
Theoretical Computer Science I IO (1993) 405-418

Elsevier
405

A semantic characterization of the
well-typed formulae of A-calculus

Communicated by M. Sintzoff

Received May 1990

Revised June 1991

Forster, T., A semantic characterization of the well-typed formulae of i-calculus, Theoretical

Computer Science I IO (1993) 405-418.

A model-theoretic operation is characterized that preserves the property of being a model of typed

i-calculus (i.e.. the result of applying it to a model of typed i.-calculus is another model of typed

i-calculus). An expression is well-typed iff the class of its models is closed under this operation.

1. Introduction

1.1. HistorJq

Type disciplines are meat and drink to computer scientists. People whose first

encounter with them was as a means of avoiding Russell’s paradox and its kin (which

meant most people - or at least most logicians - in the days before theoretic computer

science acquired its present importance in logic) are liable to think that they are ad

hoc modifications which are justified by their usefulness for this purpose. This is

a mistake. Most type distinctions in computer science arise in a quite different way.

Consider (finite) product types, for example, which arise from ordered tuple functions.

All we know about ordered pairs is that we have three functions: pair(x, y), fst (x) and

snd(y) and the obvious algebraic theory for them. The typing discipline provided by

product types very neatly characterises as ill-typed precisely those existential formulae

that are not true in the free algebra. For example, the assertion ‘(3x)(x=pair(x, x))’ is

Corrrspondrncr to: T. Forster. Department of Pure Mathematics and Mathematical Statistics, 16 Mill
Lane. Cambridge CB2 ISB. UK.

0304-3975/93:$06.00 (‘ 1993- Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82605973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ill-typed and false in the free algebra. Another way of putting this is to say that the

ill-typed existential sentences are precisely those whose truth value is implementation-

dependent. The apparent difference between these two ways of generating type

distinctions (and there are others, for example one can always introduce a quotient

type whenever there is an equivalence relation, as in the introduction of cardinal

numbers) is that the type distinctions of set theory are invoked in order to prevent us

slipping into paradox while the type distinctions given by product types are designed

merely to prevent us asking silly questions to which the system cannot provide an

answer (because it is implementation-dependent).

Despite these two apparently different geneses one can give a surprisingly unified

treatment of these two syntactical devices. and it takes the form of a “preservation

theorem” of the kind standard in model theory of the middle years of this century. One

of the functions of model theory is to identify semantic properties (“What does the

class of models of the formula look like?“) with syntactic properties (“What does the

formula look like”) which tend to be easier to deal with. Preservation theorems are

results of the form: “A formula @ has syntactic property r iff the class of its models is

closed under the operation d”.

In [3] I gave a preservation theorem that characterizes the .strat$ed formulae of set

theory. I knew at that time that the result could be extended to characterize the

well-typed formulae of i.-calculus (with function types but not product types) and

announced this result as something which was to come, but I had not noticed that it

could cover (finite) product types as well. The purpose of this article is to provide the

correct generalisation of the machinery of Forster [3] to the polyadic case some-

thing which it is easy to get wrong!

The preservation theorem of Forster [3] identifies stratified formulae of set theory

as those formulae $I such that the class of all models of C$ is closed under the

construction of permutation models (in the sense of RiegerrBernays, not

Frankel-Mostowski) for a particular kind of permutation, which I called setlike. The

idea is very simple: If 0 is a permutation of a set M (being the domain of a model

*N = (M, E)) then we obtain a new structure ,N” with domain M and membership

relation .xE,~ iff .YEC(~). This new structure is a prr~~zutution mode/ qf .N. The

principal result of [3] is that a formula @ of the language of set theory is equivalent to

a stratified formula iff whenever . N is a model of @ (and 0 is setlike) then (M” is too.

Permutation models have a long history. If we have a model (V, E) of ZF let 0 be

the transposition exchanging the empty set and its singleton. Then we define .Y E, _r by

x E a‘~, and, in general, 4” as the result of replacing all atomic formulae x E 4’ in 4 by

~~cr‘y. It turns out that in the model V” consisting of the old universe and the new

membership relation E, the “old” empty set has become an object identical to its own

singleton, and foundation has failed. As it happens all the other axioms of ZF are

preserved. The new model is said to be a perrrmt&oJr mods>/ of the old.

This is in Rieger and Bernays. Scott [9] showed how any permutation model of

a model of Quine’s NF is also a model of NF, and since this was (and remains) the only

useful way of transforming models of NF it was refined to an independence method by

Henson, P&try and Hinnion.’ Henson (working in NF) showed that permutation

models preserve all stratified sentences. However, since in NF permutations of the

universe can be sets, the universe itself is a set, and there is no bar on large classes

being sets, Henson naturally considered permutations that are sets. As it happens

there are some (unstratified) sentences that are preserved by permutations that are sets

that are not preserved by all permutations -- notably the whole of cardinal arithmetic.

Permutations that are not sets of the model will preserve (in general) only those

formulae that use two types only. Therefore, to obtain a version of Henson’s theorem

for which a proving a converse was feasible, we needed to find the right class of

permutations: one that preserved neither too much nor too little. This class, the class

of setlike permutations, was discovered by Forster [3]. The refinement of Henson’s

theorem we need is that stratified sentences are preserved by setlike permutations.

Now for the converse. The other missing concept that had to be found was that of

a stratimorphism. A stratimorphism between two structures is a.Jirmily of bijections

between the two structures that in some sense preserves stratified information only.

This was discovered independently by the author and Petry in the 1970s. Although the

name “stratimorphism” is the author’s, it was Petry who first saw the use to which

these objects could be put. There is a celebrated lemma of Keisler ~ the Keisler

ultrapower lemma which is a very useful tool in model theory. The reader will recall

that this lemma says that two structures are elementarily equivalent iff they have

isomorphic ultrapowers. Pitry felt there should be a version of this theorem with

“elementarily equivalent with respect to stratified formulae” instead of “elementarily

equivalent” and “stratimorphic” instead of isomorphic, and he proved this in [7].

Pitry’s stratified version of Keisler’s ultrapower Lemma is the critical step in proving

the converse to the refinement of Henson’s Lemma, and the conjunction of these two

is the main theorem of Forster [3].

The proof of that result depended on features of E which can be found elsewhere. In

particular E is extensional: 1 can identify x if I know all the y such that YES. Similar

features are exhibited by the ternary relations .Y = (y, 2) andf’.u = y. Certainly, I can

identify .Y once I know for which pairs y,z it happens that x = (y, z) (there is only

one!) and if 1 am given the set of all pairs,f: x such thatJ“r = y then I can recover ~3. It is

this extensionality which enables us to make sense of a notion of set/i& permutation.

Thus, the two operations giving rise to product types (pair) and function types

(application) have a kind of extensionality which ~ as it happens - will enable us to

prove a preservation theorem analogous to that in Forster [3]. This point is worth

making because the theorem itself will be proved in a kind of generality that does not

make its application to these cases blindingly obvious. One reason for this is that it is

not customary to think of i.-calculus as a first-order theory in a language with one

three-place predicate which reads “s applied to J' is z”.

This is not the first appearance of permutations in characterising certain kinds

of well-typed formulae: Lauchli [6] proves that the intuitionistic theory of the

’ For an extensive treatment of this technique see Forster [4].

conditional is complete for a certain interpretation that involves permutations. The

possibility of a connection between these results has not been explored.

What will this preservation theorem do for us’ ? The application of permutation

methods to set theory is well, but not widely, understood ~ one of the minor byways of

the subject. The answer is that this theorem raises the possibility that permutation

methods could be applied to theories with n-ary extensional relations with the same

profit as they have been applied to set theory. In practice, this means i-calculus, for

‘if‘applied to I is J”’ is a three-place relation extensional in both its second and third

arguments and we can express i-calculus as a first-order theory with equality and this

one three-place relation. It may be that permutation methods can shed light on the

status of equations between ill-typed i-terms in the way it has illuminated in NF the

status of objects characterised by unstratitied formulae such as Quine atoms (s = (xi),

internal E-automorphisms and well-founded sets. To attempt this, we would need

a supply of setlike permutations. What setlike permutations can we find in the

i-calculus‘? The intuitionistic correctness of wffs such as il+(B+C).tt.B+(A+C)

reveals an infinite family of terms like

all corresponding to sethke permutations. A referee has suggested that the status of

dependent types in this context should be discussed. It is not clear that this technique

has anything to say about them. As for (infinitary) product types nsr(r+3)+x and

suchlike ~ these cannot be treated straightforwardly in the same way because these

types are not naturally presented as the type of values of some (infinitary) operation in

the way that CI x /j is the type of pairs of things of type 2 and /j. It may be that the most

significant consequence of this result is that any theory with one extensional relation

generates its own typing scheme.

Since Forster [3] is recapitulated in what follows is not necessary to have read it,

though it is a good rehearsal for sonic of the grimier parts of what is to follow.

We begin by reviewing notation.

2. Definitions

Sx is the group of all permutations of X. -‘P’s is the power set of .Y. N is the natural

numbers (with S but not + or x), Z the integcrs.,~=,,fif’i.r.(f’“u). A siyrzuture is an

object used to index the sorts of a many-sorted theory. Classically. in a many-sorted

theory the syntactic objects variables, predicate letters etc. all have sort indices, and

the structure to which all these indices belong is the sigrrurur’e. We will tend to use the

letter ‘.Y” (to connote both sort and signature) to range over signatures.

We will often use subscripted variables in the style ‘.Y~‘. This is done so that we can

define functions on variables hj, dc~firiirrg tlzc’,/irnc,tiorl.s WI their. xhsuipts. so that we do

not have to use quotation marks to make apparent that we are talking about variables

rather than their values. Sometimes there will be sort-subscripts as well, but they will

be s, t not i,,j, k... The letters ‘i. j, k, . ..’ will be used as subscripts when we wish to

identify members of list of variables 2.

We are assuming here that our sorts are monomorphic, so that, considered as sets,

they are formally disjoint. Although languages will have no constants, we shall see

later that this is not a serious restriction.

3. Ultrapower lemmas

In [7] P.&try proved an ultrapower lemma for the many-sorted set theory men-

tioned above. We will need both that and a generalisation to be proved here. We will

start with P&try’s ultrapower lemma.

3. I. Petr!’ ‘s ultrupouw lrnirnu

.V is to be N, the natural numbers. The sole primitive is E. The following definitions

are central.

Definition 3.1. When X is an interval of Z, of a kind to be made precise below, 4 is

a X-strat(fied formula of the language of set theory if we can define on the set of

variables occurring free or bound in 4 an X-valued function CJ such that if C$ contains

an occurrence of ‘.Y~E.Y~’ then o‘j = a‘i + 1 and if 4 contains an occurrence of ‘.~i = .~j’

then o’i = a‘j. If such a function can be defined on the bound variables we say that C#J is

weakly X-strtrtified and we say the function is a stratification.

Although this notion is in principle available for any X that admits a successor

function, we will not be interested in finite quotients of the additive group of the

positive and negative integers. Z, but only in N, or some interval (n: 0 d n < kJ of it. In

the first case we shall call the formulae strat@d (or rtvakly stratijed) and in the

second n-.strat{fied.

As noted above we will be assuming that the languages we deal with here have no

constants. Although this is a simplification it is not a oversimplification: if we wish to

prove preservation theorems for a language with constants we would have to recast

the proof with “weakly stratified” for “stratified”, and the lemmas from Pttry [7] that

we use here are proved by him in the appropriate more general form. If there are to be

constants, then the appropriate notion of wvakly strut{fied allows the stratification to

fail to be single-valued on constants.

Definition 3.2. Two extensional structures _ C/ = (M, E ,,) and I ‘= (N, E () for the

language of set theory are X-.stratirnorplzic if there is a family { .fi: ic X I- of bijections

Mt*N indexed by X so that for each i, -MI= .YEJ~. I ‘+,fi’.~~f~+~‘y.

We will also need to make frequent use of the ability to switch between a many-

sorted and a one-sorted version of a structure. If we have two structures (M, E ,,) and

(N, E ,) that are elementarily equivalent w.r.t. X-stratified formulae we need two

corresponding X-sorted structures that are elementarily equivalent. The natural way

to do this is to

Definition 3.3. Obtain from // = (M. E ,,) the structure N x X with domain M x X

and a membership relation (1~. x) E,~ (rn’, s+ I) iff HIE ,,t~i for each .YEX. Let us call

this a .sor.trrl ~~~sio/z of .//.

Thus, (52, E ,,) and (N, E ,) are stratimorphic iff their sorted versions are iso-

morphic.

X is of course a parameter but we will use this jargon only in cases where it is clear

what signature is that we have in mind. The various levels of the sorted version of

// have a natural isomorphism: send (rn. x) to (nr, x + I). Indeed, there is a kind of

converse: if an X-sorted structure has an isomorphism that moves the types of its

arguments like this then it is a sorted version of a one-sorted structure.

Lemma 3.4. (Petry’s ultrapower lemma [7]). !f’(M, E ,, > rrrul (N. E ,) or@ rlrrnerztar-

i/)9 tyuiwltmt bc’.r.t. .stratjfid .su~t~v~cc.s they haw N-str(ltinzorphic, ultrcrpowws.

Proof. The sorted versions of (M. E ,,) and (N. E ,) are elementarily equivalent, by

design. Now we invoke a version of Keisler’s ultrapower lemma ([2, Theorem 6.1.91)

for many-sorted structures to conclude that the sorted versions of (M, E ,,) and

(N, E ,) have isomorphic ultrapowers. U

This many-sorted notion of ultrapower is distinct from the one-sorted construction:

the signature of the obvious ultrapower is an ultrapower of the signature of the

original structure and. thus, may contain nonstandard elements. The ultrapower

elements belonging to these nonstandard sorts have to be discarded to leave only

objects of standard sorts. The isomorphisms between these two many-sorted stripped-

down ultrapowers arc precisely stratimorphisms between the corresponding one-

sorted structures.

In fact, by saturation. WC can show that the ultrapowers will be Z-stratimorphic,

though we will not make use of this fact.

We will be considering languages with one II + l-place relation, R, with or without

equality. Unless we start off with infinitely many 2 2-placed predicates, we can safely

suppose that we have precisely one nonlogical many-place predicate, since we can use

always glue two predicate letters (an n-place predicate F and an m-place predicate G)

together to get (an n+~-place) one by

since then F(.<)tt3J?H(.<, r) and G(T) c*ZI.;H(s, T). This works unless F and G are

empty which is not an interesting case.

This is a one-sorted language. We are now going to consider an algebra that will

become the signature of a corresponding many-sorted language. An n-ary algebra is

an algebra with one n-ary function ,f: The algebra of interest to us will be the initial

n-ary-algebra with countably many generators. Let us call it ‘.Y’. The initial I-ary

algebra is of course (N, S); the initial 2-ary algebra is the type algebra of typed

E.-calculus.’

Definition 3.5. An II + 1 -place relation R is said to be extensional (in its n + 1 th place)

iff

V~,~‘(.U=S’~~V~(R(~~,.Y’)~*R(J;,.Y)))

and we can define what it is to be extensional in other argument places in the obvious

way.

From now on n is a fixed natural number 3 2 and .‘/’ is the initial II + I-ary algebra

with countably many generators; the sole operator is .f; and 9 is the corresponding

language. Let ~,4 be a formula of 9’. All our variables are things like ‘-xi’ for HEN; so, we

can make the following definition:

Definition 3.6. A minir?zal variable is one that never occurs in the n + 1 th place of R in

any subformula of 4. A sorting (of variables) for a formula 4 of 9 is a map p from the

subscripts of the variables (free or bound) in 4 to .v’ satisfying:

(1) If’R(.u, .._ Y ,,._ Y,,+,)‘occurs in C$ then p’(n+ l)=.f‘(/i‘l, p‘n), where the i are the

subscripts in ‘i’.

(2) If ‘Si=.Yi’ occurs in 4 then ,u’i=p‘j.

Definition 3.7. If there is a sorting for 4, C$ is sorted. If there is a function into

,V defined only on the indices of the hound variables of C$ but otherwise like a sorting

then 4 is \re~kl~ sorted.

These are evidently generalisations of the corresponding notions of strut$cution

above; in particular, the case n = 2 corresponds to well-typed formulae of jG-calculus.

There will also be analogues of n-stratification, but no suggestive notations, since we

‘We have restricted attention to languages with one n+ I-place relation, R. and the corresponding
signature we want is the initial algebra with one nary relation. In general, we could consider a language
with k relations of arlties _Y! ._. Ye, and the corresponding signature will be the inittal algebra with
operations of aritics ~1 -I . ..I~~ I. At this stage, the extra complexities of the more general case do not

beem to be illuminating. and we will restrict ourself to the one-relation case.

do not have standard ways of denoting initial segments of initial n-ary algebras.

Similarly, we need to generalise the notion of sfrt~tinrorphic.

Definition 3.8. (M, R ,,) and (N, R ,) are -‘/‘-isotnorphic 8 there is a family (II,,:

SEA/) i of bijections (M. R ,, > f-t (N, R ,) such that V.<E. N and for all n-tuples SE,(/’

and for all J’E. 4, N I= R (S, J’) -. 1 ‘/= R(h,,‘r, II,,, ‘s,,, h,-,;,‘y) where ‘s,‘is the ith

entry in ‘.?.

Proof. Exactly as the proof of Lemma 3.4. n

As in the binary case, we can even use saturation to show that the ultrapowers are

X-isomorphic where X is the free algebra formed from ,V by adding inverses to

,f’ (projection functions) fi for each i < tl:

These algebras stand in the same relation to the corresponding initial tt-ary algebra

as Z does to N. Johnstone [S] calls these Jtimsott Tot&i algebras.

4. Rieger-Bernays permutation models

In this section we will prove the two preservation theorems promised earlier. First

we consider the model-theoretic construction in its original (ungeneralised) binary

version, and then. having used that as an illustration. grind through the generalisation

to n-ary languages.

We saw in the introduction the RiegerBernays device for proving the indepen-

dence of the axiom of foundation from ZF. This trick can be applied to any structure

with a binary relation (even with equality included ~ though (s=j.)” is z=J‘) to get

a new structure. It will turn out that it is not a sensible move unless the relation

is extensional (so. really we are restricted to set theory in this ~ the simplest

binary case) and the permutation satisfies an extra condition which we must now

characterize.

Let. N and 1’ be structures for the language of set theory which are also models of

the axiom of extensionality. Let 5 be a bijection N -. I ‘. Since , K and I 1 are models

of some sort of set theory the map .xH~“.Y gives rise to a map defined on ./I, since

every element of N corresponds to a unique subset of .N. Bearing in mind the

definition ofj this will be the restriction ofj.7 to IN. It may or may not be onto, 1 ‘, for

there is, in general, no guarantee that the image of any subset of. N under translation

by T is a set in the sense of. 1 ‘, which is what we would need for j‘s (or, strictly, its

restriction to .N) to be another bijection .NH I ‘.

Definition 4.1. Fix two structures N and 1 ‘. If 7 is a bijection .N++~ 1 such that the

restriction of,i”‘r to // is onto I then we say that T is n-set/i/w. Ifj”‘T is a bijection

//et. 1 for all II then we say that T is “setlike”.

(This should be parametrised with the pair I. N, I ‘) but this can be inferred from

context.)

The thinking behind this piece of terminology is roughly that we expect the

image of a set in a (function which is a) set to turn out to be a set, but we do not

(unless we have some form of the axiom scheme of replacement) expect the image

of a set in a cArs.s to turn out to be a set. So, a class such that the image of any set

in it is another set is itself in that respect a bit like a set. It is immediate from the

definition of setlike that setlike maps are closed under composition and inverses, and

from this it follows immediately that the setlike permutations of. N form a subgroup

of the symmetric group on. N. This definition of “setlike” is the key to the result, for if

T is not setlike we do not have enough control over .i/ (though we remark without

proof that if 5 is rz-setlike then N’ will satisfy the same (n + 2)-stratified formulae

as. 4) and on the other hand if T is a set of ,// it may preserve some sentences that are

not stratified.

The first direction is that permutation models (modulo setlike permutations)

preserve stratified sentences. This will be a consequence of the next two observations.

Remark 4.3. !f’(M. E (,) trrd (N, E ,) are N-stratimorpllic, (which is the smw us there

heinq II setlikr hijection ii ++. 1 ‘) theJ’ .suti+f:v thr xme strtrtifietl sentence.s.

Proof. This is an immediate consequence of the definitions. Ll

Proof. We will construct (hi: in N) by recursion on i, where each hi:. N +. N’. ho is

some arbitrary setlike permutation of .N. for the sake of simplicity the identity.

Thereafter we will want to know that

SEJ * h,,‘.YE,h,,+ I’!‘.

which is to say

.YEY c--f Iz,,‘rErh,,+,‘J*.

But we have

since UE~ - a‘lr~(,j‘~)it. for any U, I‘ and any permutation G. So, by extensionality,

rh,, + 16~'=(,j'/~,,)'y, which is to say

h ,, + , ‘J’ = (T ’ I(.jbl?,, ry.

i.e. 11 ,,+, =(T-')(j‘h,,) when restricted to ./I. So, for 113 I, we set h,+, to be the

restriction of (5-l)(,j‘h,,) to Ii. I J

This recursive definition of /I,, shows why we have to assume T is setlike, for,

otherwise, the output of the recursion will not be defined on the whole of .N.

We shall prove the other direction by appealing to a (slight weakening of a) lemma

of Chang and Keisler [2, Lemma 3.2.1. p 1241.

We shall let T be a theory with one axiom preserved by setlike permutations. d will

be the set of stratified wffs. We will need to know that in this case .d and ,ti have

stratimorphic ultrapowers (which is P&try’s ultrapower lemma) and then that if .n/ and

.8 are stratimorphic then one is a permutation model of the other.

Lemma 4.6. (M, E ,,) untl (N. E ,) are N-strcltinlorplli~ #‘one is N permutation nzodel

of‘tlie other (rdirre the pernurtutiori is setlike).

Proof.

3: (M, E ,,) and (N, E ,) (Ire strutirnorphic; so,jbr each n, (.f, + 1)- I ,f,, is a permu-

tation of (M, E ,,). Let us call it II,,. Evidently hi+,,+, is the restriction Ofj‘hi+. to ,N;

so, hi is n-setlike for each n and, therefore, setlike. (.N. E ,,)“” is isomorphic to

(N-E ,) for any II: for instance:

(,/ii, E ,,)“I I= SE)

415

iff

(.N,E,,)I=YEIz,‘_)’

iff

<M, 6 ,, > I= .XE(,f;)- 1 ‘.f‘o’.Y

iff

so, ,f, is an isomorphism between (. N. E ,,)“’ and (I 1’, E ,,) and we have shown

above that all hi are setlike.

*: For the converse. N and t N’ are stratimorphic where h, = (T,)~ ‘. T, is defined by

recursion: TV is the identity and T,,+ 1 = T j‘(T,,). (Although this notation for T,, is

standard, it is a nonce notation here, in order not to cause confusion with the use of

the subscript in II,,.) 0

One step forward from here would be to prove the following amplification of an

earlier remark, here offered without proof ~ that the result continues to hold if we

replace “stratified” by “(n +2)-stratified” and “setlike” by “n-setlike”. In the proof we

will need the notion of “n-stratimorphic”. We could also explore the more general

version with constants and weak stratification as developed by Pttry.

However, the reason for presenting this result here was as a rehearsal for the

theorem about more general situations in which we encounter sortable formulae, to

which we now turn.

Let R be an II + 1 -place relation extensional in (for the sake of simplicity ~ it doesn’t

matter) its II+ 1 th place. n+ I-ary extensional relations on a set X correspond in

a natural way to injections X 4 ./P‘(X”), and it is this characterisation we will need.

The injection is i.u~X. (7: R(;, x)). In particular, E corresponds to the map

i.s E X .(.u n X): X 4 Y‘X. Note that if we input extensional relations into the amalga-

mation in Section 3.2 we get an extensional relation back. Our definition of a setlike

map X ++ Y was geared to the extensional relation E. We will now need to generalise it.

Definition 4.7. Let R be an extensional relation on X as above (and S a corresponding

relation on Y), we think of R as the map j.scX.(F: R(T, x)} : X G Y‘(X)“. Let cri: idn

be bijections X++ Y. Consider a map from X” to Y” defined by moving the ith

coordinate according to cri. This acts naturally (via j) on sets of n-tuples, and thereby

on the range of i.u~ X. [_: R(j, x)), which is a set of n-tuples.

Notate the resulting map ‘JR(g)‘. Then if JR is defined on all n-tuples in the closure

of (h) under JR we say that h is R-setlike or just setlike for short.

So, if & is a list of setlike permutations then J,(i) is the unique T such that

~.<~J’R(.;_, J’)++R(hI’.YI . ..IZ.,‘.Y,,. 5’)‘)

This is the generalisation of serlikr that we need for the general theorem. As before, the

R-setlike maps are closed under composition and inverse, but this is worth spelling

out in a little detail.

This generalises the triviality from the dyadic case, namely that j‘(gr)=(j’c~)(,j’t).

We also need to generalise the idea of a permutation model to the general case:

Definition 4.9.

//‘I= R(.?, y) ++df d/=R(.+y).

where R is extensional in the rr+ lth place (occupied by ‘J’) and R’(.<. Jo) is R(.<, r’y)

analogous to s E, 1’.

The principal result now is Theorem 4. IO.

The proof of the preservation theorem for permutation models and sorted formulae

parallels exactly the proof of the preservation theorem for permutation models and

stratified formulae.

First we prove that sorted formulae are preserved by permutation models modulo

setlike permutations. Then we show that any two models which agree on sorted

formulae have ultrapowers which are :/‘-isomorphic and. therefore, permutation

models of each other modulo some setlike permutation, at which point we can invoke

Lemma 4.5 again.

Lemma 4.11. Let (. /i, R ,, > hr LI structure \cith eyutrlit~~ and me ertrtwiotd relution

utd let T he (I setlike pertnutcrtiotl of’ 4. Then (. N, R ,,) mu1 (. N, R.,,)’ ure ,Y’-

isotwrphic.

Proof. We will construct (h,: SE:/) by recursion on s, where each 11,:. N + IN’. We

turn them into components of an .Y’-isomorphism in the obvious way. /I,,,, where sn is

a generator. is some arbitrary setlike permutation of c 4, for the sake of simplicity of

the identity. Thereafter we will want to know that there is 17,;~ satisfying

(M. R ,,) (= R(.:, y) tf (M, R ,,)rl= R(h,,,‘.u, . II,~~‘.Y,,, h,.;‘y),

R(s) H R(h,,‘r, . ../I..~‘J’)‘,

where s, is the sort of the ith variable in ‘.<’ which is to say

R(r\) t-t R(II,~,‘.Y, t.. T/I,.;‘J).

But in any case, since /I,,, is setlike, we have

R(;_) ++ R(h,>,‘z, . ..h.,,‘x,,, (J,(h,,, . h,,,))‘v);

so, by extensionality of R, the desired /I~? is T ’ JK (h,,, h,,,). This map is a composi-

tion of two setlike maps and. so, is setlike by Lemma 4.8. ‘1

For the other direction we have to prove that two structures that agree on sorted

sentences have ultrapowers that are permutation models of each other. We already

have an ultrapower lemma that says they have ultrapowers that are Y-isomorphic; so,

we need a lemma that says that if two structures are .Y’-isomorphic then one is

a permutation mode1 of the other where the permutation is setlike.

Lemma 4.12. !f’(M, R ,,) md (N, R ,) we .‘/‘-isorno~phic., ow is (I perrnutution model

of’tlw 0th ~Aerr the permUutiori is srtlike.

Proof. (Ad. R ,,) and (N, R ,) are :/-isomorphic; so. there is a family (h,: SE.Y)

such that for any sorts sI . . . s,, and any s, . .._ Y,!, J’. there is /I,.(;, such that

(M, R ,,)I= R(.Y, v,,,y) - (N. R ,)I= R(h,,‘sl . ..I~.,,‘s,,,h/,~,‘~).

Clearly. all the /I, are setlike. In particular, we may take all s, ,s,~ to be the same s; so,

(M, R ,,)I= R(:. y) - (N, R ,)+ R(h,‘s, . ..II.~~.s,,, /I,,,~~‘J).

so.

(lW,R,,)l=R(s ,..._ Y,~+,) - (N,R,)l=R(Il,,‘ul...h,‘.~,,,

Ihf,?, (/?,I- 1 1 k-y),

which is simply to say that /I, is an isomorphism between (M, R.,,) and
(N, R ,)“,,:I (‘I,)-‘, Now the permutation Ilfcy, (/I,)~ ’ is a composition of two setlike

maps and, so, is setlike. T1

5. Conclusion

That completes the proof of the preservation theorem for sorted formulae. As

indicated, there are various ways in which it could be generalised:

(1) We could consider sorting disciplines for languages with more than one exten-

sional relation. Although the amalgamation in Section 3.2 enables us to replace any

418 7: l‘,m,v,

(finite) number of extensional relations by one of very much higher arity, it is probably

cheaper to consider instead an initial algebra with a larger number of operations of

lower arity. However. the formal definitions of sortrd and .Y’-isomorphic become very

complicated with such signatures!

(2) We could prove the corresponding results for languages containing constants,

and formulae that are weakly sorted. Some of this is done in the work of Pttry 173.

(3) As hinted earlier, we could prove a sharper version (in the binary case) for

formulae that are n-stratified. being those preserved under permutations that are

n-setlike, and a corresponding version (in the n-adic case) for formulae that are

X-sorted, where X is some fragment of the initial algebra considered in the version

proved here.

[I] P. Bcrnays. A system of axiomatic set theory VII. ./. S~whr~lic~ Loc/I~~ 19 (1954) X6-91.

[Z] C.C. Chug and H.J. Keialer. IWCJ~/~,/ 7’11wr~~ (North-Holland, Amsterdam, 1974).

[3] T.E. Forster. Permutation models and stratified formulae preservation theorem. Z. !Lfath. Lcyik

Grrrr~rlliuq. .\Itrth. 36 (199 I) 3X5-3X8.

[4] T.E. Forster. .4/l ts.wr 011 SC>/ T/w~J~,~ wifh t, L u/ruxr/ SC,/. Oxford Logic Guides (Oxford Univ. Press.

Oxford lYY2).

[S] P.T. Joinstone, When ia a varlcty a lopes? .~/gqr/wtr L’r~irr,srrliv 21 (I 985) 19X-212.

[6] H. Lauchh. An abstract notion of realizabilitg for which intuitionistic predute logic is complete. J.

Myhill et al.. eds.. I,~r~ritir~rrisru u/u/ Pw~I/’ T/wr~~~~ (North-Holland. Amsterdam. 1970) 717 ~734.

[7] A. P&try. Une cara&risalion algbbrique dcs ~lructures satisfaisant les m2mcs sentences stratifikes.

C&irvs Cwlw Lo~qiqw 4 (19X2) 7 16.

[X] L. Rieger. A contribution to Giidel’s axiomatic set theory. Cz~/~os/rwc~h !Lltrr/~. J. 7 (82) (I 957) 323-357.

[9] D.S. Scott. Quine’s individuals. in: Nagel. cd.. Lwqic.. !Lf~,/hr,t/rjl~,!/!, trud Phrhaop/~~ o/‘Sc~irnw (Stanford.

1962) 111-115.

