^̂kðxÞ and akðkÞ ¼ ^̂ðxÞ for all k 2 N.
5. The a-, b- and c-duals of the spaces c0
k
u

� �
and c k

u

� �
In the present section, we state and prove the theorems deter-
mining a-, b- and c- duals of the spaces c0 Dk

u

� �
and c Dk

u

� �
of

non-absolute type.

For the sequence space X and Y, define the set

SðX : YÞ ¼ fz ¼ ðzkÞ : xz ¼ ðxkzkÞ 2 Yg: ð10Þ

With the notation of (10), the a-, b- and c- duals of a se-
quence space X, which are respectively denoted by Xa, Xb

and Xc and are defined by

Xa ¼ SðX : l1Þ; Xb ¼ SðX : csÞ and Xc ¼ SðX : bsÞ:

We now state some lemmas which are used in proving the
theorems.

Lemma 5.1 (see, 15). A 2 (c0:l1) = (c:l1) if and only if

sup
K2F

X
n

X
k2K

ank

�����
����� <1:

Lemma 5.2 (see, 15). A 2 (c0:c) if and only if

lim
n
ank exists for all k 2 N; ð11Þ

sup
n2N

X
k

jankj <1: ð12Þ

Lemma 5.3 (see, 15). A 2 (c:c) if and only if (11) and (12) hold
and

lim
n

X
k

ank exists: ð13Þ

Lemma 5.4 (see, 15). A 2 (c0:l1) = (c:l1) if and only if (12)
holds. We now prove the following:
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Theorem 5.5. The a-dual of the spaces c0 Dk
u

� �
and c Dk

u

� �
is the

set

ak
1 ¼ a ¼ ðakÞ 2 x : sup

K2F

X
n

X
k2K

bk
nk

�����
����� <1

( )
;

where the matrix Bk ¼ ðbk
nkÞ is defined via the sequence a = (an)

by

bknðkÞ ¼

kk
kk�kk�1

� kk
kkþ1�kk

� �
an
uk
; if k < n;

kk
kk�kk�1

� �
an
un
; if k ¼ n; ðn; k 2 NÞ;

0; if k > n:

8>>><>>>:
Proof. Let a = (an) 2 x. Then, by bearing in mind the rela-
tions (5) and (6), we immediately derive that

anxn ¼
Xn
k¼0

Xk
j¼k�1
ð�1Þk�j kj

ukðkk � kk�1Þ
; ðn 2 NÞ: ð14Þ

Thus, we observe by (14) that ax= (anxn) 2 l1 whenever
x ¼ ðxkÞ 2 c0 Dk

u

� �
or c Dk

u

� �
if and only if Bky 2 l1 whenever

y = (yk) 2 c0 or c. This means that the sequence a = (an) is

in the a-dual of the spaces c0 Dk
u

� �
and c Dk

u

� �
if and only if

Bk 2 (c0:l1) = (c:l1). We, therefore, obtain by Lemma 5.1
with Bk instead of A that a 2 fc0 Dk

u

� �
ga ¼ fc Dk

u

� �
ga if and

only if

sup
K2F

X
n

X
k2K

bk
nk

�����
����� <1;

which leads us to the consequence that
fc0 Dk

u

� �
ga ¼ fc Dk

u

� �
ga ¼ ak

1. This completes the proof of the

theorem. h

Theorem 5.6. Define the sets ak
2; ak

3; a
k
4 and ak

5 as follows:

ak
2 ¼ a ¼ ðakÞ 2 x :

X1
j¼k

aj exists for each k 2 N

( )
;

ak
3 ¼ a ¼ ðakÞ 2 x : sup

n

Xn�1
k¼0
jâkðnÞj <1

( )
;

ak
4 ¼ a ¼ ðakÞ 2 x : sup

k

kk

kk � kk�1
u�1k ak

���� ���� <1	 

and

ak
5 ¼ a ¼ ðakÞ 2 x : lim

k
ðkþ 1Þak converges

	 

;

where

âkðnÞ ¼ kku
�1
k

ak
kk � kk�1

þ 1

kk � kk�1
� 1

kkþ1 � kk

� �Xn
j¼kþ1

aj

" #
;

ðk < nÞ:

Then c0 Dk
u

� �� �b ¼ ak
2 \ ak

3 \ ak
4 and c Dk

u

� �� �b ¼ ak
3 \ ak

4 \ ak
5.

Proof. Consider the equation,
Xn
k¼0

akxn¼
Xn
k¼0

Xk
j¼0

Xj

i¼j�1
ð�1Þj�i ki

ujðkj�kj�1Þ
yi

" #( )
ak

¼
Xn�1
k¼0

kk

uk

ak
kk�kk�1

þ 1

kk�kk�1
� 1

kkþ1�kk

� �Xn
j¼kþ1

aj

" #
yk

þ kn

unðkn�kn�1Þ
anyn

¼
Xn�1
k¼0

âkðnÞykþ
kn

unðkn�kn�1Þ
anyn¼Dk

nðyÞ;

ð15Þ

where Dk ¼ ðdk
nkÞ is defined by

dk
nk ¼

âkðnÞ if k < n;
kn

unðkn�kn�1
Þan; if k ¼ n;

0; if k > n;

8><>:
where n; k 2 N. Then, we deduce by (15) ax= (akxk) 2 cs
whenever ax ¼ ðakxkÞ 2 c0 Dk

u

� �
if and only if Dky 2 c whenever

y= (yk) 2 c0. This means that a ¼ ðakÞ 2 fc0 Dk
u

� �
gb if and

only if Dk 2 (c0:c). Therefore, by using Lemma 5.2, we derive
from (11) and (12) thatX1
j¼k

aj exists for each k 2 N; ð16Þ

sup
n

Xn�1
k¼0
jâkðnÞj <1; ð17Þ

sup
k

kk

ukðkk � kk�1Þ
ak

���� ���� <1: ð18Þ

Hence, we conclude that fc0 Dk
u

� �
gb ¼ ak

2 \ ak
3 \ ak

4.

Similarly, we deduce from Lemma 5.3 with (15) that
a ¼ ðakÞ 2 fc Dk

u

� �
gb if and only if Dk 2 (c:c). Therefore, we

derive from (11) and (12) that (16)–(18) hold. Further, it can

easily be seen that the equality,

Xn
k¼0
ðkþ 1Þak ¼

Xn�1
k¼0

âkðnÞ þ
kn

unðkn � kn�1Þ
an; ðn 2 NÞ; ð19Þ

holds which can be written as follows:Xn
k¼0
ðkþ 1Þak ¼

X
k

dk
nk; ðn 2 NÞ:

Consequently, we obtain from (13) that

fðkþ 1Þakg 2 cs:

Hence, we deduce that, fc Dk
u

� �
gb ¼ ak

3 \ ak
4 \ ak

5. h

Theorem 5.7. The c dual of the spaces c0 Dk
u

� �
and c Dk

u

� �
is the

set ak
3 \ ak

4.

Proof. This result can be proved similarly as the proof of the
Theorem 5.6 with Lemma 5.4 instead of Lemma 5.2. h
6. Certain matrix mappings on the spaces c0
k
u

� �
and c k

u

� �
For brevity in notation, we shall write
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ânkðmÞ ¼
kk

uk

ank
kk � kk�1

þ 1

kk � kk�1
� 1

kkþ1 � kk

� �Xm
j¼kþ1

anj

" #
;

ðk < mÞ

and

ânk ¼
kk

uk

ank
kk � kk�1

þ 1

kk � kk�1
� 1

kkþ1 � kk

� �X1
j¼kþ1

anj

" #
;

for all n; k;m 2 N provided the convergence of the series.
We first state some lemmas which are used in proving the

Theorems 6.5, 6.6, 6.7.

Lemma 6.1 (see, 25). The matrix mappings between the BK-
spaces are continuous.

Lemma 6.2 (see, 26). A 2 (c:lp) if and only if

sup
F2F

X
n

X
k2F

ank

�����
�����
p

<1; ð1 6 p <1Þ:

Lemma 6.3 (see, 26). A 2 (c:c0) if and only if

sup
n

X
k

ank <1; ð20Þ

lim
n
ank ¼ 0; for all k 2 N; ð21Þ

lim
n

X
k

ank ¼ 0: ð22Þ

Lemma 6.4 (see, 26). A 2 (c0:c0) if and only if (20) and (21)

holds.

We now prove the following results on matrix

tranformations:

Theorem 6.5.

(i): Let 1 6 p <1. Then A 2 ðc Dk
u

� �
: lpÞ if and only if

sup
F2F

X
n

X
k2F

ânk

�����
�����
p

<1; ð23Þ

sup
m

Xm�1
k¼0
jânkðmÞj <1; ðn 2 NÞ; ð24Þ

fðkþ 1Þankg1k¼0 2 cs; ðn 2 NÞ; ð25Þ

lim
n

kk

ukðkk � kk�1Þ
ank ¼ an; ðn 2 NÞ ð26Þ

and

ðanÞ 2 lp: ð27Þ

(ii) A 2 ðc Dk
u

� �
: l1Þ if and only if (25) and (26) holds and

sup
n

X
n

jânkj <1 ð28Þ

and (an) 2 l1.
Proof. Suppose the conditions (23)–(27) holds and x 2 c Dk
u

� �
.

Then, we have by Theorem 5.6 that fankgn2N 2 ½c Dk
u

� �
�b for all

n 2 N and this implies the existence of the A-transform of x,

i.e., Ax exists. Also, it is clear that the associated sequence
y= (yk) is in the space c and hence yk fi l as k fi1 for some
suitable l. Further, it follows by combining Lemma 6.2 with
(23) that the matrix bA ¼ ðânkÞ is in the class (c:lp), where

1 6 p <1.

Let us now consider the following eqquality derived by

using the relation (5) from the mth partial sum of the seriesP
kankxk;

Xm
k¼0

ankxk ¼
Xm�1
k¼0

ânkðmÞyk þ
km

umðkm � km�1Þ
anmym; ðn; k

2 NÞ: ð29Þ

Then, since y 2 c and bA 2 ðc : lpÞ; bAy exists and so the ser-
ies
P

kânkyk converges for every n 2 N. Furthermore, it follows

by (25) that the series
P1

j¼kanj converges for all n; k 2 N and
hence ânkðmÞ ! ânk as m fi1. Therefore, if we pass to the
limit in (29) as m fi1, then we obtain by (26) thatX
k

ankxk ¼
X
k

ânkyk þ lan; ðn 2 NÞ; ð30Þ

which can be written as follows:

AnðxÞ ¼ bAnðyÞ þ lan; ðn 2 NÞ: ð31Þ

This yields by taking the lp-norm that

kAxklp 6 k bAyklp þ jljkanklp <1;

which leads us to the consequence that Ax 2 lp and hence
A 2 ðc Dk

u

� �
: lpÞ.

Conversely, suppose that A 2 ðc Dk
u

� �
: lpÞ. Then

fankgn2N 2 ½c Dk
u

� �
�b for all n 2 N and this with Theorem 5.6

implies the necessity of the conditions (24) and (25). On the

hand, since c Dk
u

� �
and lp are BK-spaces; we have by Lemma 6.1

that there is a constant M> 0 such that

kAxklp 6Mkxkc Dk
uð Þ; ð32Þ

holds for x 2 c Dk
u

� �
. Now, let F 2 F. Then, the sequence

z ¼
P

k2Fb
ðkÞðkÞ is in c Dk

u

� �
, where, the sequence b(k)(k) =

fbðkÞn ðkÞgn2N is defined by (7) for every fixed k 2 N. Further,
we by (9) that

kzkl1 ¼ k ^̂ðzÞkl1 ¼ k
X
k2F

^̂ðbðkÞðkÞÞkl1 ¼ k
X
k2F

ekkl1 :

Furthermore, for ever n 2 N, we obtain by (7) that

AnðzÞ ¼
X
k2F

AnðbðkÞðkÞÞ ¼
X
k2F

X
j

anjðbðkÞj ðkÞÞ ¼
X
k2F

ânk:

Hence, since the inequality (32) is satisfied for the sequence

z 2 c Dk
u

� �
, we have for any f 2 F that

X
n

X
k2F

ânk

�����
�����
p" #1

p

6M;

which shows the necessity of (23). Thus, it follows by Lemma
6.2 that bA ¼ ðânkÞ 2 ðc : lpÞ.
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Now, let y= (yk) 2 c/c0 and consider the sequence x = (xk)

defined by (6) for every k 2 N. Then, x 2 c Dk
u

� �
and y ¼ ^̂ðxÞ,

that is the sequences x and y are connected by the relation (5).
Therefore, the transforms Ax and bAy exists. This leads us to

the convergence of the series
P

ankxk and
P

ânkyk for every
n 2 N. Thus, we deduce that

lim
m

Xm�1
k¼0

ânkðmÞyk ¼
X
k

ânkðmÞyk; ðn; k 2 NÞ:

Consequently, we obtain from (29) as m fi1 that

lim
m

km

umðkm � km�1Þ
anmym; ðn 2 NÞ;

exists and since y 2 c/c0, we conclude that limm
km

umðkm�km�1Þ anm

exists, which shows the necessity of (26) and so the relation

(31) holds, where l = limkyk.
Finally, since Ax 2 lp and bAx 2 p, the necessity of (27) is

immediate by (31) and the proof of part (i) of the theorem is

complete.

Since the part(ii) can be proved by using the similar way of

that used in the proof of the part (i) with Lemma 5.4 instead of
Lemma 6.2. h

Remark. It is obvious by (28) that the limit

lim
m

Xm�1
k¼0

ânkðmÞj j ¼
X
k

jânkðmÞj;

exists for each n 2 N. This just says us that the condition (28)
implies the condition (24).

Now, we may note that (c0:lp) = (c:lp) for 1 6 p 61 (see,
[21]). Thus, by means of the Theorem 5.6 and Lemma 5.4, we
immmediately conclude the following theorem:

Theorem 6.6.

(i) Let 1 6 p <1. Then A 2 ðc0 Dk
u

� �
: lpÞ if and only if (23)

and (24) holds andX1
j¼k

anj exists; ðn; k;m 2 NÞ; ð33Þ

kk

ukðkk � kk�1Þ
ank

	 

2 l1; ðn 2 NÞ: ð34Þ

(ii) A 2 ðc0 Dk
u

� �
: l1Þ if and only if (25)–(27) hold.

Proof. It is natural thing that the present theorem can be
proved by the same technique used in the proof of Theo-
rem 6.5, above and so we omit the proof. h

Theorem 6.7.

(i) Let 1 6 p <1. Then A 2 ðc Dk
u

� �
: cÞ if and only if

(25),(26) and (28) hold and

lim
n
an ¼ 0; ð35Þ

lim
n
ânk ¼ ak; ðk 2 NÞ; ð36Þ
and

lim
n

X
k

ânk ¼ a: ð37Þ

Proof. Suppose A satisfies the conditions (25), (26), (28), (35),
(36) and (37) and take any x 2 c Dk

u

� �
. Then, since (28) implies

(24), we have by Theorem 5.6 that fankgn2N 2 ½c Dk
u

� �
�b for all

n 2 N and this implies the existence of the A-transform of x,
i.e., Ax exists. We also osberve from (28) and (36) that

Xk
j¼0
jajj 6 sup

n

X
j

jânjj <1

holds for every n 2 N. This implies that (ak) 2 l1 and hence the

series
P

kðyk � lÞ converges, where y = (yk) 2 c is the sequence
connected with x = (xk) by the relation (5)such that yk fi l as
k fi1. Further, it is obvious by combining Lemma 5.3 with
the conditions (28), (36) and (37) that the matrix bA ¼ ânk is

in the class (c:c).
Now, by the similar proof used in the proof of the

Theorem 6.5, we obtain that the relation (30) holds which can

be written as follows:X
k

ankxk ¼
X
k

ânkðyk � lÞ þ l
X
k

ânk þ lan; ðn; k 2 NÞ: ð38Þ

In this situation, we see by passing to the limit in (38) as
n fi1 that the first term on the right tends to

P
kakðyk � lÞ

by (28) and (36), the second term tends to la by (37) and the

last term tends to la by (35). Consequently, we have that

AnðxÞ !
X
k

akðyk � lÞ þ lða� aÞ as n!1;

which shows that Ax 2 c and hence A 2 ðc Dk
u

� �
: cÞ.

Conversely, suppose that A 2 ðc Dk
u

� �
: cÞ. Then, since the

inclusion c � l1 holds, we have that A 2 ðc Dk
u

� �
: l1Þ. This

leads us with Theorem 6.5 to the necessity of the conditions

(25), (26) and (28). Furthermore, let bðkÞðkÞ ¼ fbðkÞn ðkÞgn2N
2 c Dk

u

� �
and hence by (7) for every k 2 N. Then, it can be

easily seen that AbkðkÞ ¼ fânkgn2N and hence fânkgn2N 2 c for

every k 2 N, which shows the necessity of (36). Next, let
z ¼

P
kb
ðkÞðkÞ. Then, since the linear transformation

T : c Dk
u

� �
! c defined by analogy as in the proof of the

Theorem 22 is continuous, we obtain by (9) that

^̂ðzÞ ¼
X
k

^̂ðbkðkÞÞ ¼
X
k

dnk ¼ 1; ðk 2 NÞ;

which shows that ^̂ðzÞ ¼ e 2 c and hence z 2 c Dk
u

� �
. On the

other hand, sicne c Dk
u

� �
and c are BK spaces, Lemma 6.1, im-

plies the continuity of the matrix mapping A : c Dk
u

� �
! c.

Thus, we have for every n 2 N that

AnðzÞ ¼
X
k

AnðbkðkÞÞ ¼
X
k

ânk;

which shows the necessity of (37).
Now, it follows by (28),(36) and (37) with Lemma 5.3 thatbA ¼ ânk 2 ðc : cÞ. This leads us with (25) and (26) to the

consequence that the relation (31) holds for all sequences
x 2 c Dk

u

� �
and y 2 c which are connected by the relation (5)

such that yk fi l as k fi1.
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Further, since Ax 2 c and bAy 2 c, the necessity of (35) is

immediate by (31) and this completes the proof. h

Corollary 6.8. Let 1 6 p <1. Then A 2 ðc Dk
u

� �
: c0Þ if and

only if (25),(26) and (28) hold and

lim
n
an ¼ a;

lim
n
ânk ¼ 0; ðk 2 NÞ; ð39Þ

and,

lim
n

X
k

ânk ¼ 0:

Proof. The proof can be obtained on similar lines as in Theo-

rem 6.7 with Lemma 6.3 instead of Lemma 5.3. h

Corollary 6.9. A 2 ðc0 Dk
u

� �
: cÞ if and only if (28), (32), (33) and

(36) hold

Proof. This result can be proved similarly by using Lemma 5.2

and Theorems 5.6 and 6.6. h

Corollary 6.10. A 2 ðc0 Dk
u

� �
: c0Þ if and only if (28), (33), (34)

and (39) hold

Proof. This result can be proved similarly by using Lemma 6.4
and Theorem 5.6 and Corollary 6.9. h
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