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Abstract 

One of the most important activity in airport operations is the gate scheduling. It is concerned with finding an assignment of 
flights to terminal and ramp positions (gates), and an assignment of the start and completion times of the processing of a flight at 
its position. The objectives related to the flight gate assignment problem (FGAP) include the minimization of the number of 
flights assigned to remote terminals and the minimization of the total walking distance. The main aim of this research is to find a 
methodology to solve the FGAP. In this paper, we propose a hybrid approach called Biogeography-based Bee Colony 
Optimization (B-BCO). This approach is obtained fusing two metaheuristics: biogeography-based (BBO) and bee colony 
optimization (BCO) algorithms. The proposed B-BCO model integrates the BBO migration operator into to bee's search 
behaviour. Results highlight better performances of the proposed approach in solving FGAP when compared to BCO. 
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1. Introduction 

In recent decades, there has been a strong increase in air traffic, up to hundreds of daily flights in large 
international airports. Therefore, airport operations have become more complex. The flight gate assignment problem 
is encountered by gate managers at an airport on a periodic basis. This assignment should be made so as to balance 
carrier efficiency and passenger comfort, while providing buffers for unexpected events that cause assignment 
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disruptions. The gate assignment problem can be seen as a scheduling problem. Gate scheduling defines the 
assignment of flights to terminals or ramps, called gates. It is a key activity for airport operations. Flight schedule 
defines the period required to carry out operations to process a flight and the gate assigned to that flight. 

The most important objective of flight gate assignment problem (FGAP) is to minimize the distance walked by 
passengers and the distance between connecting flights.  

In an airport three main distances can be considered: 
• the distance between the gate and the check-in area; 
• the distance from gate to gate for transfer passengers; 
• the distance between the baggage claim area (check-out) and the arrival gate. 
The most important information for gate scheduling are referred to the arrival and departure time, the type of 

aircraft, and connections between pairs of successive flights served by the same aircraft. In the following sections, 
we describe the methodology used for the model of the Biogeography-based Bee Colony Optimization (B-BCO), 
obtained by the fusion of the Biogeography-Based optimization (BBO) and Bee Colony Optimization (BCO). We 
have considered the case of the international airport of Milan-Malpensa to test the proposed method. Finally, in 
Section 6, some concluding remarks are given.  

2. Literature review 

In literature, there are numerous mathematical models for flights assignment to gates. A detailed survey is given 
by Dorndorf et al. (2007). Exact algorithms are rarely used for allocation of flights to a gate. Babic et al. (1984) 
formulated the gate assignment problem as a linear problem. A branch-and-bound algorithm is used to minimize the 
walking distance and to find the optimal solution, but transfer passengers are not considered. 

Most papers present heuristic approaches. Xu and Bailey (2001) define a tabu search algorithm for an airport 
with the aim of minimizing the passenger walking distances, considering connecting flights. A two-stage algorithm 
is proposed to solve the problem. It uses both a greedy strategy to minimize the number of un-gated flights, and an 
improved tabu search heuristic to minimize the total connection time. Drexl and Nikulin (2008) consider multiple 
objectives such as minimizing the number of ungated flights and the total walking distances, as well as 
maximization of the total gate assignment preference score.  

Modeling the flight-gate assignment problem as a clique-partitioning problem can be found in Dorndorf et al. 
(2008). They solve the problem by using an ejection chain heuristics. Other models try to improve the performance 
of static gate assignment by taking into account stochastic flight delays. Hassounah and Steuart (1993) show that 
planned buffer times could improve schedule punctuality.  Yan and Chang (1998) and Yan and Huo (2001) use in 
their static gate assignment problems a fixed buffer time between two contiguous flights assigned to the same gate, 
in order to hold stochastic flight delays. Yan and Chang (1998) formulated the airport gate assignment as a multi-
commodity network flow problem. Yan and Huo (2001) formulate a dual objective 0–1 integer programming model 
for the aircraft position allocation. The first objective is minimizing the passenger walking time, while the second 
objective aims at minimizing passenger waiting time. Yan et al. (2002) propose a simulation framework, that is not 
only able to analyze the effects of stochastic flight delays on static gate assignments, but can also evaluate flexible 
buffer times and real-time gate assignment rules.  

Some authors take into account the dynamic character of the FGAP. A delayed departure may delay the arrival of 
another aircraft scheduled to the same gate, or require the flight to be reassigned. Bolat (2000) proposes 
mathematical models and heuristic procedures to provide solutions with a minimum dispersion of idle time periods 
for the FGAP.  

Other authors focus on the design of so-called rule-based expert systems. An expert system uses production rules 
to produce assignments, but at a cost of large number of factors to be taken into account. The most crucial task is to 
identify all the rules, put in order by importance and list them appropriately. Hamzwawi (1986) introduces a rule-
based system for simulating the assignment of gates to flights and for evaluating the effects of particular rules on 
gate utilization. Gosling (1990) describes an expert system for gate assignment that has been applied to a major hub 
of Denver Stapleton airport. Srihari and Muthukrishnan (1991) use a similar approach to solving the FGAP,  
applying additionally the sensitivity analysis. Cheng (1997) describes the integration of mathematical programming 
techniques into a knowledge-based gate assignment system to provide partial parallel assignments with multiple 
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objectives. Both optimization and rule-based approaches have been combined with simulation analysis in Baron 
(1969). A comparison of different metaheuristics  (Genetic Algorithm, Tabu Search, Simulated Annealing) applied 
to the FGAP has been carried out by Cheng et al. (2012). Moreover, Hu and Di Paolo (2009) have proposed an 
improved Genetic Algorithm applied to the FGAP considering a multi-objective function. These metaheuristics  
differ from the proposed B-BCO algorithm because they are based on a solution improvement approach possibly not 
efficient with NP-hard problems subject to very strict constraints, like in the FGAP. In fact, these approaches can 
easily generate infeasible solutions that should be properly penalized through a carefully designed fitness function. 
Instead, the B-BCO algorithm is based on a solution construction approach that always generates feasible solutions 
and improves them over iterations. The BCO was first applied to transportation problems by Teodorovic et al. 
(2005, 2006). This work is an extension of a previous study by Marinelli et al. (2015). 

3. Problem description 

Airline and airport managements are responsible for different tasks: crew scheduling, disruption management, 
airline fleet assignment, aircraft scheduling and rotation, ground operations scheduling. Planners seek to minimize 
distances that passengers have to walk to reach departure gates and connecting flights, since this is a key quality 
performance measure for an airport. Aircraft stands at the terminal and off-pier stands on the apron are often simply 
referred to as “gates’’. As the gate assignment is a type of job-shop scheduling problem, its complexity increases 
exponentially as constraint size changes (e.g. number of flights, available gates, aircrafts, flight block time, etc.). 
The NP-hard characteristic of the problem implies that there is no known algorithm for finding the optimal solution 
within a polynomial-bounded amount of time. When an aircraft arrives at the airport, it can be either assigned to the 
fixed terminal gates or, in particular conditions, it can be assigned to a remote terminal gate. All the fixed gates are 
usually equipped with passenger bridges, whereas passengers from flights assigned to remote gates can be 
transported to the terminal building by transfer busses. The connection through the busses increases the connection 
time, so the main objective is minimizing total passenger walking distance and connection time. 

Let us consider the following notation: 

Nomenclature 

N number of flights 
M  number of gates, including remote gates 
fj,o number of passengers from flight j to the baggage claim area 
fo,j number of passengers from check-in area to flight j 
fj,r number of passengers from flight j to flight r 
wi,o walking distance between gate i and baggage claim area 
wo,i walking distance between check-in area and gate i 
wi,k walking distance between gate i and gate k 
Yi,j binary value representing the association of gate i to flight j 
Yk,r binary value representing the association of gate k to flight r 

In this work, the flight gate assignment problem is considered as composed of two main criteria: 
• Minimization of total walking distance (TWD), including respectively the distance that a passenger walks to 

reach departure gates, baggage claim area and connecting flights: 

(1) 
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• Minimization of the number of flights assigned to remote terminal gates (RG), corresponding to the maximization 
of the number of flights assigned to fixed gates (FG): 

(2) 

To evaluate a single objective function, a weight p is introduced for each criterion. Thus, the resulting 
optimization  problem  is: 

(3) 

The decision variables of the problem are Yi,j and Yk,r as they represent the assignment of flights to gates. The 
optimization problem  is subject to the following constraints: 
1. compatibility between gate and airplane: a small aircraft can be assigned to a big gate, but a large aircraft cannot 

be assigned to a small gate. A large gate has the flexibility to accommodate various sizes of aircraft whereas a 
small gate is more limited. The compatibility is usually provided by the airport regulations; 

2. every flight j must be assigned to exactly one gate including remote gates: 

3. prevent schedule overlapping of two flights if they are assigned to the same gate: 

 

where ,  are respectively the arrival and departure time of flights j and z associated to gate i.  
In the next section, we present the proposed methodology based on the fusion of two metaheuristics, 

Biogeography-Based and Bee Colony Optimization  metaheuristics, to solve this problem. 

4. The proposed methodology 

In this paper, we present an extension of a previous study by Marinelli et al. (2015) where a metaheuristic 
approach based on the Bee Colony Optimization (BCO) was proposed. Now we extend that approach proposing a 
new hybrid methodology (B-BCO) obtained by fusing BCO and the Biogeography-Based Optimization (BBO). 

4.1 Biogeography-Based Optimization (BBO) 

Biogeography-based Optimization (BBO), originally introduced by Simon (2008), is a population-based 
evolutionary algorithm (EA) based on the biogeography. The biogeography is the science of the geographical 
distribution of biological organisms over space and time.  

In nature, these concepts bring a balance between different ecosystems. In other words, nature tends to improve 
the overall stability of different geographical regions. The BBO algorithm uses these concepts to improve the habitat 
suitability index (HIS) of all habitats, which results in evolving the initial random solutions for a particular problem. 
The BBO algorithm starts with a random set of habitats. Each habitat has different individuals that correspond to the 
number of variables of a particular problem. In addition, each habitat has its own immigration, emigration, and 
mutation rates.    

In the habitats with high HSI there is a high number of species; they are characterized by a high rate of 
emigration and have a low rate of immigration. The species that migrate to the habitats with a high number of 
species, tend to die because there is too much competition for resources from other species. 



924   Mario Marinelli et al.  /  Transportation Research Procedia   10  ( 2015 )  920 – 930 

The maximum possible immigration rate occurs when there are zero species in the habitat. Increasing the number 
of species, the habitat becomes more crowded and, therefore, able to accommodate a number of lower species, 
thereby decreasing the rate of immigration. 

However, species diversity is correlated with HSI, so when more species arrive at a low HSI habitat, the habitat's 
HSI will tend to increase. The immigration rate λ and the emigration rate µ are functions of the number of species in 
the habitat. The maximum possible immigration rate I occurs when there are zero species in the habitat. Smax is the 
largest number that the habitat may contain; not being able accommodate new species, it has a rate of immigration 
zero. If there are no species in the habitat, then the emigration rate is zero.  

With the increase in the number of species in the habitat, the habitat becomes ever more crowded, therefore of the 
representative species leave the habitat and increases the rate of emigration (Fig. 1). 

In BBO, λk is the probability that a given independent variable in the k-th candidate solution will be replaced (Eq. 
4); that is, λk is the immigration probability of xk. If an independent variable is to be replaced, then the emigrating 
candidate solution is chosen with a probability that is proportional to the emigration probability µk (Eq. 5).  

 (4)

(5)

where n is the number of individuals in each habitat. 
To see how the proposed method works, a flow-chart of the BBO is reported in figure 2 and a conceptual picture 

of the migration between the habitats is shown in Fig.3. 
 

 
Fig.1 - Species model of a single habitat  

 

 

Fig.2 - General steps of the BBO algorithm. 
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Fig.3 - Conceptual model of migration between habitats (BBO)                 Figure 4. The artificial network of the decision space (BCO) 

4.2  Bee Colony Optimization (BCO) 

Various natural systems (social insect colonies) lecture us that very simple individual organisms can create 
systems able to perform highly complex tasks by dynamically interacting with each other. Within the Bee Colony 
Optimization (BCO) metaheuristic, agents that we call "artificial bees" collaborate in order to solve difficult 
combinatorial optimization problems.  All artificial bees are located in the hive at the beginning of the search 
process. During the search process, artificial bees communicate directly.  Each artificial bee makes a series of local 
moves, and in this way incrementally constructs a solution of the problem (fig.4). Bees are adding solution 
components to the current partial solution until they create one or more feasible solutions When flying through the 
space, artificial bees perform forward step or backward step.  During a forward step, bees create various partial 
solutions. They do this via a combination of individual exploration and collective experience from the past. After 
that, they perform a backward step, i.e. they return to the hive. In the hive, all bees participate in a decision-making 
process. The search process is composed of iterations. Each iteration ends when one or more feasible solutions are 
created. Like Dynamic Programming, the BCO also solves combinatorial optimization problems in stages. Each of 
the defined stages involves one optimizing variable. Let us denote by ST = {st1, st2 ,…, stm} a finite set of pre-
selected stages, where m is the number of stages. By B we denote the number of bees to participate in the search 
process, and by I the total number of iterations. The set of partial solutions at stage stj is denoted by Sj (j = 1, 2,..., 
m). The following is the pseudo-code of the Bee Colony Optimization.  

1. Initialization. Set the number of bees B, and the number of iterations I. Select the set of stages ST = {st1, st2 ,…, 
stm}. Find any feasible solution x of the problem. This solution is the initial best solution.  

2. Set i = 1. Until i = I, repeat the following steps:  
3. Set j = 1. Until j = m, repeat the following steps:  

Forward step: Allow bees to fly from the hive and to choose B partial solutions from the set of partial 
solutions Sj at stage stj. 
Backward step: Send all bees back to the hive. Allow bees to exchange information about quality of the 
partial solutions created and to decide whether to abandon the created partial solution and become again 
uncommitted follower, continue to expand the same partial solution without recruiting the nestmates, or 
dance and thus recruit the nestmates before returning to the created partial solution. Set, j := j + 1. 

4. If the best solution xi obtained during the i-th iteration is better than the best-known solution, update the best-
known solution (x := xi).  

5. Set i = i + 1 
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4.3  Biogeography-based Bee Colony Optimization (B-BCO) 

The previous two metaheuristics has been fused to obtain the Biogeography-Based Bee Colony Optimization (B-
BCO). In this model, the bees tend always to move to find a partial solution. With the introduction of the concepts of 
migration and immigration of BBO, bees along optimal partial routes may move from one habitat to another 
(migration operator).  
 Therefore, within each habitat develops BCO and thereafter takes the interaction between habitats through the 
BBO.  

In this work, B-BCO is used to find an optimal path through an artificial network that represents the decision 
space. The network is composed of different habitats and for each habitat there are different layers (previously 
called ‘stages’) which represent the set of flights, temporally ordered according to a given schedule. Each node 
represents an association of a flight Fi to an available gate Gj in the airport, so it refers to variable Yi,j which are the 
decision variables of the problem.  

All the partial solutions are identified observing the constraints of the optimization problem and the associated 
fitness value is given by the objective function. As a result, a path of the artificial network corresponds to a 
particular flight gate assignment found by a bee in the colony.  

At the end of each iteration, all the solutions found are evaluated referring to the associated fitness value and the 
best assignment is saved. Thus, a new iteration starts searching for new solutions until the maximum number of 
iterations is reached. In the following the pseudo-code of the algorithm is reported.  

Figure 5 shows the networks obtained for each habitat and the emigration operations between different habitats. 
 

 
 

 
Fig.5 – The resulting artificial network for each habitat and between different habitats 
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1. Initialization. Set the number of bees B, the number of iterations I and number of habitats H.  Select the set of 
stages ST = {st1, st2 ,…, stm}. Find any feasible solution x of the problem. This solution is the initial best 
solution.  

2. Set i = 1. Until i = I, repeat the following steps: 
3. Set j = 1. Until j = m, repeat the following steps:  
4. For each habitat  
5. Forward step: Allow bees to fly from the hive and to choose B partial solutions from the set of partial solutions 

Sj at stage stj. 
6. Get species count: compute species number sorting bees from most fit to least fit 
7. Calculate  λ, μ of each bee in the habitat 
8. For each bee of in the habitat 
9. If  rand < λ then 
10.        Select an emigrating bee with probability μ 
11. End if 
12. End for each bee 
13. Backward step: Send all bees back to the hive. Allow bees to exchange information about quality of the partial 

solutions created and to decide whether to abandon the created partial solution and become again uncommitted 
follower, continue to expand the same partial solution without recruiting the nestmates, or dance and thus 
recruit the nestmates before returning to the created partial solution.          

14. End  for each habitat 
15. Set j = j + 1. 
16. If the best solution xi obtained during the i-th iteration is better than the best-known solution, update the best-

known solution (x = xi).  
17. Set i = i + 1. 

5. Application and results 

The Milano-Malpensa international airport, in the following called Malpensa, has been considered to evaluate the 
outcomes of the B-BCO method and compared to the BCO approach. Malpensa airport has two terminals, for 
international and domestic flights, and an area reserved for freight traffic called respectively Malpensa 1, Malpensa 
2 and Malpensa Cargo. The airport is strategically important both for Italy and Europe. In 2012, the Malpensa 
airport was ranked second in Italy after Rome-Fiumicino airport for overall passenger traffic, with about 18.5 
million passengers (on average 50 000 per day), and in the first place for freight traffic, with 414.317 tons.  

We have taken into account the flight scheduling of May 2012. The database consists of 178 flights and 65 gates. 
The proposed approach has been applied considering the structure of the airport and, in particular, an additional 
constraint related to the assignment of a flight to international or domestic gates based on its origin/destination. The 
compatibility between gate and airplane has been determined according to Malpensa Airport Regulations (2010). 

Results have been carried out in terms of optimal objective function values obtained for different values of p 
(Figs. 6, 7, 8). Table 1 reports in detail the obtained results for two models in terms of TWD (total walking 
distance), RG (flights to remote gates) and best objective function value Z* for the considered values of p. Thus, a 
sensitivity analysis can be carried out in order to highlight the role of the variable p in the decision-making process.  
We can observe that the solutions found by B-BCO are almost always better than the BCO solutions. As a matter of 
fact, the total walking distance is almost always lower (red line in Figure 6) than Malpensa and BCO resulting in an 
improvement of 5%. The number of flights assigned to remote gates is lower than the others (improvement of 6%) 
except for p > 0.8 where B-BCO tends to minimize the TWD (Figure 7). In terms of best objective function value 
Z* (Figure 8), the B-BCO outperforms the BCO approach with an improvement of 9%.  

The resulting Pareto front is reported in figure 9. It is obtained considering the optimal solutions found by the B-
BCO related to the two criteria (TWD vs. number of flights assigned to remote gates). As a result, the main range of 
p is the interval [0.8, 1] and it should be taken into account in the decision-making process to choose the best 
assignment. 
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Table 1. Comparison of the results obtained by BCO and B-BCO. 
 

p 
TWD (m) RG (flights) Z* 

BCO B-BCO BCO B-BCO BCO B-BCO 
0,01 47458686 46704031 28 28 0,157 0,156 
0,10 47326985 46284727 28 27 0,158 0,138 
0,20 47412610 46345799 28 28 0,157 0,158 
0,30 47346654 46142048 30 29 0,167 0,162 
0,40 47531467 46368517 31 30 0,171 0,166 
0,50 47476033 46853129 37 30 0,186 0,166 
0,60 47159774 46652882 40 28 0,189 0,160 
0,70 47256210 46318181 50 33 0,199 0,169 
0,80 45257497 45813261 68 44 0,206 0,178 
0,90 35979382 24810019 117 138 0,191 0,176 
1,00 24411882 18695425 172 174 0,112 0,096 

% improvement 5% 6% 9% 
 
 

 

Fig. 6. Resulting TWD obtained by B-BCO (red line), BCO (blue line) and Malpensa (black line) for different values of p. 

 

Fig. 7. Resulting number of flights assigned to remote gates (RG) obtained by B-BCO (red line), BCO (blue line) and Malpensa (black line) for 
different values of p. 
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Fig. 8. Resulting best objective function value Z* found by BCO and B-BCO for different values of p. 

 

Fig. 9. The resulting Pareto front obtained by the optimal solutions found for different values of p. 

6. Conclusions 

In this paper, we have presented a hybrid metaheuristic approach based on the Bee Colony Optimization (BCO) 
fused with the Biogeography-Based Optimization (BBO)  to solve the flight gate assignment problem (FGAP). The 
problem has been structured considering two criteria: minimization of the total walking distance and the number of 
flights assigned to remote gates, subject to compatibility constraints. Results obtained by the proposed B-BCO 
highlight the effectiveness of the method when compared to the BCO approach. As a matter of fact, B-BCO has 
better performances of the other metaheuristic. The multicriteria analysis has highlighted how the solutions found by 
B-BCO are better than BCO ones resulting in improvement of 9% in terms of best objective function value Z*. 
Concluding, the fusion of these two metaheuristics, known for their good capabilities in solving high combinatorial 
problems, results in a new strong optimization approach to solve the FGAP. Further developments will consider a 
more complex formulation of the problem with more criteria and constraints related to airline companies’ 
preferences and agreements. Moreover, a comparison with other metaheuristics will be taken into account. 
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