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In this paper we extend the classical method of lattice dynamics to defective crystals with partial sym-
metries. We start by a nominal defect configuration and first relax it statically. Having the static equilib-
rium configuration, we use a quasi-harmonic lattice dynamics approach to approximate the free energy.
Finally, the defect structure at a finite temperature is obtained by minimizing the approximate Helmholtz
free energy. For higher temperatures we take the relaxed configuration at a lower temperature as the ref-
erence configuration. This method can be used to semi-analytically study the structure of defects at low
but non-zero temperatures, where molecular dynamics cannot be used. As an example, we obtain the
finite temperature structure of two 180� domain walls in a 2D lattice of interacting dipoles. We dynam-
ically relax both the position and polarization vectors. In particular, we show that increasing temperature
the domain wall thicknesses increase.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Although it has been recognized that defects play an important
role in nano-structured materials, the fundamental understanding
of how defects alter the material properties is not satisfactory. The
link between defects and the macroscopic behavior of materials re-
mains a challenging problem. Classical mechanics of defects that
studies materials with microscale defects is based on continuum
theories with phenomenological constitutive relations. In the
nanoscale, the continuum quantities such as stress and strain be-
come ill defined. In addition, due to size effects, to study defects
in nano-structured materials, non-classical solutions of defect
fields is necessary (Gutkin, 2006). The application of continuum
mechanics to small-scale problems is problematic; atomistic
numerical methods such as ab initio calculations (Meyer and Van-
derbilt, 2001; Ogata et al., 2009), Molecular Dynamics (MD) simu-
lations (Jang and Farkas, 2007; Guo et al., 2005) and Monte Carlo
(MC) simulations (Zetterstrom et al., 2005; Mok et al., 2007) can
be used for nanoscale mechanical analyses. However, the applica-
tion of these methods is largely restricted by the size limit and the
periodicity requirements. Current ab initio techniques are unable
of handling systems with more than a few hundred atoms. Molec-
ular dynamics simulations can model larger systems, however, MD
is based on equations of classical mechanics and thus cannot be
used for low temperatures, where quantum effects are dominant.
Engineering with very small structures requires the ability to solve
ll rights reserved.
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inverse problems and this cannot be achieved through purely
numerical methods. What is ideally needed is a systematic method
of analysis of solids with defects that is capable of treating finite
temperature effects.

The only analytic/semi-analytic method for solving zero-tem-
perature defect problems in the lattice scale is the method of lat-
tice statics. The method of lattice statics was introduced in
(Matsubara, 1952; Kanazaki, 1957). This method has been used
for point defects (Flocken and Hardy, 1969; Flocken, 1972), for
cracks (Esterling, 1978a,b; Hsieh and Thomson, 1973), and also
for dislocations (Boyer and Hardy, 1971; Esterling, 1978b; Esterling
and Moriarty, 1978; Maradudin, 1958; Shenoy et al., 1999; Tewary,
2000). More details and history can be found in (Born and Huang,
1998; Boyer and Hardy, 1971; Bullough and Tewary, 1970; Flocken
and Hardy, 1969; Flocken et al., 1970; Gallego and Ortiz, 1993;
Maradudin et al., 1971; Ortiz and Phillips, 1999; Shenoy et al.,
1999; Tewary, 1973) and references therein. Lattice statics is based
on energy minimization and cannot be used at finite temperatures.
The other restriction of most lattice statics calculations is the har-
monic approximation, which can be too crude close to defects. Re-
cently, motivated by applications in ferroelectrics, we developed a
general theory of anharmonic lattice statics capable of semi-ana-
lytic modeling of different defective crystals governed by different
types of interatomic potentials (Yavari et al., 2007a,b; Kavianpour
and Yavari, 2009). At finite temperatures, the use of quantum
mechanics-based lattice dynamics is necessary. Unfortunately, lat-
tice dynamics has mostly been used for perfect crystals and for
understanding their thermodynamic properties (Born and Huang,
1998; Dove, 1993; Kittel, 1987; Kossevich, 1999; Maradudin
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et al., 1971; Peierls, 1955; Wallace, 1965). There is not much in the
literature on corrections for anharmonic effects and systematic
solution techniques for defective crystals. Some of these issues will
be addressed in this paper.

In order to accurately predict the mechanical properties of
nanosize devices one would need to take into account the effect
of finite temperatures. It should be mentioned that most multiscale
methods so far have been formulated for T ¼ 0 calculations. An
example is the quasi-continuum method (Ortiz and Phillips,
1999; Tadmor et al., 1996). However, recently there have been sev-
eral attempts in extending this method for finite temperatures
(Diestler et al., 2004; Dupuy et al., 2005; Kulkarni et al., 2008; Tang
et al., 2006). As Forsblom et al. (2004) mention, very little is known
about the vibrational properties of defects in crystalline solids. Sa-
nati and Esetreicher (2003) showed the importance of vibrational
effects in semi-conductors and the necessity of free energy calcula-
tions. Lattice dynamics (Born and Huang, 1998; Peierls, 1955) has
been ignored with the exception of some very recent works (Taylor
et al., 1997). As examples of finite-temperature defect solutions we
can mention (Taylor et al., 1999; Taylor et al., 1997) who discuss
quasi-harmonic lattice dynamics for three-body interactions in
bulk crystals. Taylor et al. (1999) consider a slab, i.e., a system that
is periodic only in two directions. They basically consider a super-
cell that is repeated in the plane periodically. As Allan et al. (2000),
Allan et al. (1996) conclude, a combination of quasi-harmonic lat-
tice dynamics, molecular dynamics, Monte Carlo simulations and
ab initio calculations should be used in real applications. However,
at this time there is no systematic method of lattice dynamics for
thermodynamic analysis of defective systems that is also capable
of capturing the anharmonic effects. We should mention that in
many materials systems lattice dynamics is a valid approximation
up to two-third of the bulk melting temperature but it turns out
that harmonic approximation may not be adequate for free energy
calculations of defects at high temperatures (see Foiles, 1994 for
discussions on Cu). Hansen et al. (1999) show that for Al surfaces
above the Debye temperature quasi-harmonic lattice dynamic
approximation starts to fail. Zhao et al. (2005) show that quasi-har-
monic lattice dynamics accurately predicts the thermodynamic
properties of silicon for temperatures up to 800 K. In this paper,
we are interested in low temperatures where MD fails while qua-
si-harmonic lattice dynamics is a good approximation.

For understanding defect structures the main quantity of inter-
est is the Helmholtz free energy. Free energy is an important ther-
modynamic function that determines the relative phase stability
and can be used to generate other thermodynamic functions. In
quasi-harmonic lattice dynamics, for a system of n atoms, free en-
ergy is computed by diagonalizing a 3n� 3n matrix that is ob-
tained by quadratizing the Hamiltonian about a given static
equilibrium configuration. Using similar ideas, for a perfect crystal
with a unit cell with N atoms, one can compute the free energy by
diagonalizing a 3N � 3N matrix in the reciprocal space. In the local
quasi-harmonic approximation one assumes that atoms vibrate
independently and thus all is needed for calculation of free energy
is to diagonalize n 3� 3 matrices (Lesar et al., 1989) (see Rickman
and LeSar (2002) for a recent review of the existing methods for
free energy calculations). These will be discussed in more detail
in Section 3.

In this paper, we propose a theoretical framework of quasi-har-
monic lattice dynamics to address the mechanics of defects in crys-
talline solids at low but finite temperatures. The main ideas are
summarized as follows. We think of a defective lattice problem
as a discrete deformation of a collection of atoms to a discrete cur-
rent configuration. The lattice atoms are assumed to interact
through some interatomic potentials. At finite temperatures, the
equilibrium positions of the atoms are not the same as their static
equilibrium ðT ¼ 0Þ positions; the lattice atoms undergo thermal
vibrations. The potential and Helmholtz free energies of the lattice
are taken as discrete functionals of the discrete deformation map-
ping. For finite temperature equilibrium problems, the discrete
nonlinear governing equations are linearized about a reference
configuration. The finite-temperature equilibrium configuration
of the defective lattice can then be obtained semi-analytically.
For finite temperature dynamic problems, the Euler-Lagrange
equations of motion of the lattice are casted into a system of ordin-
ary differential equations by superimposing the phonon modes.
We should emphasize that our method of lattice dynamics is not
restricted to finite systems; defects in infinite lattices can be ana-
lyzed semi-analytically. The only restriction is the use of inter-
atomic potentials.

This paper is structured as follows. In Section 2 we briefly re-
view the theory of anharmonic lattice statics presented in Yavari
et al. (2007a,b). We then present an overview of the basic ideas
of the method of lattice dynamics for both finite and infinite atom-
ic systems in Section 3. This follows by an extension of these ideas
to defective crystals with partial symmetries. In Section 4 we for-
mulate the lattice dynamics governing equations for a 2D lattice
of dipoles with both short and long-range interactions. In Section 5
we study the temperature dependence of the structure of two 180�
domain walls in a dipole lattice. Conclusions are given in Section 6.

2. Anharmonic lattice statics

Consider a collection of atoms L with the current configuration
fxigi2L � Rn. Assuming that there is a discrete field of body forces
fFigi2L, a necessary condition for the current position fxigi2L to be
in static equilibrium is � @E

@xi þ Fi ¼ 0 8i 2 L, where E is the total sta-
tic energy and is a function of the atomic positions. These discrete
governing equations are highly nonlinear. In order to obtain semi-
analytical solutions, we first linearize the governing equations with
respect to a reference configuration B0 ¼ fxi

0gi2L (Yavari et al.,
2007a). We leave the reference configuration unspecified; at this
point it would be enough to know that we usually choose the ref-
erence configuration to be a nominal defect configuration (Yavari
et al., 2007a,b; Kavianpour and Yavari, 2009).

Taylor expansion of the governing equations for an atom i about
the reference configuration B0 ¼ fxi

0gi2L reads

� @E
@xi
þ Fi ¼ � @E

@xi
B0ð Þ �

@2E

@xi@xi
ðB0Þ � xi � xi

0

� �
�
X
j2L
j–i

@2E

@xj@xi
ðB0Þ � xj � xj

0

� �
� � � � þ Fi ¼ 0: ð1Þ

Ignoring terms that are quadratic and higher in fxj � xj
0g, we obtain

@2E

@xi@xi
ðB0Þ � xi � xi

0

� �
þ
X
j2L
j–i

@2E

@xj@xi
ðB0Þ � xj � xj

0

� �

¼ � @E
@xi
ðB0Þ þ Fi 8i 2 L: ð2Þ

Here, � @E
@xi ðB0Þ

n o
i2L

is the discrete field of unbalanced forces.

2.1. Defective crystals and symmetry reduction

In many defective crystals one can simplify the calculations by
exploiting symmetries. A defect, by definition, is anything that
breaks the translation invariance symmetry of the crystal. How-
ever, it may happen that a given defect does not affect the transla-
tion invariance of the crystal in one or two directions. With this
idea, one can classify defective crystals into three groups: (i) with
1D symmetry reduction, (ii) with 2D symmetry reduction, and (iii)
with no symmetry reduction. Examples of (i), (ii) and (iii) are free
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surfaces, dislocations, and point defects, respectively (Yavari et al.,
2007a). Assume that the defective crystal L has a 1D symmetry
reduction, i.e., it can be partitioned into two-dimensional equiva-
lence classes as follows:

L ¼
G
a2Z

GN
I¼1

SIa; ð3Þ

where SIa is the equivalence class of all the atoms of type I and in-
dex a (see Yavari et al., 2007a; Kavianpour and Yavari, 2009 for
more details). Here, we assume that L is a multi-lattice of N simple
lattices. For a free surface, for example, each equivalence class is a
set of atoms lying on a plane parallel to the free surface. Using this
partitioning for i ¼ Ia one can write

X
j2L
j–i

@2E

@xj@xi
ðB0Þ � xj � xj

0

� �
¼
X0
b2Z

XN

J¼1

X
j2SJb

@2E

@xj@xi
ðB0Þ � xJb � xJb

0

� �
;

ð4Þ

where the prime on the first sum in the right hand side means that
the term Jb ¼ Ia is omitted. The linearized discrete governing equa-
tions are then written as (Yavari et al., 2007a)

X0
b2Z

XN

J¼1

KIaJbuJb þ �
X0
b2Z

XN

J¼1

KIaJb

 !
uIa ¼ f Ia; ð5Þ

where

KIaJb ¼
X
j2SJb

@2E

@xj@xIa ðB0Þ; f Ia ¼ �
@E

@xIa ðB0Þ þ FIa;

uJb ¼ xJb � xJb
0 ¼ xj � xj

0 8j 2 SJb: ð6Þ

The governing equations in terms of unit cell displacement vector
Ua ¼ u1

a; . . . ;uN
a

� �T can be written asX
b2Z

AbðaÞUaþb ¼ Fa a 2 Z; ð7Þ

where AbðaÞ 2 R3N�3N; Ua;Fa 2 R3N . This is a linear vector-valued
ordinary difference equation with variable coefficient matrices.
The unit cell force vectors and the unit cell stiffness matrices are de-
fined as

Fa ¼
F1a

..

.

FNa

0
BB@

1
CCA; AbðaÞ ¼

K1a1b K1a2b � � � K1aNb

K2a1b K2a2b � � � K2aNb

..

. ..
.

� � � ..
.

KNa1b KNa2b � � � KNaNb

0
BBBB@

1
CCCCA; a;b 2 Z:

ð8Þ

Note that, in general, Ab need not be symmetric (Yavari et al.,
2007a). The resulting system of difference equations can be solved
directly or using discrete Fourier transform (Yavari et al., 2007a).

2.2. Hessian matrix for the bulk crystal

A bulk crystal is a defective crystal with a 0D symmetry reduc-
tion. Governing equations for atom I in the unit cell n ¼ 0 read
� @E

@xI þ FI ¼ 0; I ¼ 1; . . . ;N. Linearization about B0 ¼ fXIg yields

@2E

@xI@xI
ðB0Þ � ðxI � XIÞ þ

X
j2L
j–I

@2E

@xI@xj
ðB0Þ � ðxj � XjÞ þ � � �

¼ � @E

@xI ðB0Þ þ FI; I ¼ 1; . . . ;N: ð9Þ

Note that
X
j2L
j–I

@2E

@xI@xj
ðB0Þ � ðxj � XjÞ ¼

XN

J¼1
J–I

X
j2LJ

@2E

@xI@xj
ðB0Þ � ðxj � XjÞ

þ
X
j2LI
j–I

@2E

@xI@xj
ðB0Þ � ðxj � XjÞ: ð10Þ

We also know that because of translation invariance of the potential

@2E

@xI@xI
ðB0Þ ¼ �

X
j2L
j–I

@2E

@xI@xj
ðB0Þ: ð11Þ

Therefore, the linearized governing equations can be written as

XN

J¼1
J–I

KIJuJ þ �
XN

J¼1
J–I

KIJ

0
BB@

1
CCAuI ¼ f I

; I ¼ 1; . . . ;N; ð12Þ

where

KIJ ¼
X
j2LJ

@2E

@xI@xj
ðB0Þ; fI ¼ � @E

@xI
ðB0Þ þ FI;

uJ ¼ xJ � XJ ¼ xj � Xj 8j 2 LJ: ð13Þ

The Hessian matrix of the bulk crystal is defined as

H ¼

K11 K12 . . . K1N

K21 K22 . . . K2N

..

. ..
. . .

. ..
.

KN1 KN2 . . . KNN

0
BBBB@

1
CCCCA; ð14Þ

where KJI ¼ KIJ . Stability of the bulk crystal dictates H to be posi-
tive-semidefinite with three zero eigenvalues. In the case of a defec-
tive crystal, one can look at a sequence of sublattices containing the
defect and calculate the corresponding sequence of Hessians.

3. Method of quasi-harmonic lattice dynamics

At a finite temperature T (constant volume) thermodynamic
stability is governed by Helmholtz free energy F ¼ E� TS. In prin-
ciple, F is well-defined in the setting of statistical mechanics. Quan-
tum-mechanically calculated energy levels EðiÞ for different
microscopic states can be used to obtain the partition function
(Kittel and Kroemer, 1980; Weiner, 2002)

Q ¼
X

i

exp
�EðiÞ
kBT

� �
; ð15Þ

where kB is Boltzman’s constant. Finally F ¼ �kBT ln Q (see the
appendix). However, one should note that the phase space is astro-
nomically large even for a finite system. Usually, in practical prob-
lems, molecular dynamics and Monte Carlo simulations, coupled
with thermodynamic integration techniques, reduce the complexity
of the free energy calculations. For low to moderately high temper-
atures, quantum treatment of lattice vibrations in the harmonic
approximation provides a reliable description of thermodynamic
properties (Maradudin et al., 1971). In the following we review
the classical formulation of lattice dynamics first for a finite collec-
tion of atoms and then for bulk crystals.

3.1. Finite systems

For a finite system of N atoms suppose B ¼ fXigi2L is the static

equilibrium configuration, i.e., @E
@xi

���
xi¼Xi

¼ 0 8i 2 L. Hamiltonian of

this collection is written as
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Hðfxigi2LÞ ¼
1
2

X
i2L

mij _xij2 þ Eðfxigi2LÞ: ð16Þ

Now denoting the thermal displacements by ui ¼ xi � Xi potential
energy of the system is written as

Eðfxigi2LÞ ¼ EðfXigi2LÞ þ
1
2

X
i;j2L

uiT � @2E

@xi@xj
ðBÞuj þ � � � ð17Þ

Or

EðxÞ ¼ EðXÞ þ 1
2

uTUuþ oðjuj2Þ; ð18Þ

where U is the matrix of force constants. The Hamiltonian is
approximated by

HðxÞ ¼ EðXÞ þ 1
2

uTUuþ 1
2

_uTM _u; ð19Þ

where M is the diagonal mass matrix. Let us denote the matrix of
eigenvectors of U by U, and write

HðxÞ ¼ EðXÞ þ 1
2

qTKqþ 1
2

_qTM _q; ð20Þ

where q ¼ UTu is the vector of normal displacements and
K ¼ diagðk1; . . . ; k3NÞ is the diagonal matrix of eigenvalues of U. This
is now a set of 3N independent harmonic oscillators. Solving
Schröndinger’s equation gives the energy levels of the rth oscillator
as (Maradudin et al., 1971)

Enr ¼ ErðXÞ þ nþ 1
2

� �
�hxr ; n ¼ 0;1; . . . ; r ¼ 1; . . . ;3N; ð21Þ

where xr ¼ xrðfXigi2LÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr=mr

p
. The free energy is then written

as (Born and Huang, 1998)

FðfXigi2L; TÞ ¼ �kBT
X3N

r¼1

ln
X1
n¼0

exp
�Enr

kBT

� �

¼ EðfXigi2LÞ þ
1
2

X3N

r¼1

�hxr

þ kBT
X3N

r¼1

ln 1� exp � �hxr

kBT

� �
 �
: ð22Þ

Here it should be noted that we have considered a time-inde-
pendent Hamiltonian, which can be regarded as a first-order
approximation for some problems. Assume that Hamiltonian H of
a system contains a time-dependent parameter fðtÞ, say a time-
dependent external force. If the time variation of fðtÞ is slow and
does not cause a large variation of H in a time interval of the same
order as the natural period of the system with constant f, then this
approximation is valid (Nogami, 1991), otherwise one should con-
sider time-dependent harmonic oscillator systems. This can be the
case for various quantum mechanical systems (Kiwi and Rossler,
1972; de Lima et al., 2008; Meyer, 1981). In such situations one
should obtain the solution of Schröndinger’s equation for a time-
dependent forced harmonic oscillator and as a result, energy levels
would depend on the forcing terms too. As an example, Meyer
(Meyer, 1981) investigated energy propagation in a one-dimen-
sional finite lattice with a time-dependent driving force by solving
the corresponding forced Schröndinger’s equation. We also men-
tion that the above formula for the free energy is based on the qua-
si-harmonic approximation. As temperature increases such an
approximation may become invalid for some materials (Lacks
and Rutledge, 1994) and therefore one would need to consider
anharmonic effects. To include anharmonic terms in the free en-
ergy relation, anharmonic perturbation theory can be used by
choosing the quasi-harmonic state as the unperturbed state and
the perturbation is due to the terms higher than second order in
the Taylor expansion of the potential energy (Shukla and Cowley,
1971). This way, one accounts for anharmonic coupling of the
vibrational modes.

As we discuss in the appendix, to obtain the optimum positions
of atoms at a constant temperature T one should minimize the free
energy with respect to all the geometrical variables fXigi2L (Kittel
and Kroemer, 1980; Taylor et al., 1999). Thus, the governing equa-
tions are

@F

@Xi
¼ @E

@Xi
þ �h

2

X3N

r¼1

@xr

@Xi
þ �h

X3N

r¼1

1

exp �hxr
kBT

� �
� 1

@xr

@Xi
¼ 0: ð23Þ

To compute the derivatives of the eigenvalues, we use the
method developed by Kantorovich (1995). Consider the expansion
of the elements of the dynamical matrix U ¼ ½Uab� about a config-
uration B:

Uabðfxigi2LÞ ¼ UabðfXigi2LÞ þ
X
i2L

@Uab

@Xi
ðBÞ � ðxi � XiÞ

þ � � � ; a;b ¼ 1; . . . ;3N: ð24Þ

If the eigenvectors of U are normalized to unity, the perturbation
expansion of eigenvalues would be (Kantorovich, 1995)

krðfxigi2LÞ ¼ krðfXigi2LÞ þ
X
i2L

X3N

a;b¼1

U�ar
@Uab

@Xi
Ubr � ðxi � XiÞ þ � � � ;

ð25Þ

where � denotes conjugate transpose and U ¼ ½Uab� is the matrix of
eigenvectors of U ¼ ½Uab�, which are normalized to unity. Since
higher order terms in the above expansion contain ðxi � XiÞn with
n 2 N P 2, all of them vanish for calculating the first derivatives
of eigenvalues at xi ¼ Xi. Hence, we can write

@kr

@xi

����
xi¼Xi

¼ @kr

@Xi
¼
X3N

a;b¼1

U�ar
@Uab

@Xi
Ubr ; ð26Þ

and therefore

@xr

@Xi
¼ 1

2mrxr

X3N

a;b¼1

U�ar
@Uab

@Xi
Ubr: ð27Þ

For minimizing the free energy, depending on the chosen
numerical method, one may need the second derivatives of the
eigenvalues as well. We can extend the above procedure and con-
sider higher order terms to obtain higher order derivatives. The
numerical method used in this paper for minimizing the free en-
ergy will be discussed in detail in the sequel.

3.2. Perfect crystals

Let us reformulate the classical theory of lattice dynamics (Born
and Huang, 1998; Maradudin et al., 1971; Dove, 1993) in our nota-
tion for a perfect crystal. This will make the formulation for defec-
tive crystals clearer. Let us assume that we are given a multi-lattice
L with N simple sublattices, i.e., L ¼

FN
I¼1LI . Let us denote the equi-

librium position of i 2 L by Xi, i.e.

@

@xi

����
xi¼Xi

Eðfxjgj2LÞ ¼ 0 8i 2 L: ð28Þ

Atoms of the multi-lattice move from this equilibrium configuration
due to thermal vibrations. Let us denote the dynamic position of
atom i 2 L by xi ¼ xiðtÞ. We now look for a wave-like solution of
the following form for i 2 LI:

ui :¼ xi � Xi ¼ 1ffiffiffiffiffiffi
mI
p UIðkÞeiðk�Xi�xðkÞtÞ; ð29Þ
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where i ¼
ffiffiffiffiffiffiffi
�1
p

; xðkÞ is the frequency at wave number k 2 B; B is
the first Brillouin zone of the sublattices, and UI is the polarization
vector. Note that we are assuming that mI–0.1 Note also that the
displacements xiðtÞ are time dependent and are deviations from
the average temperature-dependent configuration Xi ¼ XiðTÞ.

Hamiltonian of this system has the following form:

Hðfxigi2LÞ ¼
1
2

X
i2L

mij _xij2 þ Eðfxigi2LÞ: ð30Þ

Because of translation invariance of energy, it would be enough to
look at the equations of motion for the unit cell 0 2 Z3. These read
mI€xI ¼ � @E

@xI ; I ¼ 1; . . . ;N. Note that

mI€xI ¼ �
ffiffiffiffiffiffi
mI
p

UIðkÞxðkÞ2eiðk�XI�xðkÞtÞ: ð31Þ

The idea of harmonic lattice dynamics is to linearize the forcing
term, i.e., to look at the following linearized equations of motion.

mI€xI ¼ �
X
j2L

@2E

@xj@xI
ðBÞuj ¼ �

XN

J¼1

X
j2LJ

@2E

@xj@xI
ðBÞuj; I ¼ 1; . . . ;N:

ð32Þ

Note that for j 2 LJ

uj ¼ 1ffiffiffiffiffiffi
mJ
p UJðkÞeiðk�Xj�xðkÞtÞ: ð33Þ

Therefore, equations of motion read

xðkÞ2UIðkÞ ¼
XN

J¼1

DIJðkÞUJðkÞ; ð34Þ

where

DIJ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

mImJ
p

X
j2LJ

eik�ðXj�XIÞ @2E

@xj@xI
ðBÞ; ð35Þ

are the sub-dynamical matrices. The case I ¼ J should be treated
carefully. We know that as a result of translation invariance of
energy

@2E

@xI@xI
ðBÞ ¼ �

X
j2L
j–I

@2E

@xj@xI
ðBÞ: ð36Þ

Thus

DII ¼
1

mI

X
j2LI
j–I

eik�ðXj�XIÞ @2E

@xj@xI
ðBÞ � 1

mI

X
j2L
j–I

@2E

@xj@xI
ðBÞ: ð37Þ

Finally, the dynamical matrix of the bulk crystal is defined as

DðkÞ ¼

D11ðkÞ D12ðkÞ . . . D1NðkÞ
D21ðkÞ D22ðkÞ . . . D2NðkÞ

..

. ..
. . .

. ..
.

DN1ðkÞ DN2ðkÞ . . . DNNðkÞ

0
BBBBB@

1
CCCCCA 2 R3N�3N: ð38Þ

Let us denote the 3N eigenvalues of DðkÞ by kiðkÞ; i ¼ 1; . . . ;3N. It is
a well-known fact that the dynamical matrix is Hermitian and
hence all its eigenvalues ki are real. The crystal is stable if and only
if ki > 0 8i.
1 For shell potentials, for example, shells are massless and one obtains an effective
dynamical matrix for cores as will be explained in the sequel.
Free energy of the unit cell is now written as

FðfXjgj2L; TÞ ¼ EðfXjgj2LÞ þ
X

k

X3N

i¼1

1
2

�hxiðkÞ

þ
X

k

X3N

i¼1

kBT ln 1� exp � �hxiðkÞ
kBT

� �
 �
; ð39Þ

where xi ¼
ffiffiffiffi
ki
p 2 and a finite sum over k-points is used to approxi-

mate the integral over the first Brillouin zone of the phonon density
of states. The second term on the right-hand side is the zero-point
energy and the last term is the vibrational entropy. For the optimum
configuration fXjgj2L at temperature T, we have

@F

@Xj
¼ @E

@Xj
þ
X

k

X3N

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A@x2

i ðkÞ
@Xj

8<
:

9=
; ¼ 0;

j ¼ 1; . . . ;N: ð40Þ

Here using the same procedure as in the pervious section, one can
calculate the derivatives of the eigenvalues as follows:

@x2
i ðkÞ
@Xj

¼
X3N

a;b¼1

U�aiðkÞ
@DabðkÞ
@Xj

UbiðkÞ; ð41Þ

where UðkÞ ¼ ½UabðkÞ� 2 R3N�3N is the matrix of the eigenvectors of
DðkÞ ¼ ½DabðkÞ�, which are normalized to unity.

3.3. Lattices with massless particles

Let us next consider a lattice in which some particles are as-
sumed to be massless. The best well-known model with this prop-
erty is the so-called ‘‘shell model” (Dick and Overhauser, 1964). Let
us assume that the unit cell has N particles (ions), each composed
of a core and a (massless) shell. The lattice L is partitioned as

L ¼ Lc
G

Ls ¼
GN
I¼1

Lc
I

G
Ls

I

� �
: ð42Þ

Position vectors of core and shell of ion i are denoted by xi
c and xi

s,
respectively. Given a configuration fxigi2L, equations of motion for
the fundamental unit cell read

mI€xI
c ¼ �

@E

@xI
c
; 0 ¼ � @E

@xI
s
; I ¼ 1; . . . ;N: ð43Þ

Assuming that cores and shells are at a static equilibrium
configuration, equations of motion in the harmonic approximation
read

mI €uI
c ¼ �

XN

J¼1

X
j2Lc

J

@2E

@xj
c@xI

c

� uj
c �

XN

J¼1

X
j2Ls

J

@2E

@xj
s@xI

c

� uj
s;

I ¼ 1; . . . ;N; ð44Þ

0 ¼ �
XN

J¼1

X
j2Lc

J

@2E

@xj
c@xI

s

� uj
c �

XN

J¼1

X
j2Ls

J

@2E

@xj
s@xI

s

� uj
s;

I ¼ 1; . . . ;N: ð45Þ

Note that for j 2 LJ we can write

uj
c ¼

1ffiffiffiffiffiffi
mJ
p UJ

cðkÞe
i k�Xj

c�xðkÞtð Þ; uj
s ¼ UJ

sðkÞe
i k�Xj

s�xðkÞtð Þ; k 2 B; ð46Þ
2 Note that this is consistent with Eq. (21) as we are using mass-reduced
displacements.
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where B is the first Brillouin zone of Lc
I (or Ls

I ). Thus, (44) and (45)
can be simplified to read

XN

J¼1

Dcc
IJ UJ

cðkÞ þ
XN

J¼1

Dcs
IJ UJ

sðkÞ ¼ x2ðkÞUI
cðkÞ; I ¼ 1; . . . ;N; ð47Þ

XN

J¼1

Dsc
IJ UJ

cðkÞ þ
XN

J¼1

Dss
IJ UJ

sðkÞ ¼ 0; I ¼ 1; . . . ;N; ð48Þ

where

Dcc
IJ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
mImJ
p

X
j2Lc

J

@2E

@xj
c@xI

c

eik� Xj
c�XI

cð Þ; Dcs
IJ ¼

1ffiffiffiffiffiffi
mI
p

X
j2Ls

J

@2E

@xj
s@xI

c

eik� Xj
s�XI

cð Þ;

Dsc
IJ ¼

1ffiffiffiffiffiffi
mJ
p

X
j2Lc

J

@2E

@xj
c@xI

s

eik� Xj
c�XI

sð Þ; Dss
IJ ¼

X
j2Ls

J

@2E

@xj
s@xI

s

eik� Xj
s�XI

sð Þ: ð49Þ

Eqs. (47) and (48) can be rewritten as

DccUc þ DcsUs ¼ x2Uc and Us ¼ �D�1
ss DscUc; ð50Þ

where

Uc ¼
U1

c

..

.

UN
c

0
BB@

1
CCA; Us ¼

U1
s

..

.

UN
s

0
BB@

1
CCA; ð51Þ

Dcc ¼

Dcc
11 . . . Dcc

1N

..

. . .
. ..

.

Dcc
N1 . . . Dcc

NN

0
BB@

1
CCA; Dcs ¼

Dcs
11 . . . Dcs

1N

..

. . .
. ..

.

Dcs
N1 . . . Dcs

NN

0
BB@

1
CCA; ð52Þ

Dsc ¼

Dsc
11 . . . Dsc

1N

..

. . .
. ..

.

Dsc
N1 . . . Dsc

NN

0
BB@

1
CCA; Dss ¼

Dss
11 . . . Dss

1N

..

. . .
. ..

.

Dss
N1 . . . Dss

NN

0
BB@

1
CCA: ð53Þ

Finally, the effective dynamical problem for cores can be written as

DðkÞUcðkÞ ¼ xðkÞ2UcðkÞ; ð54Þ

where

DðkÞ ¼ DccðkÞ � DcsðkÞD�1
ss ðkÞDscðkÞ ð55Þ

is the effective dynamical matrix. Note that Dcs and Dsc are not Her-
mitian but DcsD

�1
ss Dsc is.

The diagonal sub-matrices of D, i.e., Dcc
II and Dss

II should be calcu-
lated considering the translation invariance of energy, namely

Dcc
II ¼

1
mI

X
j2Lc

I
j–Ic

@2E

@xj
c@xI

c

eik� Xj
c�XI

cð Þ � 1
mI

X
j2L
j–Ic

@2E

@xj@xI
c
; ð56Þ

Dss
II ¼

X
j2Ls

I
j–Is

@2E

@xj
s@xI

s

eik� Xj
s�XI

sð Þ �
X
j2L
j–Is

@2E

@xj@xI
s
: ð57Þ

Denoting the 3N eigenvalues of D(k) by kiðkÞ ¼ x2
i ðkÞ, free energy of

the unit cell is expressed as

F Xj
c;X

j
s

n o
j2L
; T

� �
¼ E Xj

c;X
j
s

n o
j2L

� �

þ
X

k

X3N

i¼1

1
2

�hxiðkÞ þ kBT ln 1� exp � �hxiðkÞ
kBT

� �
 �� 
: ð58Þ

Therefore, for the optimum configuration fXj
c;X

j
sgj2L at temperature

T we have
@F

@Xj
c

¼ @E

@Xj
c

þ
X

k

X3N

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Xj

c

8<
:

9=
; ¼ 0;

ð59Þ

@F

@Xj
s

¼ @E

@Xj
s

þ
X

k

X3N

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Xj

s

8<
:

9=
; ¼ 0;

ð60Þ

where the derivatives of eigenvalues are given by

@x2
i ðkÞ
@Xj

c

¼
X3N

a;b¼1

V�aiðkÞ
@DabðkÞ
@Xj

c

VbiðkÞ; ð61Þ

@x2
i ðkÞ
@Xj

s

¼
X3N

a;b¼1

V�aiðkÞ
@DabðkÞ
@Xj

s

VbiðkÞ; ð62Þ

where VðkÞ ¼ ½VabðkÞ� 2 R3N�3N is the matrix of the eigenvectors of
DðkÞ ¼ ½DabðkÞ�, which are normalized to unity.

3.4. Defective crystals

Without loss of generality, let us consider a defective crystal
with a 1D symmetry reduction (Yavari et al., 2007a), i.e.

L ¼
GN
J¼1

G
b2Z

LJb: ð63Þ

Note that j ¼ Jb means that the atom j is in the bth equivalence class
of the Jth sublattice. For this atom the thermal displacement vector
is assumed to have the following form:

uj ¼ 1ffiffiffiffiffiffi
mJ
p UJbðkÞeiðk�Xj�xðkÞtÞ; k 2 B; ð64Þ

where B is the first Brillouin zone of LJ . Equations of motion in this
case read

xðkÞ2UIaðkÞ ¼
XN

J¼1

X
b2Z

DIaJbðkÞUJbðkÞ; ð65Þ

where

DIaJb ¼
1ffiffiffiffiffiffiffiffiffiffiffi

mImJ
p

X
j2LJb

eik�ðXj�XIaÞ @2E

@xIa@xj
ðBÞ ð66Þ

are the dynamical sub-matrices. The sub-matrices DIaIa have the fol-
lowing simplified form:

DIaIa ¼
1

mI

X
j2LIa

eik�ðXj�XIaÞ @2E

@xIa@xj
ðBÞ: ð67Þ

Note that

@2E

@xIa@xIa ðBÞ ¼ �
X
j2L
j–Ia

@2E

@xIa@xj
ðBÞ: ð68Þ

Thus

DIaIa ¼
1

mI

X
j2LIa
j–Ia

eik�ðXj�XIaÞ @2E

@xIa@xj
ðBÞ � 1

mI

X
j2L
j–Ia

@2E

@xIa@xj
ðBÞ: ð69Þ

It is seen that for a defective crystal the dynamical matrix is infinite
dimensional.

As an approximation, similar to that presented in (Lesar et al.,
1989) as the local quasi-harmonic approximation, one can assume
that given a unit cell, only a finite number of neighboring equiva-



3 If temperature is ‘‘large”, one can start with equilibrium configuration of a lower
temperature. This is what we do in our numerical examples as will be discussed in the
sequel.
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lence classes interact with its thermal vibrations. One way of
approximating the free energy would then be to consider vibra-
tional effects in a finite region around the defect and study the con-
vergence of the results as a function of the size of the finite region.
For similar ideas see (Kesavasamy and Krishnamurthy, 1978; Kesa-
vasamy and Krishnamurthy, 1979), and (Fernandez et al., 2000).
Here, we consider a finite number of equivalence classes, say
�C 6 a 6 C, around the defect and assume the temperature-
dependent bulk configuration outside this region. As another
approximation we assume that only a finite number of equivalence
classes interact with a given equivalence class in calculating the
dynamical matrix, i.e., we write

Li ¼
Gm

a¼�m

GN
I¼1

LIa; ð70Þ

where Li is the neighboring set of atom i. Therefore, the linearized
equations of motion read

xðkÞ2UIaðkÞ ¼
Xm

b¼�m

XN

J¼1

DIaJbðkÞUJbðkÞ a ¼ �C; . . . ; C: ð71Þ

Defining

Ua ¼
U1a

..

.

UNa

0
BB@

1
CCA 2 R3N; ð72Þ

we can write the equations of motion as follows:

xðkÞ2UaðkÞ ¼
Xm

b¼�m

AaðaþbÞðkÞUðaþbÞðkÞ; ð73Þ

where

Aab ¼

D1a1b . . . D1aNb

..

. . .
. ..

.

DNa1b . . . DNaNb

0
BB@

1
CCA 2 R3N�3N : ð74Þ

Now considering the finite classes around the defect, we can write
the global equations of motion for the finite system as

DðkÞUðkÞ ¼ xðkÞ2UðkÞ; ð75Þ

where

UðkÞ ¼
U�C

..

.

UC

0
BB@

1
CCA 2 RM; DðkÞ ¼

Dð�CÞð�CÞ . . . Dð�CÞC

..

. . .
. ..

.

DCð�CÞ . . . DCC

0
BB@

1
CCA 2 RM�M;

M ¼ 3N � ð2C þ 1Þ; ð76Þ

and

Dab ¼
Aab; ja� bj 6 m;

03N�3N; ja� bj > m:

�
ð77Þ

It is easy to show that AabðkÞ ¼ A�baðkÞ, i.e., the dynamical matrix
D(k) is Hermitian, and therefore has M real eigenvalues. Note that
the defective crystal is stable if and only if x2

i > 0 8i.
Now we can write the free energy of the defective crystal as

FðfXjgj2L; TÞ ¼ EðfXjgj2LÞ

þ
X

k

XM

i¼1

1
2

�hxiðkÞ þ kBT ln 1� exp � �hxiðkÞ
kBT

� �
 �� 
:

ð78Þ

In the optimum configuration fXjgj2L at a finite temperature T, we
have
@F

@Xj
¼ @E

@Xj
þ
X

k

XM

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Xj

8<
:

9=
; ¼ 0;

ð79Þ
where the derivatives of the eigenvalues are calculated as follows:

@x2
i ðkÞ
@Xj

¼
XM

a;b¼1

U�aiðkÞ
@DabðkÞ
@Xj

UbiðkÞ; ð80Þ

where UðkÞ ¼ ½UabðkÞ� 2 RM�M is the matrix of the eigenvectors of
DðkÞ ¼ ½DabðkÞ�, which are normalized to unity.

3.5. Defect structure at finite temperatures

In the static case, given a configuration B00 ¼ fx0i0gi2L, one can
calculate the energy and hence forces exactly, as the potential en-
ergy is calculated by some given empirical interatomic potentials.
Suppose one starts with a reference configuration and solves for
the following harmonic problem:

X
j2L

@2E

@xi@xj
B00
� �

� xj � x00
j

� �
¼ � @E

@xi
B00
� �

8i 2 L: ð81Þ

This reference configuration could be some nominal (unrelaxed)
configuration. Then one can modify the reference configuration
and by modified Newton–Raphson iterations converge to an equi-
librium configuration B0 ¼ fxi

0gi2L assuming that such a configura-
tion exists (Yavari et al., 2007a). In this configuration
@E
@xi ðB0Þ ¼ 0 8i 2 L. B0 is now the starting configuration for lattice
dynamics.3 For a temperature T, the defective crystal is in thermal
equilibrium if the free energy is minimized, i.e., if

@F

@Xi ðBÞ ¼ 0 8i 2 L: ð82Þ

Solving this problem one can modify the reference configuration
and calculate the optimum configuration. This iteration would give
a configuration that minimizes the harmonically calculated free en-
ergy. The next step then would be to correct for anharmonic effects
in the vibrational frequencies. One way of doing this is to iteratively
calculate the vibrational unbalanced forces using higher order
terms in the Taylor expansion.

There are many different optimization techniques to solve the
unconstrained minimization problem (82). Here we only consider
two main methods that are usually more efficient, namely those
that require only the gradient and those that require the gradient
and the Hessian (Press et al., 1989). In problems in which the Hes-
sian is available, the Newton method is usually the most powerful.
It is based on the following quadratic approximation near the cur-
rent configuration

FðBk þ ~dkÞ ¼ F ðBkÞ þ $F ðBkÞ � ~dk þ 1
2
ð~dkÞT �HðBkÞ � ~dk þ oðj~dkj2Þ;

ð83Þ
where ~dk ¼ Bkþ1 � Bk. Now if we differentiate the above formula
with respect to ~dk, we obtain Newton method for determining the
next configuration Bkþ1 ¼ Bk þ ~dk : ~dk ¼ �H�1ðBkÞ � $FðBkÞ. Here in
order to converge to a local minimum the Hessian must be positive
definite.

One can use a perturbation method to obtain the second deriv-
atives of the free energy but as the dimension of a defective crystal
increases, calculation of these higher order derivatives may be-
come numerically inefficient (Taylor et al., 1997) and so one may
prefer to use those methods that do not require the second
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derivatives. One such method is the quasi-Newton method. The
main idea behind this method is to start from a positive-definite
approximation to the inverse Hessian and to modify this approxi-
mation in each iteration using the gradient vector of that step.
Close to the local minimum, the approximate inverse Hessian ap-
proaches the true inverse Hessian and we would have the qua-
dratic convergence of Newton method (Press et al., 1989). There
are different algorithms for generating the approximate inverse
Hessian. One of the most well known is the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm (Press et al., 1989):

Aiþ1 ¼ Ai þ
~dk � ~dk

ð~dkÞT � D
� ðA

i � DÞ � ðAi � DÞ
DT � Ai � D

þ ðDT � Ai � DÞu� u; ð84Þ

where Ai ¼ ðHiÞ�1
; D ¼ $F iþ1 � $F i, and

u ¼
~dk

ð~dkÞT � D
� Ai � D

DT � Ai � D
: ð85Þ

Calculating Aiþ1, one then should use Aiþ1 instead of H�1 to update
the current configuration for the next configuration Bkþ1 ¼ Bk þ ~dk.
If Aiþ1 is a poor approximation, then one may need to perform a lin-
ear search to refine Bkþ1 before starting the next iteration (Press
et al., 1989). As Taylor et al. (1997) mention, since the dynamical
contributions to the Hessian are usually small, one can use only
the static part of the free energy E to generate the first approxima-
tion to the Hessian of the free energy. Therefore, we propose the fol-
lowing quasi-harmonic lattice dynamics algorithm based on the
quasi-Newton method:
Input data: B0 (or BT�DT for large T), T

. Initialization
. H1 ¼ HstaticjB¼B0

. Do until convergence is achieved

. Dk ¼ DðBkÞ

. Calculate OF k

. Use Ak to obtain Bkþ1

. End Do

. End
4. Lattice dynamic analysis of a defective lattice of point dipoles

In this section we consider a two-dimensional defective lattice
of dipoles. Westhaus (1981) derived the normal mode frequencies
for a 2D rectangular lattice of point dipoles using the assumption
that interacting dipoles have fixed length polarization vectors
and can only rotate around fixed lattice sites. In this section, we re-
lax these assumptions and in the next section will obtain the tem-
perature-dependent structures of two 180� domain walls.

Consider a defective lattice of dipoles in which each lattice point
represents a unit cell and the corresponding dipole is a measure of
the distortion of the unit cell with respect to a high symmetry
phase. Total energy of the lattice is assumed to have the following
three parts (Yavari et al., 2007a)

Eðfxi;Pigi2LÞ¼ Edðfxi;Pigi2LÞþEshortðfxigi2LÞþEaðfPigi2LÞ; ð86Þ
where, Ed; Eshort and Ea are the dipole energy, short-range energy,
and anisotropy energy, respectively. The dipole energy has the fol-
lowing form:

Ed ¼ 1
2

X
i;j2L
j–i

Pi � Pj

jxi � xjj3
� 3Pi � ðxi � xjÞPj � ðxi � xjÞ

jxi � xjj5

( )

þ
X
i2L

1
2ai

Pi � Pi; ð87Þ
where ai is the electric polarizability and is assumed to be a con-
stant for each sublattice. For the sake of simplicity, we assume that
polarizability is temperature independent. The short-range energy
is modeled by a Lennard–Jones potential with the following form:

Eshort ¼ 1
2

X
i;j2L
j–i

4�ij
aij

jxi � xjj

� �12

� aij

jxi � xjj

� �6
" #

; ð88Þ

where for a multi-lattice with two sublattices aij and �ij take values
in the sets fa11; a12; a22g and f�11; �12; �22g, respectively. The anisot-
ropy energy quantifies the tendency of the lattice to remain in some
energy wells and is assumed to have the following form:

Ea ¼
X
i2L

KAjPi � P1j2jPi � P2j2: ð89Þ

This means that the dipoles prefer to have values in the set fP1;P2g.
Let S ¼ ðfXi;Pigi2LÞ be the equilibrium configuration (a local

minimum of the energy), i.e.

@E

@Xi
¼ @E

@Pi
¼ 0 8i 2 L: ð90Þ

It was shown in Yavari et al. (2007a) how to find a static equilib-
rium configuration starting from a reference configuration. We as-
sume that this configuration is given and denote it by

B ¼ fXi;Pigi2L. At a finite temperature T, ignoring the dipole inertia,
Hamiltonian of this system can be written as

Hðfxi;Pigi2LÞ ¼
1
2

X
i2L

mij _xij2 þ Eðfxi;Pigi2LÞ: ð91Þ

Equations of motion read

mi€xi ¼ � @E
@xi

; 0 ¼ � @E

@Pi
: ð92Þ

Linearizing the equations of motion (92) about the equilibrium con-
figuration, we obtain

�mi€xi ¼ @2E

@xi@xi
ðBÞðxi � XiÞ þ

X
j2Si

@2E

@xj@xi
ðBÞðxj � XjÞ

þ @2E

@Pi@xi
ðBÞðPi � PiÞ þ

X
j2Si

@2E

@Pj@xi
ðBÞðPj � PjÞ; ð93Þ

0 ¼ @2E

@xi@Pi
ðBÞðxi � XiÞ þ

X
j2Si

@2E

@xj@Pi
ðBÞðxj � XjÞ

þ @2E

@Pi@Pi
ðBÞðPi � PiÞ þ

X
j2Si

@2E

@Pj@Pi
ðBÞðPj � PjÞ; ð94Þ

where S i ¼ L n fig. Note that

@2E

@Pi@Pi
ðBÞ ¼ 2KAðjPi � P1j2 þ jPi � P2j2ÞIþ 4KAðPi � P1Þ � ðPi � P2Þ

þ 4KAðPi � P2Þ � ðPi � P1Þ þ
1
ai

I; ð95Þ

where I is the 2� 2 identity matrix and � denotes tensor product.
For a defective crystal with a 1D symmetry reduction the set L

can be partitioned as follows:

L ¼
G
a2Z

GN
I¼1

LIa: ð96Þ

Let us define ui ¼ xi � Xi; qi ¼ Pi � Pi. Periodicity of the lattice al-
lows us to write for i 2 LIa:

ui ¼ 1ffiffiffiffiffiffi
mI
p UIaðkÞeiðk�Xi�xðkÞtÞ; qi ¼ Q IaðkÞeiðk�Xi�xðkÞtÞ; k 2 B: ð97Þ
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Thus, Eq. (93) for i ¼ Ia can be simplified to read

xðkÞ2UIaðkÞ ¼ 1
mI

@2E

@xIa@xIa ðBÞU
IaðkÞ

þ
XN

J¼1

X
b2Z

X0
j2LJb

1ffiffiffiffiffiffiffiffiffiffiffi
mImJ
p

@2E

@xj@xIa ðBÞe
ik�ðXj�XIaÞUJbðkÞ

þ 1ffiffiffiffiffiffi
mI
p @2E

@PIa@xIa
ðBÞQ IaðkÞ

þ
XN

J¼1

X
b2Z

X0
j2LJb

1ffiffiffiffiffiffi
mI
p @2E

@Pj@xIa
ðBÞeik�ðXj�XIaÞQ JbðkÞ;

ð98Þ

where a prime on summations means that the term corresponding
to Jb ¼ Ia is excluded. Eq. (98) can be rewritten as

xðkÞ2UIaðkÞ ¼
XN

J¼1

X
b2Z

Dxx
IaJbðkÞU

JbðkÞ

þ
XN

J¼1

X
b2Z

Dxp
IaJbðkÞQ

JbðkÞ; ð99Þ

where

Dxx
IaJbðkÞ ¼ dabdIJ

1
mI

@2E

@xIa@xIa ðBÞ

þ
X0
j2LJb

1ffiffiffiffiffiffiffiffiffiffiffi
mImJ
p

@2E

@xj@xIa ðBÞe
ik�ðXj�XIaÞ;

Dxp
IaJbðkÞ ¼ dabdIJ

1ffiffiffiffiffiffi
mI
p @2E

@PIa@xIa
ðBÞ

þ
X0
j2LJb

1ffiffiffiffiffiffi
mI
p @2E

@Pj@xIa
ðBÞeik�ðXj�XIaÞ:

ð100Þ

Similarly, Eq. (94) can be simplified to read

1ffiffiffiffiffiffi
mI
p @2E

@xIa@PIa ðBÞU
IaðkÞ

þ
XN

J¼1

X
b2Z

X0
j2LJb

1ffiffiffiffiffiffi
mJ
p

@2E

@xj@PIa ðBÞe
ik�ðXj�XIaÞUJbðkÞ

þ @2E

@PIa@PIa ðBÞQ
IaðkÞ

þ
XN

J¼1

X
b2Z

X0
j2LJb

@2E

@Pj@PIa ðBÞe
ik�ðXj�XIaÞQ JbðkÞ ¼ 0: ð101Þ

Or

XN

J¼1

X
b2Z

Dpx
IaJbðkÞU

JbðkÞ þ
XN

J¼1

X
b2Z

Dpp
IaJbðkÞQ

JbðkÞ ¼ 0; ð102Þ

where

Dpx
IaJbðkÞ ¼ dabdIJ

1ffiffiffiffiffiffi
mI
p @2E

@xIa@PIa ðBÞ

þ
X0
j2LJb

1ffiffiffiffiffiffi
mJ
p

@2E

@xj@PIa ðBÞe
ik�ðXj�XIaÞ;

Dpp
IaJbðkÞ ¼ dabdIJ

@2E

@PIa@PIa ðBÞ þ
X0
j2LJb

@2E

@Pj@PIa ðBÞe
ik�ðXj�XIaÞ:

ð103Þ

We know that (Yavari et al., 2007a)

@2E

@xIa@xIa ðBÞ ¼ �
X0
j2L

@2E

@xj@xIa ðBÞ: ð104Þ
And

@2E

@xIa@PIa ðBÞ ¼
@2E

@PIa@xIa
ðBÞ ¼ �

X0

j2L
@2E

@xj@PIa ðBÞ: ð105Þ

Before proceeding any further, let us first look at dynamical matrix
of the bulk lattice.

4.1. Dynamical matrix for the bulk lattice

In the case of the bulk lattice we have

L ¼
GN
I¼1

LI: ð106Þ

Periodicity of the lattice allows us to write for i 2 LI:

ui ¼ 1ffiffiffiffiffiffi
mI
p UIðkÞeiðk�Xi�xðkÞtÞ; qi ¼ Q IðkÞeiðk�Xi�xðkÞtÞ; k 2 B: ð107Þ

Thus, Eq. (92) for i ¼ I is simplified to read

xðkÞ2UIðkÞ ¼ 1
mI

@2E

@xI@xI
ðBÞUIðkÞ

þ
XN

J¼1

X0
j2LJ

1ffiffiffiffiffiffiffiffiffiffiffi
mImJ
p

@2E

@xj@xI
ðBÞeik�ðXj�XIÞUJðkÞ

þ 1ffiffiffiffiffiffi
mI
p @2E

@PI@xI
ðBÞQ IðkÞ

þ
XN

J¼1

X0
j2LJ

1ffiffiffiffiffiffi
mI
p @2E

@Pj@xI
ðBÞeik�ðXj�XIÞQ JðkÞ: ð108Þ

This can be rewritten as

xðkÞ2UIðkÞ ¼
XN

J¼1

Dxx
IJ ðkÞU

JðkÞ þ
XN

J¼1

Dxp
IJ ðkÞQ

JðkÞ; ð109Þ

where

Dxx
IJ ðkÞ ¼ dIJ

1
mI

@2E

@xI@xI
ðBÞ þ

X0
j2LJ

1ffiffiffiffiffiffiffiffiffiffiffi
mImJ
p

@2E

@xj@xI
ðBÞeik�ðXj�XIÞ;

Dxp
IJ ðkÞ ¼ dIJ

1ffiffiffiffiffiffi
mI
p @2E

@PI@xI
ðBÞ þ

X0
j2LJ

1ffiffiffiffiffiffi
mI
p @2E

@Pj@xI
ðBÞeik�ðXj�XIÞ:

ð110Þ

Similarly, Eq. (92) is simplified to read

1ffiffiffiffiffiffi
mI
p @2E

@xI@PI ðBÞU
IðkÞ

þ
XN

J¼1

X0
j2LJ

1ffiffiffiffiffiffi
mJ
p

@2E

@xj@PI ðBÞe
ik�ðXj�XIÞUJðkÞ

þ @2E

@PI@PI ðBÞQ
IðkÞ þ

XN

J¼1

X0
j2LJ

@2E

@Pj@PI
ðBÞeik�ðXj�XIÞQ JðkÞ ¼ 0:

ð111Þ

Or

XN

J¼1

Dpx
IJ ðkÞU

JðkÞ þ
XN

J¼1

Dpp
IJ ðkÞQ

JðkÞ ¼ 0; ð112Þ

where

Dpx
IJ ðkÞ ¼ dIJ

1ffiffiffiffiffiffi
mI
p @2E

@xI@PI ðBÞ þ
X0
j2LJ

1ffiffiffiffiffiffi
mJ
p

@2E

@xj@PI ðBÞe
ik�ðXj�XIÞ;

Dpp
IJ ðkÞ ¼ dIJ

@2E

@PI@PI ðBÞ þ
X0
j2LJ

@2E

@Pj@PI
ðBÞeik�ðXj�XIÞ:

ð113Þ
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Defining

U ¼
U1

..

.

UN

0
BB@

1
CCA; Q ¼

Q 1

..

.

Q N

0
BB@

1
CCA ð114Þ

the linearized equations of motion read

DxxðkÞUðkÞ þ DxpðkÞQ ðkÞ ¼ xðkÞ2UðkÞ
DpxðkÞUðkÞ þ DppðkÞQ ðkÞ ¼ 0; ð115Þ

where

Dxx ¼

Dxx
11 . . . Dxx

1N

..

. . .
. ..

.

Dxx
N1 . . . Dxx

NN

0
BB@

1
CCA; Dxp ¼

Dxp
11 . . . Dxp

1N

..

. . .
. ..

.

Dxp
N1 . . . Dxp

NN

0
BB@

1
CCA;

Dpx ¼

Dpx
11 . . . Dpx

1N

..

. . .
. ..

.

Dpx
N1 . . . Dpx

NN

0
BB@

1
CCA; Dpp ¼

Dpp
11 . . . Dpp

1N

..

. . .
. ..

.

Dpp
N1 . . . Dpp

NN

0
BB@

1
CCA:

ð116Þ

Finally, the effective dynamical problem can be written as

DðkÞUðkÞ ¼ xðkÞ2UðkÞ; ð117Þ

where

DðkÞ ¼ DxxðkÞ � DxpðkÞD�1
pp ðkÞDpxðkÞ ð118Þ

is the effective dynamical matrix. Note that D(k) is Hermitian.
Denoting the 2N eigenvalues of D(k) by kiðkÞ ¼ x2

i ðkÞ;
i ¼ 1; . . . ;2N, free energy of the unit cell is expressed as

FðfXj;Pjgj2L; TÞ ¼ EðfXj;Pjgj2LÞ

þ
X

k

X2N

i¼1

1
2

�hxiðkÞ þ kBT ln 1� exp � �hxiðkÞ
kBT

� �
 �� 
:

ð119Þ

Therefore, for the optimum configuration fXj;Pjgj2L at temperature
T we should have

@F

@Xj
¼ @E

@Xj
þ
X

k

X2N

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Xj

8<
:

9=
; ¼ 0;

ð120Þ

@F

@Pj
¼ @E

@Pj
þ
X

k

X2N

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Pj

8<
:

9=
; ¼ 0;

ð121Þ

where the derivatives of eigenvalues are given by

@x2
i ðkÞ
@Xj

¼
X2N

a;b¼1

V�aiðkÞ
@DabðkÞ
@Xj

VbiðkÞ; ð122Þ

@x2
i ðkÞ
@Pj

¼
X2N

a;b¼1

V�aiðkÞ
@DabðkÞ
@Pj

VbiðkÞ; ð123Þ

where VðkÞ ¼ ½VabðkÞ� 2 R2N�2N is the matrix of the eigenvectors of
DðkÞ ¼ ½DabðkÞ�, with Dab normalized to unity.

4.2. Dynamical matrix for the defective lattice

In the case of a defective lattice we consider interactions of or-
der m, i.e., we write
Li ¼
Gm

a¼�m

GN
I¼1

LIa; ð124Þ

where Li is the neighboring set of the atom i. The equations of mo-
tion (99) and (102) become

xðkÞ2UIaðkÞ ¼
XN

J¼1

Xm

b¼�m

Dxx
IaJbðkÞU

JbðkÞ

þ
XN

J¼1

Xm

b¼�m

Dxp
IaJbðkÞQ

JbðkÞ; ð125Þ

0 ¼
XN

J¼1

Xm

b¼�m

Dpx
IaJbðkÞU

JbðkÞ þ
XN

J¼1

Xm

b¼�m

Dpp
IaJbðkÞQ

JbðkÞ: ð126Þ

Defining

Ua ¼
U1a

..

.

UNa

0
BB@

1
CCA 2 R2N ; Q a ¼

Q 1a

..

.

Q Na

0
BB@

1
CCA 2 R2N; ð127Þ

we can write the equations of motion as follows:

xðkÞ2UaðkÞ ¼
Xm

b¼�m

Axx
aðaþbÞðkÞUðaþbÞðkÞ

þ
Xm

b¼�m

Axp
aðaþbÞðkÞQ ðaþbÞðkÞ; ð128Þ

0 ¼
Xm

b¼�m

Apx
aðaþbÞðkÞUðaþbÞðkÞ þ

Xm

b¼�m

App
aðaþbÞðkÞQ ðaþbÞðkÞ; ð129Þ

where

A�Hab ¼

D�H1a1b . . . D�H1aNb

..

. . .
. ..

.

D�HNa1b . . . D�HNaNb

0
BBB@

1
CCCA 2 R2N�2N �;H ¼ x;p: ð130Þ

Let us consider only a finite number of equivalence classes around
the defect, i.e., we assume that �C 6 a 6 C. Therefore, the approxi-
mating finite system has the following governing equations:

DxxðkÞUðkÞ þ DxpðkÞQ ðkÞ ¼ xðkÞ2UðkÞ; ð131Þ
DpxðkÞUðkÞ þ DppðkÞQ ðkÞ ¼ 0; ð132Þ

where

UðkÞ ¼
U�C

..

.

UC

0
BB@

1
CCA 2 RM; Q ðkÞ ¼

Q�C

..

.

Q C

0
BB@

1
CCA 2 RM; ð133Þ

D�HðkÞ ¼

D�Hð�CÞð�CÞ . . . D�Hð�CÞC

..

. . .
. ..

.

D�HCð�CÞ . . . D�HCC

0
BBB@

1
CCCA 2 RM�M; ð134Þ

D�Hab ¼
A�Hab ja� bj 6 m;

02N�2N ja� bj > m;

(
ð135Þ

where M ¼ 2N � ð2C þ 1Þ and �;H ¼ x;p. Now the effective dynam-
ical problem can be written as

DðkÞUðkÞ ¼ xðkÞ2UðkÞ; ð136Þ

where

DðkÞ ¼ DxxðkÞ � DxpðkÞD�1
pp ðkÞDpxðkÞ ð137Þ
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is the effective dynamical matrix. Note that D(k) is Hermitian and
has M real eigenvalues. The free energy of the unit cell is expressed
as

FðfXj;Pjgj2L; TÞ ¼ EðfXj;Pjgj2LÞ

þ
X

k

XM

i¼1

1
2

�hxiðkÞ þ kBT ln 1� exp � �hxiðkÞ
kBT

� �
 �� 
: ð138Þ

For the optimum structure fXj;Pjgj2L at temperature T we have

@F

@Xj
¼ @E

@Xj
þ
X

k

XM

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Xj

8<
:

9=
; ¼ 0;

ð139Þ

@F

@Pj
¼ @E

@Pj
þ
X

k

XM

i¼1

�h
2xiðkÞ

1
2
þ 1

exp �hxiðkÞ
kBT

� �
� 1

0
@

1
A @x2

i ðkÞ
@Pj

8<
:

9=
; ¼ 0;

ð140Þ

where the derivatives of eigenvalues are given by

@x2
i ðkÞ
@Xj

¼
XM

a;b¼1

V�aiðkÞ
@DabðkÞ
@Xj

VbiðkÞ; ð141Þ

@x2
i ðkÞ
@Pj

¼
XM

a;b¼1

V�aiðkÞ
@DabðkÞ
@Pj

VbiðkÞ; ð142Þ

where VðkÞ ¼ ½VabðkÞ� 2 RM�M is the matrix of the eigenvectors of
DðkÞ ¼ ½DabðkÞ�, with Dab normalized to unity.

5. Temperature-dependent structure of 180� domain walls in a
2D lattice of dipoles

To demonstrate the capabilities of our lattice dynamics tech-
nique, here we consider a simple example of 180� domain walls
shown in Fig. 1. In these 180� domain walls, polarization vector
changes from �P0 on the left side of the domain wall to P0 on
the right side of the domain wall. We consider two types of domain
walls: Type I and Type II. In Type I (the left configuration) the do-
main wall is not a crystallographic line, but it passes through some
atoms in Type II (the right configuration). We are interested in the
structure of the defective lattice close to the domain wall at a finite
temperature T. In these examples, each equivalent class is a set of
Fig. 1. Reference configurations for the 180� domain walls in the 2D lattice of dipoles, t
Type II.
atoms lying on a line parallel to the domain wall, i.e., we have a
defective crystal with a 1D symmetry reduction. The static config-
urations for Type I domain wall, B0, was computed in Yavari et al.
(2007a). Here we consider the static equilibrium configurations as
the initial reference configurations. For index n 2 Z in the reduced
lattice (see Fig. 1), the vectors of unknowns are Un;Q n 2 R2. Be-
cause of symmetry, we only consider the right half of the lattices
and because the effective potential is highly localized (Yavari
et al., 2007a), for calculation of the stiffness matrices, we assume
that a given unit cell interacts only with its nearest neighbor equiv-
alence classes, i.e., we consider interactions of order m ¼ 1. Note
that this choice of m only affects the harmonic solutions; the final
anharmonic solutions are not affected by this choice. For our
numerical calculations we choose N ¼ 280 atoms in each equiva-
lence class as the results are independent of N for larger N. Note
that for force calculations we consider all the atoms within a spe-
cific cut-off radius Rc. Here, we use Rc ¼ 140a, where a is the lattice
parameter in the nominal configuration.

For minimizing the free energy, first one should calculate the
effective dynamical matrix according to Eq. (137). The calculations
of this matrix for the two configurations are similar. For example,
in configuration I due to symmetry we have U�1 ¼ �U0. Also we
consider the temperature-dependent bulk configuration as the
far-field condition, i.e., we assume Ua ¼ UC for a P C þ 1. Our
numerical experiments show that choosing C ¼ 35 would be en-
ough to capture the structure of the atomic displacements near
the defect, so we use C ¼ 35 in what follows. For the right half of
the defective lattice we have

D�H¼

E�H0 D�H01 02�2 . . . 02�2 02�2 02�2

D�H10 D�H11 D�H12 . . . 02�2 02�2 02�2

02�2 D�H21 D�H22 . . . 02�2 02�2 02�2

..

. ..
. ..

. . .
. ..

. ..
. ..

.

02�2 02�2 02�2 . . . D�HðC�2ÞðC�2Þ D�HðC�2ÞðC�1Þ 02�2

02�2 02�2 02�2 . . . D�HðC�1ÞðC�2Þ D�HðC�1ÞðC�1Þ D�HðC�1ÞC

02�2 02�2 02�2 . . . 02�2 D�HCðC�1Þ F�HC

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

2RS�S;

ð143Þ

where S ¼ 2ðC þ 1Þ,

E�H0 ¼ D�H00 � D�H0ð�1Þ and F�HC ¼ D�HCC þ D�HCðCþ1Þ; �;H ¼ x;p: ð144Þ
heir symmetry reduction and their reduced lattices. Left panel: Type I, right panel:
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Fig. 2. Position and polarization displacements for Type I domain wall ðT ¼ 5Þ obtained by choosing different number of k-points ðrÞ in the integration over the first Brillouin
zone.
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Fig. 3. Position and polarization displacements of Type I domain wall with respect to the temperature-dependent nominal configurations.
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Now one can use the above matrices to calculate the effective
dynamical matrix. Note that as a consequence of considering inter-
action of order m, the dynamical matrix will be sparse, i.e., only a
small number of elements are non-zero. As the dimension of the
system increases, sparsity can be very helpful in the numerical com-
putations (Press et al., 1989).

As was mentioned earlier, we will consider only the static part
of the free energy to build the Hessian for the initial iteration and
then update the Hessian using the BFGS algorithm in each step. To
calculate the gradient of the free energy we need the third-order
derivatives of the potential energy. These can be calculated using
following relation:

@D
@N
¼ @Dxx

@N
� @Dxp

@N
D�1

pp Dpx þ DxpD�1
pp
@Dpp

@N
D�1

pp Dpx � DxpD�1
pp
@Dpx

@N
;

N ¼ Xi;Pi: ð145Þ

To obtain these third-order derivatives one can use the translation
invariance relations (104) and (105) to simplify the calculations.
For example, we can write

@3E

@xi@xi@xi
ðBÞ ¼ �

X0

j2Li

@3E

@xj@xi@xi
ðBÞ; ð146Þ

where a prime means that we exclude j ¼ i from the summation.
The dimensionalized temperature T and dimensionalized mass

�m correspond to the choice �h ¼ kB ¼ 10�34. To obtain the static
4 We select these values to be able to work with temperatures that are comparable
with real temperature values.
equilibrium configuration and also in dynamic calculations we use
a ¼ 1:0; P0 ¼ 1:0; � ¼ 0:125; KA ¼ 2:0 and �m ¼ 104. In what follows
convergence tolerance for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$F � $FT
p

is 10�5. Using this value for
convergence tolerance, solutions converge after 10–20 iterations.
In Fig. 2 we plot uT

x and qy for Type I domain wall and T ¼ 5 for dif-
ferent number of k-points (r) in the first Brillouin zone. Here uT

x is the
displacement of the lattice with respect to the nominal configuration
at temperature T.5 For numerical integrations over the first Brillouin
zone we use the special points introduced in Monkhorst and Pack
(1976). For the case r ¼ 1 we set k ¼ 0, i.e., we assume that all of
the atoms in a particular equivalence class vibrate with the same
phase. As can be seen in these figures, displacements converge
quickly by selecting r ¼ 7 k-points in the first Brillouin zone, so in
what follows we set r ¼ 7.

Figs. 3 and 4 show the variations of displacements with temper-
ature for the two domain walls. When temperature increases we
cannot use the static equilibrium configuration as the reference
configuration for calculating H0. Instead, we use the equilibrium
configuration at a smaller temperature to obtain H0. Here, we
use steps equal to DT ¼ 5. In other words, for calculating the struc-
ture of a domain wall at T ¼ 30, for example, we use the structure
at T ¼ 25 as the initial configuration. We see that the lattice statics
solution and the lattice configuration at T ¼ 0 obtained by the free
5 Note that as temperature increases, lattice parameters change. A temperature-
dependent nominal configuration is what is shown in Fig. 1 but with the bulk lattice
parameters at that temperature.



−10 −5 0 5 10
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
T̄ = 0
T̄ = 40
T̄ = 80

−10 −5 0 5 10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

T̄ = 0
T̄ = 40
T̄ = 80

Fig. 4. Position and polarization displacements of Type II domain wall with respect to the temperature-dependent nominal configurations.
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Fig. 5. Variation of the 180� domain wall thickness with temperature.
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energy minimization have a small difference. Such differences are
due to the zero-point motions; the lattice statics method ignores
the quantum effects. It is a well known fact that zero-point mo-
tions can have significant effects in some systems (Kohanoff
et al., 1992). Note that polarization near the domain wall increases
with temperature. Also as it is expected, the lattice expands by
increasing the temperature.

Only a few layers around the domain wall are distorted; the rest
of the lattice is displaced rigidly. As we see in Fig. 5, the domain
wall thickness for both configurations increases as temperature in-
creases. In this figure �wT ¼ wT=w0, where w0 is the domain wall
thickness at T ¼ 0. Note also that in this temperature range �wT in-
creases linearly with T. This qualitatively agrees with experimental
observations for PbTiO3 in the low temperature regime (Foeth
et al., 2007). Foeth et al. (2007) observed that domain wall thick-
ness increases with temperature. What they measured was an
average domain wall thickness. Note that domain wall thickness
cannot be defined uniquely very much like boundary layer thick-
ness in fluid mechanics. Here, domain wall thickness is by defini-
tion the width of the region that is affected by the domain wall,
i.e., the width of those layers that are distorted. One can use defi-
nitions like the 99%-thickness in fluid mechanics and define the do-
main wall thickness as the length of the region that has 99% of the
far field rigid translation displacement. What is important is that
no matter what definition is chosen, domain wall ‘‘thickness” in-
creases by increasing temperature.

Our calculations show that by increasing the mass of the atoms
both position and polarization displacements decrease. However,
variations of displacements with respect to mass are very small.
For example, by increasing mass from �m ¼ 104 to �m ¼ 106 at
T ¼ 10, displacements decrease by less than 0.1%.
6. Concluding remarks

In this paper we extended the classical method of lattice
dynamics to defective crystals. The motivation for developing such
a technique is to semi-analytically obtain the finite-temperature
structure of defects in crystalline solids at low temperatures. Our
technique exploits partial symmetries of defects. We worked out
examples of defects in a 2D lattice of interacting dipoles. We ob-
tained the finite-temperature structure of two 180� domain walls.
We observed that using our simple model potential, increasing
temperature domain walls thicken. This is in agreement with
experimental results for ferroelectric domain walls in PbTiO3. This
technique can be used for many physically important material sys-
tems. Extending the present calculations for 180� domain walls in
PbTiO3 will be the subject of a future work.

Appendix A. The ensemble theories

There are different ensemble theories for calculating the ther-
modynamical properties of systems from the statistical mechanics
point of view. In this appendix, we consider micro canonical and
canonical ensemble theories and discuss the relation between
them. In particular, we will see that the free energy minimization
discussed in this paper is equivalent to finding the most probable
energy at the given temperature. For more detailed discussions,
see Pathria (1996).

A.1. Micro canonical ensemble theory

From thermodynamical considerations, it is known that by
specifying the limited number of properties of a system, one can
determine all the other properties. In principle, any physical sys-
tem, i.e., any macro system, consists of many smaller subsystems.
Therefore, we can consider properties of each macro system as
macrostates specified by the properties of these subsystems that
are called microstates. Note that by a microstate we mean a set of
values associated to each subsystem of a system. For example, con-
sider an isolated system with energy E and volume V that consists
of N non-interacting particles with energies �i; i ¼ 1;2; . . . ;N. Now
each n-tuple ð�1; . . . ; �iÞ satisfying

XN

i¼1

�i ¼ E; ðA:1Þ

would represent a microstate of this system.
Obviously, there may exist several microstates that are associ-

ated to the same macrostate. Let XðE;N;VÞ denote the number of
microstates associated with the given macrostate ðE;N;VÞ. We as-
sume that for an isolated system, (i) all microstates compatible
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with the given macrostates are equally probable, and (ii) equilib-
rium corresponds to the macrostate having the largest number of
microstates. Let S and kB denote the entropy of a system and Boltz-
mann constant, respectively. Then one can show that the above
two assumptions and setting

S ¼ kB lnðXÞ; ðA:2Þ

yields the equality of temperatures for systems that are in thermo-
dynamic equilibrium. Note that (A.2) provides the fundamental
relation between thermodynamics and statistical mechanics. Once
S is obtained, the derivation of other thermodynamical quantities
would be a straightforward task.

A.2. Canonical ensemble theory

In practice, we never have an isolated system and even if we
have such a system, it is hard to measure the total energy of the
system. This means that it is more convenient to develop a statis-
tical mechanics formalism that does not use E as an independent
variable. It is relatively easy to control the temperature of a system,
i.e., we can always put the system in contact with a heat bath at
temperature T. Thus, it is natural to choose T instead of E.

Let a system be in equilibrium with a heat bath at temperature
T.6 In principle, the energy of the system at any instant of time can be
equal to any energy level of the system. As a matter of fact, one can
show that the probability of a system being in the energy level Pr is
equal to

Pr ¼
gr expð�Er=kBTÞP
i

gi expð�Ei=kBTÞ ¼
gr expð�Er=kBTÞ

QðT; � Þ ; ðA:3Þ

where we define the partition function of the system as

QðT; � Þ ¼
X

i

gi expð�Ei=kBTÞ; ðA:4Þ

and � denotes any other parameters that might govern the values of
Er . Note that the summation goes over all energy levels of the sys-
tem and gi denotes the degeneracy of the state Ei, i.e., the number of
different states associated with the energy level Ei. Thus, one may
write gi ¼ XðEiÞ, where X comes from the previous formulation.
Assuming the total energy of the system to be an average energy
of the different states, i.e.

E ¼
X

r

PrEr; ðA:5Þ

one can show that the Helmholtz free energy F can be written as

F ¼ �kBT ln Q : ðA:6Þ

Eq. (A.6) provides the basic relation in the canonical ensemble the-
ory. Once F is known the other thermodynamic quantities can be
easily obtained.

Note that we have chosen the average energy to be the energy
of the system in this theory. One can show that the total energy
that we associate to the system on micro canonical ensemble the-
ory corresponds to the most probable energy of the system, i.e., the
energy level that maximizes Pr at a given temperature T. In prac-
tice, i.e., in the thermodynamical limit N !1, it can be shown that
these energies are equal and thus these two seemingly different
approaches are the same.

Finally, note that

Pr ¼
gr expð�Er=kBTÞ

QðT; � Þ ¼ exp½�ðEr � kBT ln grÞ=kBT�
QðT; � Þ

¼ expð�F r=kBTÞ
QðT; � Þ ; ðA:7Þ
6 We assume systems can only exchange energy.
where we use S ¼ kB ln X, which is justified by the equivalence of
the two ensemble theories. Eq. (A.7) shows that to maximize Pr at
a fixed temperature, we need to minimize F r over all admissible
states r. To summarize, we have shown that minimizing the Helm-
holtz free energy at a temperature T (and constant volume) is equiv-
alent to finding the most probable energy level, which is the total
energy of the system. Note that this minimization should be done
over all variables that determine the free energy.
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