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For a compact surface F , the free degree fr(F ) of homeomorphisms on F is defined as the
maximum of least periods among all periodic points of self-homeomorphisms on F . We
show that maxb fr(F2,b) = 12.
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1. Background

Let f : F → F be a self-homeomorphism on a compact surface F . The free degree fr( f ) of f is a positive integer n such
that f 1, f 2, . . . , f n−1 have no fixed points while f n has at least a fixed point.

We denote the free degree of all homeomorphisms on F by fr(F ) = max{fr( f ) | f ∈ Homeo(F )}, the free degree of all
orientation preserving homeomorphisms by fr+(F ) = max{fr( f ) | f ∈ Homeo+(F )} and the free degree of all orientation
reversing homeomorphisms by fr−(F ) = max{fr( f ) | f ∈ Homeo−(F )}.

In nineteen forties, J. Nielsen [4] proved that for a genus g orientable closed surface F g ,

fr+(F g) =
{

2 or 3, if g = 2,

2g − 2, if g > 2.

The exact value of fr+(F2) = 2 was determined by W. Dicks and J. Llibre [2] in 1996.
S. Wang [7] extended those results to all homeomorphisms case and to non-orientable closed surfaces case. Especially,

he showed that fr(F2) = 4.
J. Wu and X. Zhao [8] studied the free degrees of homeomorphisms on compact surfaces with boundaries. For a genus g

with b holes orientable surface F g,b , they got an upper bound 24g − 24.
In this paper, for genus 2 orientable compact surfaces F2,b , we have

Theorem 1.1. maxb fr(F2,b) = 12.

Remark. In his/her report the referee has informed us that Theorem 1.1 is a special case of the results contained in Moira
Chas’s 1998 thesis [1] (recently available in the arXiv.org). In fact the results in [1] have also covered the main results
in [8].
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We prove Theorem 1.1 in Sections 2 and 3. We list some important results of M. Chas in an additional remark at the end
of the paper.

2. The upper bound of fr(F2,b)

Theorem 2.1. If f is a self-homeomorphism on F2,b, then there exists a positive integer n � 12 such that the Nielsen number
N( f n) > 0, hence fr( f ) � 12.

Proof. The procedure of our proof is essentially the same as [8, Lemma 7.1]. We prove the theorem by using a reduction on
the number of boundary components b.

Since fr( f ) � min{n | the Nielsen number N( f n) > 0} � min{n | the Lefschetz number L( f n) �= 0} and the Nielsen (Lef-
schetz) number of a map is a homotopic invariant, by Thurston’s classification theorem of homeomorphisms of surface [5],
we only have to prove N( f n) > 0 or L( f n) �= 0 (n � 12) for f being periodic or pseudo-Anosov or reducible. Furthermore,
we may assume that f is in standard form introduced by B. Jiang and J. Guo [3] for simplifying the estimate of the Nielsen
(Lefschetz) number.

Case 1: b = 0. We already knew L( f n) �= 0 for some n � 4 in the proof of S. Wang [7, Theorem 1].
Case 2: f is periodic. If we collapse each boundary component of F2,b to a point, f induces a periodic homeomorphism f̄

on F2. They have the same order n and N( f n) = N(id) = 1. By S. Wang [6], n � 12.
Case 3: f is pseudo-Anosov. Denote the stable singular foliation of f by F s . Let l be the minimal length of orbits of

f -action on the set of all 1-prong boundary components.
Subcase 3.1: l = 0. Suppose q : F2,b → F2 is a map collapsing each boundary component of F2,b to one point. Then f

induces a map f̄ on F2 satisfying the following commutative diagram

F2,b
f

q

F2,b

q

F2
f̄

F2

(2.1)

where q(F s) is the stable singular foliation of the pseudo-Anosov map f̄ . By S. Wang [7], p = fr( f̄ ) � 4. There exists a point
x ∈ F2 which is a fixed point of f̄ p . Since f̄ p is also a pseudo-Anosov map on a closed surface, x is an m-prong (m > 1)
singularity and consists a fixed point class of f̄ p . We have two sub-subcases.

(3.1.1) f̄ p is orientation preserving. Then the index ind( f̄ p, x) is non-zero.
If q−1(x) is a singleton, it is an isolated fixed point of f p with non-zero index. f p is in standard form and q−1(x) is also

an essential fixed point class of f p . We have N( f p) > 0.
If q−1(x) is not a singleton, it is an m-prong boundary circle of F s and is invariant under f p . Then f pm maps each

singularity on q−1(x) to itself. By B. Jiang and J. Guo [3, Lemma 2.1], we have ind( f pm,q−1(x)) = −m �= 0 and N( f pm) > 0.
It is sufficient to prove pm � 12.

(1) If m = 2 or 3, then pm � 12.
(2) If m � 4, since q(F s) has no 1-prong singularities, we have

−2 = χ(F2) =
∞∑

k=2

(
1 − k

2

)
Pk

(
q
(
F s))�

(
1 − m

2

)
Pm

(
q
(
F s))

where Pk(q(F s)) is the number of k-prong singularities of q(F s). It follows that

mPm
(
q
(
F s))� 4

(
1 + 2

m − 2

)
� 8.

Since f permutes the m-prong boundary components of F2,b , we have that

p � P bd
m

(
F s) � P bd

m

(
F s) + P int

m

(
F s) = Pm

(
q
(
F s))

where P bd
m (F s) is the number of m-prong boundary components of F2,b and P int

m (F s) is number of m-prong singularities in
the interior of F2,b . Hence pm � 8.

(3.1.2) f̄ p is orientation reversing. Then p = 1 or 3 and the index ind( f̄ 2p, x) = 1 − m �= 0.
If q−1(x) is a singleton, it is an isolated fixed point of f 2p with non-zero index. f 2p is in standard form and q−1(x) is

also an essential fixed point class of f 2p . We have N( f 2p) > 0.
If q−1(x) is not a singleton, it is an m-prong boundary circle of F s and is invariant under f p . Since f̄ p is orientation

reversing, f p is also orientation reversing. Since f p is in standard form, f p|q−1(x) is a reflection. So f 2p|q−1(x) = id. By

B. Jiang and J. Guo [3, Lemma 2.1], we have ind( f 2p,q−1(x)) = −m �= 0 and N( f 2p) > 0, where 2p � 6.



J. Wu, Q. Zhang / Topology and its Applications 159 (2012) 2841–2844 2843
Fig. 1. An order 6 periodic homeomorphism on a torus.

Subcase 3.2: 0 < l � 12. Let C be a 1-prong boundary component such that f l(C) = C . By B. Jiang and J. Guo [3, Lem-
ma 3.6], if f l is orientation preserving, then C is the fixed point class of f l with index −1. So N( f l) > 0. If f l is orientation
reversing, then there is a fixed point x ∈ C with index 1. We also have N( f l) > 0.

Subcase 3.3: l > 12. Let q : F g,b → F g,b′ be a map collapsing each 1-prong boundary component of F2,b to a point. The
pseudo-Anosov map f induces a homeomorphism f̄ on F2,b′ . We have the following commutative diagram

F2,b
f

q

F2,b

q

F2,b′
f̄

F2,b′ .

Of course, b′ < b and f̄ is not in standard form. By the inductive assumption, N( f̄ m) > 0 for some m � 12 < l. Since q is
surjective and only collapses 1-prong boundary components of F2,b , by the definition of l, we know any essential fixed point
class of f̄ m contains at lease one essential fixed point classes of f m . We have N( f m) > 0.

Case 4: f is reducible. Let P be a reduced piece with the biggest genus among all pieces. Assume that P ∼= F g,b′ . Thus,
either g < 2 or g = 2 and b′ < b.

Subcase 4.1: g = 2. Clearly, f |P is a homeomorphism on P . By assumption of reduction, N( f n|P ) > 0 for some n � 12. So
N( f n) > 0.

Subcase 4.2: g = 0 or 1. Consider the quotient map q : F2,b → F2 and the induced homeomorphism satisfying the com-
mutative diagram (2.1). Let Γ = {γ1, γ2, . . . , γt} be the cutting system for f . We assume that q(γ j) is essential in F2 for
j = 1,2, . . . , t′ , and inessential for j = t′ + 1, . . . ,k. We write Γ ′ = {γ1, γ2, . . . , γt′ }. Then each component of F2 − q(Γ ′) is
a union of one component of F2 − q(Γ ) and other components of F2 − q(Γ ) are disks. This implies that t′ > 0 and the
maximal genus of the components of F2 − q(Γ ′) is still g . Since each curve q(γ j) in q(Γ ′) is essential in F2, the Euler
characteristic number of each component of F2 − q(Γ ′) is negative.

(4.2.1) g = 1. Let Q be a component of F2 − q(Γ ′) with genus 1. Let k be the orbit length of Q under the action of f̄
and m be number of boundary components of Q . Since each component of F2 − q(Γ ′) has non-positive Euler characteristic
number. We have kχ(Q ) = −km � χ(F2) = −2. It follows that k = 1 and m � 2 or k = 2 and m = 1. In either case, Q and
its boundary components are invariant under f̄ 2. So f 2|P keeps at least a boundary component of the closure P of q−1(Q )

invariant. The genus of P is 1. By [8, Lemma 5.2], L(( f 2|P )p) �= 0 for some p � 6 because f 2 is orientation preserving. It
follows that N( f n|P ) > 0 for some n � 12. So N( f n) > 0.

(4.2.2) g = 0. Each component of F2 − q(Γ ′) is a disk with holes. They all have non-positive Euler characteristic number.
From the additivity of Euler characteristic numbers, there must be a component Q with χ(Q ) < 0. Let k be the orbit
length of Q under the action of f̄ and m be number of boundary components of Q . Then we have kχ(Q ) = k(2 − m) �
χ(F2) = −2. This implies that km � 2 · m

m−2 � 6 because χ(Q ) < 0 i.e. m � 3. Since f̄ k permutes the boundary components

of Q , then there exists a positive integer m′ � m such that f̄ km′
fixes set-wisely at least three boundary components.

The closure P of q−1(Q ) is a disk with holes and f km′ |P also keeps at least three boundary components invariant. Since
( f km′ |P )2 is orientation preserving, by [8, Lemma 5.1], L(( f km′ |P )2) �= 0. So N( f n) > 0 for some n � 2km′ � 2km � 12. �
3. Example: a free degree 12 periodic homeomorphism on F2,10

The construction is motivated by S. Wang [6, Lemma 5]. In fact, we just cut the neighborhoods of some periodic points
on a surface shown by the example in that lemma.

Step 1: An order 6 periodic homeomorphism on a torus. Consider a torus F1 as the union of two regular 3-gon’s in the plane
shown in Fig. 1. The oriented edges marked by the same letter are identified. All corner points are identified to a point
on F1.
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Fig. 2. A free degree 12 homeomorphism on F2,10.

φ is a map who restricted on each 3-gon a rotation of angle 2
3 π . Let ρ be a rotation of angle π in the plane switching

two regular 3-gon’s. Then ρ ◦ φ induces a periodic homeomorphism f1 of order 6 on F1. The image of the corner points p0
is a fixed point. The images of the centers of two 3-gon’s p1 and p2 are periodic points of order 2. The images of the centers
of the oriented edges p3, p4 and p5 are periodic points of order 3. The images of all the other points are of order 6.

Step 2: A free degree 12 homeomorphism on F2,10 . We cut the neighborhoods Di of pi (i = 0, . . . ,5) to get a genus 1 surface
with 6 holes F1,6. f1 induces a periodic homeomorphism f2 of order 6 on F1,6. The restriction of f2 on ∂ D0 is a rotation
of π

3 . Put F1,6 in E3 and let r be a reflection about a plane (mirror). Now pick a copy F1,6 and its mirror image r(F1,6).
Define a map f ′ on F1,6 ∪ r(F1,6) as below: for x ∈ F1,6, let f ′(x) = r(x); for x ∈ r(F1,6), let f ′(x) = f2 ◦ r(x). Glue F1,6 with
its mirror image r(F1,6) by identifying θ on ∂ D0 with r(θ − π

6 ) on r(∂ D0) and get F2,10 (see Fig. 2). Now f ′ induces a
periodic homeomorphism f of order 12 on F2,10. Clearly fr( f ) = 12.

Additional remark. In her PhD thesis [1] Moira Chas has obtained quite general results on determining the free degrees of
orientable compact surfaces with boundaries. The results in [1] have determined fr+(F g,b) and fr−(F g,b) for almost all the
pairs (g,b). Below we list the results in [1] which are related to the problems considered in this paper and [8].

Theorem 3.1. ([1, Theorem F (3)]) The free degrees of all orientation preserving homeomorphisms on F2,b are listed in the following
table.

b 1 2 3 4 5 6 7 8 9 10 11
fr+(F2,b) 3 4 5 6 3 8 4 10 5 6 6

b 12 13 14 15 16 17 18 19 20 21 � 22
fr+(F2,b) 6 7 8 8 8 9 10 10 10 10 10

Theorem 3.2. ([1, Theorem G (3)]) The free degrees of all orientation reversing homeomorphisms on F2,b are listed in the following
table.

b 1 2 3 4 5 6 7 8 9 10 11
fr−(F2,b) 1 4 3 6 4 8 4 4 5 12 6

b 12 13 14 15 16 17 18 19 20 21 � 22
fr−(F2,b) 6 7 8 8 8 8 8 9 10 11 12

Theorem 3.3. ([1, Theorem H]) If g � 2 then fr+(F g,b)� 4g + 2. Moreover, if b � 6g + 6, then equality holds.

Theorem 3.4. ([1, Theorem I]) Let g � 2. Then fr−(F2,b) � 4g + (−1)g 4 and equality holds if b � 6g + 2 + (−1)g 8.
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