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1. Introduction

It is a very active research topic to investigate Hermitian positive semidefinite solutions to matrix

equations or positive solutions to operator equations. For instance, Hermitian positive semidefinite

solution to the matrix equation

AXB = C (1.1)

were studiedbyKhatri andMitra [9] in1976andZhang [20] in2004, respectively. In2007, Cvetković-Ilić

et al. [3] considered the positive solution to the special case of (1.1)

AXA∗ = B (1.2)

in C∗-algebras. In 2008, under the assumption that the underlying space is finite-dimensional or the

range of B is contained in the range of A∗, Xu et al. [18] proposed a solvability condition for the operator

equation (1.1) to have a positive solution, and gave an expression of the general positive solution to

(1.1) in the general setting of Hilbert C∗-modules.

In 1976, Khatri [9] established necessary and sufficient conditions for the existence of Hermitian

positive semidefinite solution to the system of matrix equations{
A1X = C1,

XB2 = C2
(1.3)

and presented an expression for Hermitian positive semidefinite solution to this equation in terms of

generalized inverse of some matrices when the solvability conditions are satisfied. In 2008, Dajić and

Koliha [5] proposednecessary and sufficient conditions for theexistenceof apositive solution to (1.3) in

rings and rings with an involution, and gave an expression of such a solutionwhen the solvability con-

ditions aremet,whichgeneralized themain results in [4] forHilbert spaceoperators.Moreover, Xu [19],

Fang et al. [6] investigated system (1.3) of operator equations in the framework of Hilbert C∗-modules.

As is known to us that a Hilbert C∗-module is a natural generalization of a Hilbert space and a C∗-
algebra. Therefore investigating operator equations over Hilbert C∗-modules is very meaningful. Note

that (1.1)–(1.3) are somespecial casesof the following systemofmatrix equationsoroperator equations⎧⎨
⎩

A1X = C1,

XB2 = C2,

A3XB3 = C3,
(1.4)

whose general solution was first investigated over the complex number field by Bhimasankaram

[2], and over the real quaternion field by Wang and Lin, etc. [11,13–16], respectively. So far, to our

knowledge, there has been little information on either the positive semidefinite solution to system

(1.4) of matrix equations over the complex field or the positive solution to system (1.4) of adjointable

operator equations over Hilbert C∗-modules.

Motivated by theworkmentioned above,we in this paper aim to give somenecessary and sufficient

conditions for the system of adjointable operator equations (1.4) to have a positive solution over the

Hilbert C∗-modules, as well as present an expression for the general positive solution to this system

when the solvability conditions are satisfied. Our approach is different from that in dealing with the

complex matrix case.

The paper is organized as follows. In Section 2, we begin with some basic concepts and results

about adjointable operators and generalized inverse of adjointable operators over Hilbert C∗-modules.

In Section 3 we give some necessary and sufficient conditions for the existence of a positive solution

to the system (1.4) of adjointable operator equations over Hilbert C∗-modules. When the solvability

conditions are met, we also present an expression for the general positive solution to (1.4). In Section

4 we consider some special cases of the system (1.4) of adjointable operator equations over Hilbert

C∗-modules.

2. Preliminaries

HilbertC∗-modules arose as generalizations of thenotionHilbert space. Thebasic idea is to consider

modules over C∗-algebras instead of linear spaces and to allow the inner product to take values in the



Q.-W. Wang, C.-Z. Dong / Linear Algebra and its Applications 433 (2010) 1481–1489 1483

C∗-algebra. The structure was first used by Kaplansky [8] in 1952. For more details of C∗-algebra and

Hilbert C∗-modules, we refer the reader to [10,17].

Let A be a C∗-algebra. An inner-product A-module is a linear space E which is a right A-module

(witha scalarmultiplication satisfyingλ(xa) = x(λa) = (λx)a for x ∈ E, a ∈ A, λ ∈ C), togetherwith

a map E × E → A, (x, y) → 〈x, y〉 such that

(1) 〈x,αy + βz〉 = α〈x, y〉 + β〈x, z〉;
(2) 〈x, ya〉 = 〈x, y〉a;
(3) 〈x, y〉 = 〈y, x〉∗;
(4) 〈x, x〉 � 0, and 〈x, x〉 = 0 ⇔ x = 0

for any x, y, z ∈ E, α,β ∈ C and a ∈ A. An inner-product A-module E is called a (right) Hilbert

A-module if it is complete with respect to the induced norm ||x|| = 〈x, x〉1/2.
Throughout this paper H1 and H2 denote two Hilbert C∗-modules, and B(H1, H2) is the set of all

maps T : H1 → H2 forwhich there is amap T∗ : H2 → H1 such that 〈Tx, y〉 = 〈x, T∗y〉, for any x ∈ H1

and y ∈ H2. We know that any element T of B(H1, H2) is a bounded linear operator. We call B(H1, H2)
the set of adjointable operators from H1 into H2. In case H1 = H2,B(H1, H1) which we abbreviate to

B(H1), is a C∗-algebra and we use the notation I to denote the identity operator. We write R(A) and

N(A) for the range and null space of A ∈ B(H1, H2). An operator A ∈ B(H1, H2) is regular if there is an

operator A− ∈ B(H2, H1) such that AA−A = A, A− is called an inner inverse of A. It is well known that

A is regular if and only if R(A) and N (A), respectively, are closed and complemented subspaces of H2

and H1. For simplicity, we use LA and RA to stand for I − A−A and I − AA−, respectively.

An operator A ∈ B(H) is called Hermitian (or self-adjoint) if A∗ = A, and positive if 〈Ax, x〉 � 0 for

all x ∈ H, we write A� 0 if A is positive. The set B(H)+ of the positive operators is a subset of the

Hermitian operators.

The Moore–Penrose inverse of A ∈ B(H1, H2) is defined as the operator A† ∈ B(H2, H1) satisfying

the Penrose equations

AA†A = A, A†AA† = A†, (A†A)∗ = A†A, (AA†)∗ = AA†.

An operator A ∈ B(H1, H2) has the (unique) Moore–Penrose inverse if and only if A has closed

range, or equivalently if and only if it is regular. If a regular operator A is positive, then A† � 0 and

AA† = A†A.

Lemma 2.1 (Lemma 2.1 in [4]). Let A ∈ B(H1, H2) with closed range. Given a pair of topological

complements M, N of R(A), N(A) respectively, there exist a unique inner inverse A− ∈ B(H2, H1) of A

with R(AA−) = R(A), N(AA−) = M, R(I − A−A) = N(A−A) = N(A) and N(I − A−A) = R(A−A) = N.

Lemma 2.2 (Remark 1.2 in [19]). The closeness of any one of the following sets implies the closeness of the

remaining three sets R(A), R(A∗), R(AA∗), R(A∗A).

Lemma 2.3 (Lemma 3.6 in [18]). Let H be a Hilbert C∗-module, A and B be two positive elements of B(H),
and A, B and A + B have closed ranges. Then

(a) R(A + B) = R(A) + R(B) = {Ax + By|x, y ∈ H},
(b) (A + B)(A + B)−A = A, (A + B)(A + B)−B = B,

(c) A(A + B)−B = A(A + B)†B,
(d) A(A + B)−B = B(A + B)−A,

(e) (A(A + B)−B)∗ = A(A + B)−B,

(f ) A(A + B)−(A + B) = A, B(A + B)−(A + B) = B.

Lemma2.4 (Lemma3.7 in [18]). Let H1, H2 be Hilbert C
∗-modules, A ∈ B(H1, H2)with closed range. Then

(a) A†A and AA† both are projections,

(b) R(A†A) = R(A†) = R(A∗), so that A†AA∗ = A∗,
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(c) R(AA†) = R(A), so that A∗AA† = (AA†A)∗ = A∗,
(d) The restriction of A† on R(A)⊥ is identically zero.

For other important properties of operators and generalized inverses of operators see [7,12].

3. Positive solution to system (1.4) of adjointable operator equations

In this section,wepresentnecessaryandsufficient conditions for theexistenceof apositive solution,

andgiveanexpression for thegeneralpositive solution to system(1.4)of adjointableoperatorequations

overHilbertC∗-modules.Webegin this sectionwith the following lemmas,which canbededuced from

[18,19].

Lemma3.1 (Remark 3.6 in [18]). Let H1, H2, H3 be Hilbert C
∗-modules, and A ∈ B(H2, H3), B ∈ B(H1, H2)

have closed ranges, and C ∈ B(H1, H3) such that AA†CB†B = C. Then for any X ∈ B(H2), X is a solution to

(1.1) if and only if (A†A)X(BB†) = A†CB†, where A†A and BB† are projections (hence positive elements) of
B(H2).

Lemma 3.2 (Lemma 3.1 in [18]). Let A ∈ B(H1), B ∈ B(H2, H1), D ∈ B(H2). Suppose that A has closed

range, M is a Hermitian operator given by

M =
[
A B

B∗ D

]
.

Then M � 0 if and only if A� 0, AA−B = B, D − B∗A−B � 0.

Lemma 3.3 (Theorem 2.1 in [19]). Let A, C ∈ B(H1, H2), and A and CA∗ have closed ranges. Then the

adjointable operator equation AX = C has a positive solution X ∈ B(H1) if and only if CA∗ � 0, R(C) ⊆
R(CA∗). In this case, the general positive solution is given by

X = C∗(CA∗)−C + LASL∗
A,

where S ∈ B(H1)
+ is arbitrary, C∗(CA∗)−C is a particular positive solution to AX = C, independent of the

choice of the inner inverse (CA∗)−.

Lemma 3.4 (Theorem 3.7 in [19]). Let H, K, L be Hilbert C∗-modules, and A1, C1 ∈ B(H, K), B2, C2 ∈
B(L, H),

D =
[
A1

B∗
2

]
, E =

[
C1
C∗
2

]
, F =

[
C1A

∗
1 C1B2

(A1C2)
∗ C∗

2B2

]

such that D, F be regular. Then (1.3) has a positive solution X ∈ B(H) if and only if F is positive and

R(E) ⊆ R(F). In this case, the general positive solution of (1.3) can be expressed as

X = E∗F−E + LDTL∗
D,

where T ∈ B(H)+ is arbitrary.

In 2007, Cvetković-Ilić et al. in [3] proposed a solvability condition for a positive solution to the

operator equation (1.2), and derived an expression for the general positive solution to (1.2) in C∗-
algebra, which can be generalized into Hilbert C∗-modules.

Lemma 3.5 (Corollary 2.3 in [3]). Let H, K be Hilbert C∗-modules. Assume that A ∈ B(H, K), C ∈ B(K)
such that A has closed range, C is Hermitian and R(C) ⊂ R(A). Then Eq. (1.2) has a positive solution

X ∈ B(H) if and only if C is positive. If, in addition, C has closed range,then the general positive solution of

(1.2) can be expressed as

X=X0 + X0X
†
0E(I − A†A) + (I − A†A)E∗X0X

†
0

+ (I − A†A)E∗X†
0E(I − A†A) + (I − A†A)F(I − A†A),
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where X0 = A†C(A†)∗ is a particular positive solution, E is arbitrary operator in B(H), and F is an arbitrary

positive operator in B(H).

Now, we turn our attention to consider the positive solution to system (1.4) of adjointable operator

equations.

The solvability conditions and an expression for the general solution to the system (1.4) of matrix

equations were once given over the complex number field by Bhimasankaram [2], as well as over the

quaternion algebra byWang [13], respectively. The results can be generalized into Hilbert C∗-modules.

In the following theorem, we suppose the system of adjointable operator equations (1.4) is consistent.

For simplicity, put

D =
[
A1

B∗
2

]
, E =

[
C1
C∗
2

]
, F =

[
C1A

∗
1 C1B2

(A1C2)
∗ C∗

2B2

]
,

Y0 = E∗F−E, M = A3LD, N = L∗
DB3, L = M†(C3 − A3Y0B3)N

†, T = M†M + NN†,

P = T−NN†, Q = M†MT−, R = L + L∗ + Y1 + Y2, S = NN†T−LT−M†M.

We now give the main theorem of this paper as follows.

Theorem 3.6. Let Hi (i = 1, 2, . . . , 5) be Hilbert C∗-modules, A1 ∈ B(H1, H2), A3 ∈ B(H1, H4), B2 ∈ B
(H3, H1), B3 ∈ B(H5, H1), C1 ∈ B(H1, H2), C2 ∈ B(H3, H1), C3 ∈ B(H5, H4). Suppose thatD, F, M, N, P, Q ,

R, S, T , NN†T−L, M†MT−L∗ have closed ranges. Then the consistent system of adjointable operator equa-

tions (1.4) has a positive solution in B(H1) if and only if

F � 0, S � 0, R(E) ⊆ R(F), R(NN†T−L) ⊆ R(S), R(M†MT−L∗) ⊆ R(S), (3.1)

in which case an expression of the general positive solution of (1.4) can be expressed as

X = Y0 + LD(X0 + X0X
†
0U(I − T†T) + (I − T†T)U∗X0X

†
0

+(I − T†T)U∗X†
0U(I − T†T) + (I − T†T)V(I − T†T))L∗

D, (3.2)

where Y0 is a particular positive solution of (1.3), X0 = T†R(T†)∗, Y1 and Y2 are arbitrary positive solutions
to

Y1P = LT−M†M, QY2 = NN†T−L (3.3)

such that R is positive, U is arbitrary and V is an arbitrary positive operator in B(H1).

Proof. Suppose that the consistent system of adjointable operator equations (1.4) has a positive solu-

tion X0, then X0 is a positive solution of the system of adjointable operator equations (1.3). It follows

from Lemma 3.4 that F is positive and X0 can be expressed as

X0 = Y0 + LDYL∗
D, Y ∈ B(H1)

+ (3.4)

where Y0 is a particular positive solution of (1.3). Taking (3.4) into A3XB3 = C3 yields that

MYN = C3 − A3Y0B3 (3.5)

has a positive solution. By Lemma 3.1,

M†MYNN† = L (3.6)

has a positive solution. It can be verified that

(NN†T−M†M)∗ = M†M(T−)∗NN† = M†MT−NN† = NN†T−M†M.

Note that (3.6) is consistent, and

S = NN†T−M†MYNN†T−M†M = NN†T−M†MY(NN†T−M†M)∗.
Hence, if Y is positive, so is S. Now, we show that N(S∗) ⊆ N((NN†T−L)∗). Let S∗x = 0, by Reid’s

inequality for the positive operator NN†YNN†,
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‖(NN†T−L)∗x‖2 = ‖(NN†T−M†MYNN†)∗x‖2

= ‖NN†YNN†T−M†Mx‖2

= ‖NN†Y(NN†)∗T−M†Mx‖2

� ‖NN†Y(NN†)∗‖〈NN†Y(NN†)∗T−M†Mx, T−M†Mx〉
= ‖NN†Y(NN†)∗‖〈M†MT−NN†Y(NN†)∗T−M†Mx, x〉
= ‖NN†Y(NN†)∗‖〈NN†T−M†MYNN†T−M†Mx, x〉
= ‖NN†Y(NN†)∗‖〈Sx, x〉
= 0,

which means (NN†T−L)∗x = 0, implying N(S∗) ⊆ N((NN†T−L)∗). Hence R(NN†T−L) ⊆ R(S). Simi-

larly, we can get R(M†MT−L∗) ⊆ R(S).
Suppose (3.1) is satisfied. By F is positive, the system of adjointable operator equations (1.3) has a

positive solution and this positive solution can be expressed as

X = Y0 + LDYL∗
D, Y ∈ B(H1)

+ (3.7)

where Y0 is a particular positive solution of (1.3). Taking (3.7) into A3XB3 = C3,we can get (3.5). Now,

we want to show that (3.5) has a positive solution. By Lemma 3.1, we get that (3.6) has a positive

solution.We first show that when S is positive and R(NN†T−L) ⊆ R(S), R(M†MT−L∗) ⊆ R(S), positive
solutions Y1, Y2 can be so determined that R is positive. We rewrite (3.3) as Y1P = L1, QY2 = L2. It is

easy to verify that L2Q
∗ = S = P∗L1. By (3.1), R(S) = R(L∗1) = R(L2). It follows from Lemma 3.3 that

the general positive solutions to every equation of (3.3) can be written respectively as

Y1 = L1S
−L∗1 + R∗

PVRP , Y2 = L∗2S−L2 + LQWL∗
Q .

Note that

P∗(L − L1S
−L2) = L2 − SS−L2 = 0; (L − L1S

−L2)Q
∗ = L1 − L1S

−S = 0.

Hence

R = (L1 + L∗2)S−(L∗1 + L2) + [R∗
PVRP + LQWL∗

Q + L − L1S
−L2 + L∗ − L∗2S−L∗1]

= (L1 + L∗2)S−(L∗1 + L2) + [R∗
P LQ

] [
V L − L1S

−L2
L∗ − L∗2S−L∗1 W

] [RP

L∗
Q

]
.

When we choice S− be S†, then (L1 + L∗2)S†(L∗1 + L2) is positive, any other inner inverse of S is of the

form S− = S† + Y − S†SYSS† for some Y . Then

(L1 + L2S
∗)S−(L∗1 + L2) = (L1 + L∗2)(S† + Y − S†SYSS†)(L∗1 + L2) = (L1 + L∗2)S†(L∗1 + L2),

which show that (L1 + L2S
∗)S−(L∗1 + L2) is positive for any inner inverse of S. If we choose

V = I, W = (L∗ − L∗2S−L∗1)(L − L1S
−L2),

by Lemma 3.2, R is positive, and we can get

Y1 = L1S
−L∗1 + R∗

PRP , Y2 = L∗2S−L2 + (L∗ − L∗2S−L∗1)(L − L1S
−L2).

It is easy to verify that (3.2) is a positive solution to (1.4).

Suppose that X is a positive solution of (1.4). It follows from Lemma 3.4 that X can be express as

X = Y0 + LDYL∗
D, Y ∈ B(H1)

+

where Y0 is a particular positive solution of (1.3). Then

X − Y0 = LDWL∗
D (3.8)

for a positive operator W . Putting
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Y1 = M†MWM†M, Y2 = NN†WNN†,

it follows from

M†MWM†MT−NN† = M†MWNN†T−M†M

= M†(A3LDWL∗
DB3)N

†T−M†M

= LT−M†M,

M†MT−NN†WNN† = NN†T−M†MWNN†

= NN†T−M†(A3LDWL∗
DB3)N

†

= NN†T−L,

that Y1 and Y2 are positive solutions to the adjointable operator equations in (3.3), respectively. Note

that

R = L + Y1 + Y2 + L∗

= M†(C3 − A3Y0B3)N
† + M†MWM†M + NN†WNN† + (M†(C3 − A3Y0B3)N

†)∗

= M†MWNN† + M†MWM†M + NN†WNN† + NN†WMM†

= (M†M + NN†)W(M†M + NN†)

= TWT

= TWT∗.

By Lemma 3.5, W can be expressed as

W=X0 + X0X
†
0U(I − T†T) + (I − T†T)U∗X0X

†
0

+ (I − T†T)U∗X†
0U(I − T†T) + (I − T†T)V(I − T†T), (3.9)

where X0 = T†R(T†)∗, Y1 and Y2 are arbitrary positive solution to

Y1P = LT−M†M, QY2 = NN†T−L

such that R is positive, U is arbitrary and V is an arbitrary positive operator in B(H1). Taking (3.9) into

(3.8), we know X can be expressed as (3.2). �

4. Some special cases of the system of adjointable operator equations (1.4)

In this section,we consider some special cases of the systemof adjointable operator equations (1.4).

The followingcorollaryconsider theadjointableoperatorequation (1.1)over theHilbertC∗-modules.

Without loss of generality, by Lemma 3.1, we assume that the coefficient operators A and B are both

positive.

Corollary 4.1. Let A, B ∈ B(H)+, C ∈ B(H). Suppose that A + B, E = (A + B)†B, K = A(A + B)†, C +
C∗ + Y + Z, T = B(A + B)†C(A + B)†A have closed ranges. Then the adjointable operator equation (1.1)
has a positive solution in B(H) if and only if

AA†CB†B = C, T � 0, R[A(A + B)†C∗] ⊂ R(T), R[B(A + B)†C] ⊂ R(T),

in which case the general positive solution of (1.1) is given by

X = X∗ + X∗(X∗)†US + SU∗X∗(X∗)† + SU∗(X∗)†US + SVS,

where X∗ = (A + B)†(C + C∗ + Y + Z)[(A + B)†]∗ is a particular positive solution of (1.1), Y and Z are

arbitrary positive solution of
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Y(A + B)†B = C(A + B)†A, A(A + B)†Z = B(A + B)†C

such that C + C∗ + Y + Z is positive, S = I − (A + B)†(A + B), U is arbitrary and V is an arbitrary

positive operator in B(H).

Remark 4.1. In 2008, Xu et al. [18] proposed a solvability condition for the existence of a positive

solution to the adjointable operator equation (1.1), and derived an expression for the general positive

solution to (1.1) over Hilbert C∗-modules. However, their results are restricted by the assumption that

the underlying space is finite-dimensional or R(B) is contained in R(A∗). Our result in Corollary 4.1 has

no the constraint mentioned above.

We denote the complex number field by C, the set of all m × n matrices over C by Cm×n. Next

corollary considers positive semidefinite solutions to the matrix equation (1.1) over the complex

number field. Without loss of generality, by [9], we assume that the coefficient matrices A and B

are both positive semidefinite.

Corollary 4.2. Let A, B ∈ Cm×m be positive semidefinite matrices and C ∈ Cm×m. Then the matrix equa-

tion (1.1) has a positive semidefinite solution in Cm×m if and only if

AA†CB†B = C, T � 0; rank T = rank{A(A + B)†C∗} = rank{B(A + B)†C},
in which case the general positive semidefinite solution of (1.1) is given by

X = X∗ + X∗(X∗)†US + SU∗X∗(X∗)† + SU∗(X∗)†US + SVS,

where X∗ = (A + B)†(C + C∗ + Y + Z)[(A + B)†]∗ is a particular positive semidefinite of (1.1), Y and Z

are arbitrary positive semidefinite solution of

Y(A + B)†B = C(A + B)†A, A(A + B)†Z = B(A + B)†C

such that C + C∗ + Y + Z is positive semidefinite, S = I − (A + B)†(A + B), U is arbitrary and V is an

arbitrary positive semidefinite matrix in Cm×m.

Remark 4.2. Khatri and Mitra [9] once presented the necessary and sufficient conditions for the ex-

istence of positive semidefinite solution to matrix equation (1.1) and established the expression of

the general positive semidefinite solution in terms of generalized inverse of some matrices when the

solvability conditions are satisfied.However, in 1984, Baksalary [1] pointedout that the general expres-

sion of positive semidefinite solution to matrix equation (1.1) in [9] did not involve all of the positive

semidefinite solution. In 2008, Xu etc. gave a correct expression of the general positive semidefinite

solution to matrix equation (1.1) in terms of generalized inverses of some matrices [18, Theorem 5.5].

In Corollary 4.2, we also give a new expression of this general positive semidefinite solution which is

different from one in [18].

We now investigate the positive semidefinite solution to the system of matrix equations (1.4) in

the following corollary. For simplicity, we put

D =
[
A1

B∗
2

]
, E =

[
C1
C∗
2

]
, F =

[
C1A

∗
1 C1B2

(A1C2)
∗ C∗

2B2

]
,

Y0 = E∗F−E, M = A3LD, N = L∗
DB3, L = M†(C3 − A3Y0B3)N

†, T = M†M + NN†,

P = T−NN†, Q = M†MT−, R = L + L∗ + Y1 + Y2, S = NN†T−LT−M†M.

Corollary 4.3. Suppose that A1 ∈ Cm×n, A3 ∈ Cp×n, B2 ∈ Cn×l , B3 ∈ Cn×q, C1 ∈ Cm×n, C2 ∈ Cn×l ,

C3 ∈ Cp×q, then the consistent system of matrix equations (1.4) has an positive semidefinite solution

in Cm×m if and only if

F � 0, S � 0, rank(NN†T−L) = rank(S), rank(M†MT−L∗) = rank(S),
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in which case the general positive semidefinite solution of (1.4) is given by

X=Y0 + LD(X0 + X0X
†
0U(I − T†T) + (I − T†T)U∗X0X

†
0

+ (I − T†T)U∗X†
0U(I − T†T) + (I − T†T)V(I − T†T))L∗

D,

where Y0 is a particular positive semidefinite solution of (1.3), X0 = T†R(T†)∗, Y1 and Y2 are arbitrary

positive semidefinite solution to

Y1P = LT−M†M, QY2 = NN†T−L

such that R is positive semidefinite, U is arbitrary and V is an arbitrary positive semidefinite matrix in

Cm×m.
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