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are robust against the ambiguities. In this Letter, we quantize the Lorentz term of the gravitational
Hamiltonian constraint in the spatially flat FRW model by two approaches different from that of
the Euclidean term. One of the approaches is very similar to the treatment of the Lorentz part of
Hamiltonian in loop quantum gravity and hence inherits more features from the full theory. Two

PACS: symmetric Hamiltonian constraint operators are constructed respectively in the improved scheme. Both
04.60.Kz of them are shown to have the correct classical limit by the semiclassical analysis. In the loop quantum
04.60.Pp cosmological model with a massless scalar field, the effective Hamiltonians and Friedmann equations are
98.80.Qc derived. It turns out that the classical big bang is again replaced by a quantum bounce in both cases.

Moreover, there are still great possibilities for the expanding universe to recollapse due to the quantum
gravity effect.
© 2009 Elsevier B.V.Open access under CC BY license,

1. Introduction In this Letter we will propose alternative versions of Hamilto-
nian operator for isotropic LQC, which inherit more features from
full LQG comparing to the conventional one so far considered in
the literatures. It is well known that the Hamiltonian constraint
in the full theory is composed of two terms, the so-called Eu-
clidean and Lorentz terms. In spatially flat and homogeneous mod-
els, the two terms are proportional to each other. Thus people
usually rewrite the Lorentz term in the form of the Euclidean one
classically and then quantize their combination [3]. However, this
treatment is impossible in the full theory, where the Lorentz term
has to be quantized in a form quite different from the Euclidean
one [7,12]. The issue that we are considering is what would hap-
pen in the improved dynamics setting of LQC if one kept the dis-
tinction of the two terms as in full theory rather than mixed them.
Could one construct an operator corresponding to the Lorentz term
in a way similar to that in full LQG? If so, could the classical
big bang singularity still be replaced by a quantum bounce in the
new quantum dynamics? To answer these questions, two alterna-
tive Hamiltonian constraint operators including the Lorentz terms
are constructed respectively in the improved scheme in this Let-
ter, which are both shown to have the correct classical limit by
the semiclassical analysis. In the spatially flat FRW model with
a massless scalar field, the effective Hamiltonians and Friedmann
equations are derived in both case. It turns out that the classical
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An important motivation of the theoretical search for a quan-
tum theory of gravity is the expectation that the singularities
predicted by classical general relativity would be resolved by the
quantum gravity theory. This expectation has been confirmed by
the recent study of certain isotropic models in loop quantum
cosmology (LQC) [1-3], which is a simplified symmetry-reduced
model of a full background-independent quantum theory of grav-
ity [4], known as loop quantum gravity (LQG) [5-8]. In loop quan-
tum cosmological scenario for a universe filled with a massless
scalar field, the classical singularity gets replaced by a quantum
bounce [3,9,10]. Moreover, It is also revealed in the effective sce-
narios that there are great possibilities for a spatially flat FRW
expanding universe to recollapse due to the quantum gravity ef-
fect [11]. However, as in the ordinary quantization procedure, there
are quantization ambiguities in constructing the Hamiltonian con-
straint operator. Thus it is crucial to check the robustness of the
key results against the quantization ambiguities. Moreover, since
LQC serves as a simple arena to test ideas and constructions in-
duced in the full LQG, it is important to implement those treat-
ments from the full theory to LQC as more as possible.
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In the spatially flat and isotropic model, one has to first in-
troduce an elementary cell V and restrict all integrations to this
cell. Fix a fiducial flat metric °qy, and denote by V, the volume
of the elementary cell V in this geometry. The gravitational phase
space variables—the connections Afl and the density-weighted tri-
ads E{—can be expressed as [13]

Aé:cvo_m"a)fl and E?:pvo_z/{/oqoe?, (1)
where (°w}, %) are a set of orthonormal co-triads and triads com-

patible with °g,, and adapted to the edges of the elementary
cell V. In terms of p, the physical triad and cotriad are given by

e¢ = sgn(p)|p| =72V, > %8,

1
1/3
eb =sgn(p)p['2v, " "wa. (2)
The basic (nonvanishing) Poisson bracket is given by

Ky
3’

where k = 87 G (G is the Newton’s constant) and y is the
Barbero-Immirzi parameter.

To pass to the quantum theory, one constructs a kinematical
Hilbert space Hﬁfsv = L2 (Rponr, dftgonr), Where Rpop is the Bohr
compactification of the real line and dugen; is the Haar measure on
it [13]. The abstract x-algebra represented on the Hilbert space is
based on the holonomies of the connection Al. In the Hamiltonian
constraint of LQG, the gravitational connection Afl appears through
its curvature F;b. Since there exists no operator corresponding to
¢, only holonomy operators are well defined. Hence one is led to
express the curvature in terms of holonomies. Similarly, in the im-
proved dynamics setting of LQC [3], to express the curvature one
employed the holonomies

{c.p}= (3)

c
h(“) := oS %H—i—Zsm %T, (4)

along an edge parallel to the triad % of length +/1p] = D, where
D is a constant, with respect to the physical metric qq,,, where I
is the identity 2 x 2 matrix and t; = —io;/2 (0; are the Pauli ma-
trices). Note that there are ambiguities in assigning a constant to
the length of the edge. In more general treatments proposed in
Ref. [14], certain function f(p) would be assigned to a constant.
However, here we consider only the above improved treatment.
Thus, the elementary variables could be taken as the functions
exp(ijic/2) and the physical volume V = |p|3/2 of the cell, which
have unambiguous operator analogs. It is convenient to work with
the v-representation. In this representation, states |v), constitut-
ing an orthonormal basis in H2*", is more directly adapted to the

kin ’
volume operator V as

X 8y €2 \*? v
V|v)—< 5 ) — v, (5)
where ij = Gh and

.4 myld
L=3y 3pr' (6)

The action of exW/Z) is given by

exp(ijic/2)|v) = |v +1). (7)

Now let us consider the gravitational field coupled with a mass-
less scalar field ¢. The Hamiltonian of the matter field is given by
=|p|~ 3/2p /2, where ps denotes the momentum of ¢. Hence

the total Hamiltonian constraint is given by H = Hgray + Hgy. The
basic Poisson bracket for the matter field is given by

{9, pp}=1. (8)

The Hamiltonian evolution equations for the matter field read
p¢ = {py, Hp} = 0=> ps = constant,

which show that ¢ is monotonic function of the time parameter.
So the scalar field can be regarded as internal time. To quantize the
matter field, we can choose the standard Schrodinger representa-
tion for scalar field. The kinematical Hilbert space, Hy = L%(R, d¢),
is the space of the square integrable functions on R endowed
with the Lebesgue measure. Hence the kinematical Hilbert space
of the gravitational field coupled with the scalar field is Hyin, =
Hp' ® Hy. The elementary operators of the scalar field are de-
fined by:

@GP (v, ) =¥ (v, §),

(Pp¥) (v, ) 1= —iﬁ%'lf(v,@, Y& (v, ¢) € Hin. (10)
In the following sections, we will construct two different Hamil-
tonian operators including the Lorentz term in the above quantum
kinematic framework. Their classical limits are confirmed by calcu-
lating the expectation values of these new Hamiltonian operators
with respect to suitable semiclassical states. By this approach we
also obtain the effective descriptions of quantum dynamics in both
cases. In the end we will summarize the results and discuss some
of their ramifications.

2. Alternative regularized Hamiltonian constraints
Because of homogeneity, we can assume that the lapse N is

constant and from now onwards set it to be one. The gravitational
Hamiltonian constraint is given by

H rav:/dBX Ea]fbk [ei'kFi —2(]+y2)K] I(k]
g J ZKM Jk* ab [a™b]
=HE(D) -2(1+yH)T), (11)

where Fgp is the curvature (the field strength) of connection Af,,
and K} is the extrinsic curvature. The symmetry-reduced expres-
sions read

P 3 Eaijk
H* )= [d Xﬁm ukFab \/ Ipl,
%

aj bk

‘ 3
T(I)Z/d3x71<1 Kk = ——cJ/pl,
) e (001 = 502 VIP

3
Hgrav = HE (1) — 2(1 + 2 )m)__ﬁc Ipl. (12)

In the following, we will discuss alternative regularization of the
gravitational Hamiltonian constraint.

2.1. Regularization ambiguity of the field strength of the gravitational
connection

From Eq. (12), it is easy to see that the Euclidean term HE(1)
is classically proportional to the Lorentz term T (1) in the spatially
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flat and isotropic model. Thus people usually rewrite the Lorentz
term in the form of the Euclidean one and then quantize their
combination [3]. However, there exists a typical quantization am-
biguity arising from the quantization of the field strength of the
gravitational connection. We now introduce an alternative method
to regularize it. Due to the spatial homogeneity and isotropy, one
can fix the spin connection as I} =0, which leads to

AL =Fi+yKi—yKi (13)
Fiy=201A; + € AL AL = €' ALAL, (14)

where an internal gauge fixing is employed to get Eq. (14). Thus

the Hamiltonian constraint can be simplified as

GijquEb 1+ )/2

H = d3x71k[ Al Am _—
grav \[ % det(q) ilm g )/2

eilmAéAbmi|
ukEaEb

:_/d3 11m a

J 2fcy2w/det(q

It is easy to check the following identity [7,12],

o = —ewelal v, (16)

Vdet(q) KV

where €%¢ is the Levi-Civita density. Putting Eq. (16) into (15), we
obtain

ngav=/‘d3
v

Now in order to quantize Hgry, we have to replace the expression
with the elementary variables. Taking account of the definition (4)
of holonomies, we have the identities

peive ——5 €M Tr(AgAp{Ac, V). (17)

-1
—l h(ﬂ) hfll) , 18
eri = lim (1" '] (18)
and
1 @ i)—1
{crk,V}=—ﬁh,§“){h,ﬁ“> V). (19)

Egs. (18) and (19) imply that the Hamiltonian constraint (17) can
be written as

(L)
Hgray = lim HRg’;V, (20)
where
R(L) sgn(p) ik @ _ @1
H grav — sz Mg lJhrr[(hi _hi )
ORI NN (YN
X(hj —h; )hk {hk V}] (21)

from which an alternative quantization of the Hamiltonian con-
straint can be straitforwardly implemented [15].

2.2. Regularization ambiguities of the Hamiltonian constraint

In the following, we will regularize the two terms of the grav-
itational Hamiltonian constraint in Eq. (12) respectively. From
Eq. (13) one obtains the classically equivalent expression of
Eq. (11) as
H3., =HEQ) -

grav

2(1+y3)Ts(D), (22)

where

1 3 Eaijk ik
Ts(1) 2 v/d XZK\/F(Q)A[GAH. (23)
Since the expressions (11) and (22) inherit more features of the
Hamiltonian constraint in the full theory, we will take them sep-
arately as the starting-points of our quantization. To this aim, the
first step is to give their regularized expressions which would be
suitable for quantization. Note that the improved quantum opera-
tor representing the Euclidean Hamiltonian constraint HE(1) was
first introduced in [3], and its regularized formulation reads

- 2 y D (- (=1, (1)—1
HE'M(l)z Kszg;l(:g)ezjkTr(hgli)h;M)hl{lt) hﬁ‘m

D oiy—1
< P {n v ). (24)

Now our task is to give the regularized formulations of the Lorentz
terms Ts(1) and T(1) in Egs. (22) and (11) respectively. Let us
first deal with the symmetry-reduced Lorentzian term Ts(1). Using
Eq. (16), Eq. (23) can be written as

/ d*>x &P Tr(AgAp{Ac, V)

%

_ 2sgn(p) ciik
Kk2y3

By the identities (18) and (19), Eq

2

Tr(ctictj{cw, V}). (25)
. (25) can be written as
Ts(1) = lim T4 (1), (26)
a—0
where
sgn(p) i W _ pw~1
TS = 2K 2)/3“3 UcTr([hiu - hiu ]

i a)—1 i 7)1
% [hj'ﬂ) _ h;ﬂ) ]hlgu) {hl(cﬂ) Y }) (27)

Putting Egs. (24) and (27) together, we obtain the regularized
Hamiltonian constraint corresponding to (22) as

S, ) _
Hgm“v_HW(l)—z(l +y3)TE ). (28)
Let us now turn to the original Lorentz term in Eq. (11):
s, EYUEP i
T(1)=/d x————K; Kf,. (29)
J 2uc,/det(q) @

Though this term was considered in some early literature [16,17],
here we will treat it in the new improved quantization frame-
work [3]. As in the full theory [7,12], the extrinsic curvature can
be written as

. 1 . 1 . E
1<Q=H{A;,K}=K—V3{Ag,{b1 (1), Vi (30)
where
3,5l pa 3
K:/d XK E{ = ;cp (31)
v

is the integrated trace of K";. Hence Eq. (29) can be reexpressed as

T(1)=— XEPCTr({Aq, K} Ap, K}{Ac, V)

= —zjiil;;meijkﬁ({cn, KHctj, K} {cte, V). (32)
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Moreover, we have the following identity

2 i)—1
{eti, K} = —ﬁhi(“){h;’” K} (33)
Using the identities (19) and (33), Eq. (32) can be written as
T(1) = lim T} (1), (34)
n—0
where
T 8 Sgn(p) i

9k4y7 ﬂa
W W~ ER
x W7 {n/7 {H5E ), V]
() (01
xS V). (35)
Putting Eqgs. (24) and (35) together, we obtain the regularized
Hamiltonian constraint corresponding to (11) as

Hyhe = HEA (1) —2(1 4+ y2)TE (D). (36)

3. Alternative Hamiltonian constraint operators

Since both regularized Hamiltonian constraints (28) and (36)
are now expressed in terms of elementary variables and their
Poisson brackets, which have unambiguous quantum analogs it is
straightforward to write down the quantum operators Hgm\, and

I:IgFra\,. However, the limit ft — O of these operators do not ex-

ist, not only for the Euclidean term I:IE-’_‘(l), but also for the

Lorentzian term T4 (1) or T4 (1). In fact, even in the full theory,
there are no local operators representing connections and curva-
tures. To get unambiguous operators, one should have recourse to
the area gap as in the improved scheme [3], where [ is given by

A2pl = A, (37)

here A = 4\/§71ny, is a minimum nonzero eigenvalue of the
area operator [10]. The Euclidean Hamiltonian constraint opera-
tor HE(1) corresponding to (24) is given in the improved scheme

by [3]

2 . _ _
NE v YT - [24isgn(v) (/. (C ac
H"(1)= o Smwc)[ixhﬁ/ﬁ sin 5 V cos 2

e\~ . fic .
—cos(T)Vsm(T))]sm(,uc), (38)

where, for clarity, we have suppressed hats over the opera-
tors sin(fic/2), cos(fic/2) and sgn(v)/fi>. In the v-representation
where

_ sgn(p)|p*’?

B ZWVK%«/Z, 9
HE(1) acts on the basis |v) of HZo" as
HE)v)

=—g[f+(v)|v+4>+fo(v)|v>+f_(v)|v—4>], (40)
where
frn = E\/?)fffz (V43— v+ 1) (v +2),
fry=frv=4),  fo(v)=—Ffrv)—f-(v), (41)

here

4 |myt?
=3 3A". (42)

Now we turn to the Lorentz part. The regularized expression
(27) enables us to define a self-adjoint operator on nggv in the
improved scheme corresponding to (23) as

24 L
Ts(1)=— ,uc [7; sgn(v) (S M—V cos X<
hy3 2 2
— cos L V sin ] sin M—C (43)
2 2 2

Its action on the basis |v) reads

Ts(D|v) =S+ (V)IV +2) + So(V)|v) + S_(v)|v — 2), (44)

where

27 [87 Lty
s+(v)=_E o 3/2(v+1)(|v+2| [v]),

S_(v)=S41(v—2), So(v) =—=54(v) —S_(v). (45)
Hence we obtain the action of the Hamiltonian constraint operator
corresponding to (22) on |v) as
Hgeay(DIV) =2(1+ ) Ts(DIv)
= LWV +4) + S, (V)|v+2)
+[ £+ o ]Iv)
+SLWIv =2)+ fL(v)|v - 4), (46)

grav lv) =

where f/(v) = —}z’—zf*(v), SL(v) =
+, —,0.
On the other hand, the regularized expression (35) enables us

to define the other operator on Hgfsv corresponding to (29) as

—2(1 + y?)S,(v), here % =

A 96i [LC A 1 (LC ~ L
Tp(l):—il sinM—CBcosM—C—cosM—CBsinM—C
YAy Th? 2 2 2
X sgr_1(3v) M— V cos B _ cos Ke V sin Ke
7 2 2 2 2
sin M—B CoS — e — CoS EE’ sin ad , (47)
2 2 2 2
where
B=[HE),V]. (48)

It is easy to see from Eq. (47) that Te(1) is a symmetric operator.
Its action on |v) reads

R V6 o 321
Tr(D)|v) = mwz(ﬁr(vﬂv +8) + Fo(v)|v)

+ F_(v)|v—8)), (49)
where

Fi(v) = [My(1,5) f+-(v +1) = My(=1,3) fr.(v = 1)]
X (V+4)My (3, 5)
X [My(5,9) f+(v+5) = My3,7) f+.(v +3)],
Fo(v) = [My(1,=3)f-(v + 1) = My(=1,=5) f_(v = 1)]
X (v — 4)My (=5, —3)

X [My(=3, =7) f-(v = 3) = My(=5, =9) f—(v = 5)],
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Fo(v) =[My(1,5) f4-(v+1) = My(=1,3) fy (v = 1]
X (V+4)My(3,5)
x [My(5, D) f-(v+5) —My@B, -1 f_(v+3)]
+[My(1,=3) fo(v+1) = My (=1, -5 f_(v — )]
x (v —4)My (=5, —3)
X [My(=3, 1) f (v —3) = My(=5, -1) f1 (v = 5)],
(50)
here
My(a,b):=|v+a|—|v+Db| (51)

Hence the action of the Hamiltonian constraint operator corre-
sponding to (11) on |v) is given by
gy (DIV) = 2(1+y2) Tr(D)v)
=F . (W)|v+8)+ fL(v)|v+4)
+ [Fo) + fom)]Iv)
+ fL(WIv—4) +F_(v)|v —8), (52)

grav lv) =

where FL(v):=-2(1+ )/2)23X33 K3/251/2 1F.(v), here =+, —,0.

Thus, both of the new proposed Hamiltonian constraint op-
erators in Eqs. (46) and (52) are also difference operators with
constant steps in eigenvalues of the volume operator V. But they
contain more terms with steps of different size comparing to the
operator (38).

The Hamiltonian constraint of the scalar field has been quan-
tized in the literatures as [3,13]

‘l — ~
Hy =5 1pI>/2pg, (53)

where the action of |p|=3/2 on |v) reads

3 3/2
— 3 6
S32vy=(=) — ) Lv
IPI=>72]v) (2) (Khy) v
< |lv+1173 = v =113 Py, (54)

Thus we obtain alternative total Hamiltonian operators respectively
as

fis = 15,0, + Ay, (55)
I:IF=I:IgFraV+H¢- (56)

Note that in both quantum dynamics the scalar field ¢ can be
used as emergent time. But the different expressions of gravita-
tional Hamiltonian operators may lead to different physics, which
may be examined in some aspects. We will consider their classical
limit and effective dynamics in next section.

4. Classical limit and effective dynamics

It has been shown in [11,18] that the improved Hamiltonian
constraint operator constructed in [3] has the correct classical
limit. In this section, we will show that the two Hamiltonian con-
straint operators constructed in this Letter also have the correct
classical limit. Moreover, the effective Hamiltonian incorporating
higher order quantum corrections can also be obtained. In order to
do the semiclassical analysis, it is convenient to introduce a new
variable:

A ¢

pim VA (57)
2 JIpl

conjugate to v with the Poisson bracket {b,v} = 1/h. Then the

classical Hamiltonian constraint in FRW model can be written as

H:ngav+H¢
32V6 n'/? n\*?

_ BVE Ry (YR (58)
2 )/3/2161/2 6 L

where

16 V(L) ,
r=3(n) () 7 >

is the energy density of the scalar field. Let us first consider
the gravitational part. Since there are uncountable basis vectors,
the natural Gaussian semiclassical states live in the algebraic dual
space of some dense set in ngav A semiclassical state (¥, v,)l
peaked at a point (b,, v,) of the gravitational classical phase space
reads:

(Pbyve)| = Z e*[(vaO)Z/de]eibo(vao)(vl’ (60)
veR

where d is the characteristic “width” of the coherent state. For
practical calculations, we use the shadow of the semiclassical state
(¥(b,,v,)| ON the regular lattice with spacing 1 [19], which is given
by

W) = Z[ef(ez/zxnfw)ze—i(n—N)bu]|n>, (61)

nez

where € = 1/d and we choose v, = N € Z. Since we consider large
volumes and late times, the relative quantum fluctuations in the
volume of the universe must be very small. Therefore we have the
restrictions: 1/N < € < 1 and b, < 1. One can check that the state
(60) is sharply peaked at (b,, vo) and the fluctuations are within
specified tolerance [11,18]. The semiclassical state of matter part is
given by the standard coherent state

—[(d—cpy)? 21 —
(l[/(¢o,p¢)|:/'d¢)e [(p—e0)* /20 ]elp¢(¢ ¢0)/Fl(¢|’ (62)

where o is the width of the Gaussian. Thus the whole semiclassi-
cal state reads (b, vy)l ® (W(gy.py) |-

The task is to use this semiclassical state to calculate the ex-
pectation values of the two Hamiltonian operators in Eqgs. (55) and
(56) to a certain accuracy. In the calculation, one gets the expres-
sion with the absolute values, which is not analytical. To overcome
the difficulty we separate the expression into a sum of two terms:
one is analytical and hence can be calculated straightforwardly,
while the other becomes exponentially decayed out. We first see
the expectation value of the Hamiltonian operator AF, which in-
herits more features of the full theory. The expectation values of

the two terms of ngav in Eq. (52) are respectively calculated as

R 32./6 y1/21/2 '
(HE(D))= — V—L|vo|[ 4€% §in2 (2b,)
. -
+5(1—e ) [+ o),
~ 32\/6 nl/2 C1Re2 .
(Tr(D) = —5 Wum[e 19¢" sin? (4b,)

+ %(1 —e 1) | L 0(e V). (63)
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In the calculation of (1:1¢), one has to calculate the expectation

value of the operator |p|=3/2, which is given by [11]:

(Ip/r?/Z): 6 3/25 1+L+i+o(1/N4e4)
8wyls N 2N2e2  9N?
+0(eMYyo(e ™).

For clarity, we will suppress the label o in the following. Collect-
ing these results we can obtain an effective Hamiltonian with the
relevant quantum corrections of order €2, 1/v2e?, hz/azpz as:

2 1/2
HE — _ﬁ Luw
eff 23 Y3212

x [sin®(2b)[1 — (1+ y?) sin*(2b)] + 2¢?]

32 2

Kkyh [v| 1 h
Y M —— ), 64
+< 6 ) r” +2|v|262+202p3; (64)

Hence the classical constraint (58) is reproduced up to small quan-
tum corrections and therefore the Hamiltonian operator i F has
correct classical limit. We can further obtain the Hamiltonian evo-
lution equation of v by taking its Poisson bracket with Hgff as

Vi =3|v| gpc sin(2b) cos(2b)[1 — 2(1 + y?)sin*(2b)],  (65)

where pc = 3/(ky?A). The vanishing of the effective Hamiltonian
constraint (64) gives
sin®(2b)[1 — (1+y?) sin*(2b)]

P 1 n? > 2
=—|14+——=+ ——= | — 2€°. 66
m( 2lv|%€?  202p (60)

For the classical region, b <« 1 and p <« p¢, we have from Eq. (66)

1-J1—
sin?(2b) = — Y- _XF (67)
21+y?)
where
xr=4(1+y?) £ 1+¥+i —2¢? (68)
Oc 2|v|2€? 202p%¢ '
The modified Friedmann equation can then be derived as
N
VF
Hi=(—
-(5)
K
3m( \/1—XF)( +2)/2+\/1—XF)
x (1= XF). (69)

It is easy to see that if one neglects the small quantum corrections
in the classical region, xr < 1 for p < pc, one gets

K Pc 1
H%”gmim (1 +)/)~*,0, (70)
which reduces to the standard Friedmann equation. However,
quantum geometry effects lead to a modification of the Friedmann
equation especially at the scales when p becomes comparable
to pc. Remarkable changes to the classical theory happen when
the Hubble parameter in Eq. (69) vanishes by

1—XF:0. (71)

0.0

—0.24

—04- 7

—0.64 ;1

—0.8+

_10,

T T T T
0 20,000 40,000 60,000 80,000 100,000

v

effective — » — classical

Fig. 1. The effective dynamics represented by the observable v|, are compared
to classical trajectories. In this simulation, the parameters were: G =h =1, pg =
10000, € =0.001, 0 =0.01 with initial data v, = 100000.

If we consider only the leading order contribution in Eq. (68), this
can happen when

p = pc/4(1+v?). (72)

Thus, when energy density of the scalar field reaches to the lead-
ing order critical energy density pCF = pc/4(1 + y?), the universe
bounces from the contracting branch to the expanding branch. The
quantum bounce implied by (69) is shown in Fig. 1.

In a similar way, we can calculate the expectation value of the
other Hamiltonian operator (55) as well. The effective Hamiltonian
corresponding to Hs with the relevant quantum corrections is ob-
tained as

32\/6 hl/z

Heff ) WHV'

1
X [sin2 b(1+ y?sin’b) + 562]

+ €yh) "1yl 1+ ! + n (73)
6 L 2|v|2€? " 202p3 '

Hence the classical constraint (58) is again reproduced up to
small quantum corrections. The corresponding modified Friedmann
equation can then be derived as

H? Kpc( T+T+xs)(1+2y% =1+ xs) (A + xs),

where

2
2| P 1 h 1,
=y (1+—5+-—=)-=€]| 75
Xs V[pc< +2|V|2€2+202pé> 5€ (75)

The Hubble parameter in Eq. (74) can also vanish when

JT+ x5 =0. (76)

Thus the quantum dynamics given by As has qualitatively similar
feature of that given by Hr. However, there are quantitative dif-
ferences between them. For the leading order effective theory of

1+2y%—
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A5, when energy density of the scalar field reaches to the critical
energy density ,ocS =4(1 + y?)pc, the universe bounces from the
contracting branch to the expanding branch.

5. Discussion

We have successfully constructed two versions of Hamiltonian
operator for isotropic LQC in the improved scheme, where the
Lorentz term is quantized in two approaches different from the Eu-
clidean one. The treatments of the Lorentz term of Hamiltonian in
the full LQG can be properly implemented in one of our construc-
tions, which inherits more features of the full theory. One of the
Hamiltonian operators is self-adjoint and the other is symmetric.
Both of them are shown to have the correct classical limit by the
semiclassical analysis. Hence the alternative Hamiltonian operators
that we proposed can provide good arenas to test the ideas and
constructions of the quantum dynamics in full LQG. In the spa-
tially flat FRW model with a massless scalar field, the effective
Hamiltonians and Friedmann equations are derived in both case.
Although there are quantitative differences between the two ver-
sions of quantum dynamics, qualitatively they have the same dy-
namical features. Especially, the classical big bang is again replaced
by a quantum bounce in both cases. For instance, in the lead-
ing order effective theory of Hp, the universe would bounce from
the contracting branch to the expanding branch when the energy
density of scalar field reaches to the critical pf = pc/4(1 + v?).
Therefore, the key feature of LQC for the resolution of the big bang
singularity is still maintained for the new quantum dynamics in-
heriting more features of the full theory. Recall that the quantum
bounce happens at p. for the quantum dynamics in [3]. Thus the
new quantum dynamics here lead to some quantitatively different
critical energy density for the bounce.

On the other hand, the discussion in [11] can be carried out
similarly. It is easy to see from Eqgs. (69) and (74) that the Hub-
ble parameter in both cases may also vanish by the vanishing of
xr and xs respectively, whence the asymptotic behavior of the
quantum geometric fluctuations plays a key role for the fate of the
universe. By the ansatz € = A(r)v—"® with 0 <r(¢) <1, Egs. (68)
and (75) imply that there are great possibilities for the expanding
universe to undergo a recollape in the future. The recollape can
happen provided 0 <r <1 in the large scale limit. Suppose that
the semiclassicality of our coherent state is maintained asymtoti-
cally so that the quantum fluctuation 1/€ of v cannot increase as
v unboundedly as v approaches infinity. Thus the recollape is in
all probability as viewed from the parameter space of r(¢). Taking
the effective dynamics of HF as an example, in the scenario when
r =0 asymtotically, besides the quantum bounce when the matter
density p increases to the Planck scale, the universe would also
undergo a recollapse when p decreases to pf | ~8(1+ y?)e?pf.
Therefore, the quantum fluctuations also lead to a cyclic universe
in this case. The cyclic universe in this effective scenario is il-
lustrated in Fig. 2. This amazing possibility that quantum gravity
manifests herself in the large scale cosmology was first revealed
in [11]. Nevertheless, the condition that the semiclassicality is
maintained in the large scale limit has not been confirmed. Hence
further numerical and analytic investigations to the properties of
dynamical semiclassical states in the alternative quantum dynam-
ics are still desirable. It should be noted that in some simplified
completely solvable models of LQC (see [9] and [20]), the dynami-
cal coherent states could be obtained, where r(¢) approaches 1 in
the large scale limit. While those treatments lead to the quantum
dynamics different from ours, they raise caveats to the conjectured
recollapse.

104 103 106 107

r=0 — - — classical

Fig. 2. The cyclic model is compared with expanding and contracting classical tra-
jectories. In this simulation, the parameters were: G =h =1, py = 10000,€ =
0.001, 0 = 0.01 with initial data v, = 100000.

To summarize, the quantum dynamics of LQC in the improved
scheme is extended in order to inherit more features from the full
LQG. The key features of LQC in this model, that the big bang
singularity is replaced by a quantum bounce and there are great
possibilities for an expanding universe to recollapse, are robust
against the quantization ambiguities with the extensions. This re-
sult further supports the expectation that the above features of
LQC originate not only in the symmetric model but also from the
fundamental LQG.
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