
Theoretical Computer Science 376 (2007) 3–16
www.elsevier.com/locate/tcs

Events and modules in reaction systems

A. Ehrenfeuchta, G. Rozenbergb,a,∗

a Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA
b Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract

Reaction systems are a formal model of interactions between biochemical reactions. They are based on the observation that
two basic mechanisms behind the functioning of biochemical reactions are facilitation and inhibition. In this paper we continue
the investigation of reaction systems, and in particular we introduce the notion of a module, and then we investigate the formation
and evolution of modules. Among others we prove that reaction systems can be viewed as self-organizing systems, where the
organizing goal is to ensure a specific property of the set of all modules (of a state of a process).
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Natural computing; Biochemical reactions; Partial orders

0. Introduction

Two main mechanisms behind the functioning of biochemical reactions are facilitation and inhibition; these
mechanisms are also central for the interaction between biochemical reactions. This observation underlies the theory
of reaction systems introduced in [2] (see also [1]) which is a formal framework for the investigation of biochemical
reactions, and especially interactions between them.

More specifically, a biochemical reaction is formalized as follows. A (formal) reaction is a triplet a = (Ra, Ia, Pa),
where Ra is the set of reactants, Ia is the set of inhibitors, and Pa is the set of products. The intuition behind this
formal notion of a reaction corresponds in a straightforward way to the functioning of a biochemical reaction: reaction
a converts/transforms the set of reactants Ra into the product set Pa providing that it is not inhibited by (one or more)
inhibitors from Ia . Therefore, more formally, the result of applying reaction a to a set T , denoted by resa(T ), is
conditional: if T separates Ra from Ia (i.e., if Ra is included in T and Ia is disjoint with T ), then a is enabled on
(applicable to) T , otherwise a is not enabled on (not applicable to) T . If a is enabled on T , then a transforms the set
of reactants into the product set, and so resa(T ) = Pa ; otherwise resa(T ) is the empty set.

Then the notion of transformation by a single reaction is extended to sets of reactions, and the dynamics of reaction
systems (which are essentially sets of reactions) is investigated through the notion of an interactive process. Such a

∗ Corresponding author at: Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden,
The Netherlands. Tel.: +31 71 5277061; fax: +31 71 52769785.

E-mail address: rozenber@liacs.nl (G. Rozenberg).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.01.008

http://www.elsevier.com/locate/tcs
mailto:rozenber@liacs.nl
http://dx.doi.org/10.1016/j.tcs.2007.01.008


4 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

process is essentially a sequence of states, where each state is a set (a subset of the background set fixed for a given
reaction system) which is a union of two sets: the result of transforming the previous state in the sequence and a
context set (which may, e.g., represent an interaction with “the rest of the system” or “the environment”).

In [2] we have introduced the basic definitions (and motivations behind them) concerning reaction systems,
illustrated them by examples, related them to some traditional models of computation (such as elementary net systems
and boolean functions), and proved some basic properties.
In this paper we investigate the formation and evolution of modules in a reaction system E . A subset Qi of a state
Wi in a state sequence τ is just that: a (mathematical) subset of Wi . However, when Wi is transformed into Wi+1
by E, Qi gets transformed into Qi+1 which then gets a physical/material interpretation: it is a subset of Wi+1 which
is the product of reactions of E acting on Qi . Such “physical” subsets are called modules. Now if we follow the
transformation of the state Wi+1 we get the transformation of Qi+1 into the successor module Qi+2. In this way
following the fate/evolution of a subset Qi of Wi we obtain the sequence of modules Qi+1, Qi+2, . . . ; such a sequence
is called an event (tracing the evolution of Qi ). This paper presents a formal study of modules and events tracing their
evolution. We refer the reader to [3] for the background concerning the importance of modules in biology, and the
need for a precise definition of a module in various biological contexts.

The paper is organized as follows.
In Preliminaries we recall basic mathematical notions, terminology and notation to be used in this paper. We also
prove a technical result concerning lattices that is used later in the paper. In Section 2 we recall from [2] basic notions
concerning reaction systems, and in Section 3 we introduce a generalization of reaction systems, called extended
reaction systems that are investigated in this paper. In Section 4 we introduce events and modules, and in Section 5 we
introduce snapshots — the snapshot of a state is the set of all its modules. In Section 6 we investigate the structure of
snapshots. In particular we prove that an extended reaction system is a self-organizing system whose organizing goal
is to achieve a specific property of snapshots (called separability). As a corollary we prove that when a state sequence
stabilizes, then the set of modules of a snapshot forms a lattice. In Section 7 we present a more abstract study of
snapshots where the partial order of sets is replaced by an abstract partial order (the set identity of nodes of a partial
order is lost).

1. Preliminaries

Throughout the paper we use standard set-theoretical notation and terminology.
We use ∅ to denote the empty set, and, for a set A, 2A denotes the set of all subsets of A. For sets A and B, we use

A ∪ B, A ∩ B, and A − B to denote their union, intersection and difference, respectively. We write A ⊆ B if A is
included in B. For a family F of sets, we use

⋃
F and

⋂
F to denote the union and the intersection of all sets in F ,

respectively. The top of F is the set X ∈ F such that Z ⊆ X for each Z ∈ F , and the bottom of F is the set Y ∈ F
such that Y ⊆ Z for each Z ∈ F . Clearly, if the top/bottom exists, then it is unique. We use N to denote the set of
nonnegative integers, and N+ to denote the set of positive integers. For a bijection f we use f −1 to denote the inverse
of f .

A partial order is an ordered pair ϕ = (P, ≤), where P is a set and ≤ is a binary relation on P which is reflexive,
antisymmetric and transitive. For X ⊆ P, z ∈ P is an upper bound of X if x ≤ z for all x ∈ X ; if also z ≤ t for each
upper bound t of X , then z is the supremum of X , denoted sup(X). For X ⊆ P, z ∈ P is a lower bound of X if z ≤ x
for all x ∈ X ; if also t ≤ z for each lower bound t of X , then z is the infimum of X , denoted inf (X). When sup(P)

exists then it is called the top of ϕ, denoted by >. When inf (P) exists then it is called the bottom of ϕ, denoted by ⊥.
If sup({x, y}) and inf ({x, y}) exist for all x, y ∈ P , then ϕ is a lattice, and if sup(X) and inf (X) exist for all X ⊆ P ,
then ϕ is a complete lattice. Thus ϕ is a lattice if every finite subset X ⊆ P has both supremum and infimum, and ϕ

is a complete lattice if every subset X ⊆ P , finite or infinite, has both supremum and infimum. Clearly, a finite lattice
(i.e., P is finite) is always complete, and a complete lattice has always the top and the bottom. Of particular interest
for this paper will be lattices of the form (L ⊆), where L ⊆ 2Z , for some set Z .

Note that a partial order ϕ = (P, ≤) is a graph, where P is the set of nodes and ≤ is the set of edges. To provide a
more compact representation of ϕ, one defines the Hasse graph of ϕ which is the graph (P, %≤), where

%≤ = {(x, y) : x ≤ y and for no z ∈ P − {x, y}, (x, z) ∈ ≤ and (z, y) ∈ ≤}.

Thus the Hasse graph of ϕ results from ϕ by removing the “transitive” edges.



A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16 5

We will introduce now a couple of set-theoretic notions and prove a technical result concerning complete lattices
that will be needed in this paper.

Let F1,F2 be nonempty families of sets. We say that F1 is embedded in F2 if for each U ∈ F1 and each
V ∈ F2, U ⊆ V .

Let L be a family of sets and let F1,F2 ⊆ L. We say that F1 is separated from F2 in L if there exists U ∈ L such
that

⋃
F1 ⊆ U ⊆

⋂
F2.

The following characterization of complete lattices will be used in Section 6 (although in this paper we will consider
finite partial orders only, the following result is proved for arbitrary, i.e., also infinite, lattices).

Lemma 1.1. Let L be a family of sets. Then (L, ⊆) is a complete lattice if and only if

(i) L has both the top and the bottom,
(ii) if F1,F2 ⊆ L are such that F1 is embedded in F2, then F1 is separated from F2 in L.

Proof. (1) Assume that (L, ⊆) is a complete lattice.
(1i) Since (L, ⊆) is complete, L has both the top and the bottom.

(1ii) Assume that F1,F2 ⊆ L are such that F1 is embedded in F2. Since (L, ⊆) is a complete lattice,
sup(F1) ∈ L. Clearly

⋃
F1 ⊆ sup(F1) and, because F1 is embedded in F2, sup(F1) ⊆ Z for each Z ∈ F2;

hence sup(F1) ⊆
⋂
F2. Therefore F1 is separated from F2 in L.

(2) Assume that L satisfies conditions (i) and (ii) from the statement of the lemma.
(2.1) Let F1 be an arbitrary nonempty subfamily of L. Let F2 = {Z ∈ L : T ⊆ Z for each T ∈ F1}; thus F2

is the set of upper bounds of F1 in (L, ⊆). Since, by condition (i), L contains the top element, F2 6= ∅. By
definition of F2,F1 is embedded in F2, and so, by condition (ii), there exists U ∈ L such that

⋃
F1 ⊆ U

and U ⊆
⋂
F2. Since U ∈ L and

⋃
F1 ⊆ U , U ∈ F2. Since U ⊆

⋂
F2, U ⊆ Q for each Q ∈ F2. Thus

U = sup(F1). Consequently, any F1 ⊆ L has a supremum.
(2.2) Analogously one proves that any subfamily of L has an infimum. It follows from (2.1) and (2.2) that every

F ⊆ L has both the supremum and infimum, and so (L, ⊆) is a complete lattice.

The lemma follows now from (1) and (2). �

2. Reaction systems

In this section we recall from [2] the basic notions of reaction systems.
Two basic mechanisms underlying the functioning of biochemical reactions are facilitating and inhibiting. A

biochemical reaction can take place if all of its reactants are present and all inhibitors are absent. Then, when a
reaction takes place it produces the product. This reasoning is reflected in the formal definition of a reaction.

Definition 2.1. A reaction is a 3-tuple a = (R, I, P) of finite sets.

If S is a set such that R, I, P ⊆ S, then we say that a is a reaction in S.
The set R, also denoted by Ra , is the reactant set of a, the set I , also denoted by Ia , is the inhibitor set of a, and

the set P , also denoted by Pa , is the product set of a. For a set A of reactions, RA =
⋃

a∈A Ra, IA =
⋃

a∈A Ia , and
PA =

⋃
a∈A Pa .

The reaction (∅, ∅, ∅) is called the empty reaction and denoted by Φ.

Definition 2.2. (1) For a reaction a and a finite set T , the result of a on T , denoted resa(T ), is defined by:
resa(T ) = Pa if Ra ⊆ T and Ia ∩ T = ∅, and resa(T ) = ∅ otherwise.

(2) For a set of reactions A and a set T , the result of A on T , denoted resA(T ), is defined by: resA(T ) =
⋃

{resa(T ) |

a ∈ A}.

If Ra ⊆ T and Ia ∩ T = ∅, then we say that a is enabled by T ; otherwise we say that a is not enabled by T . Then
for a set of reactions A we say that A is enabled by T if each a ∈ A is enabled by T . Thus a reaction a is enabled on
a set T if T separates Ra from Ia : Ra ⊆ T while Ia ∩ T = ∅. Similarly a set of reactions A is enabled on T if T
separates RA from IA.

We are ready now to recall a central notion of this paper.



6 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

Definition 2.3. A reaction system, abbreviated rs, is an ordered pair A = (S, A) such that S is a finite set, and A is a
set of reactions in S.

The set S is called the background (set) of A.
The main notion concerning the functioning of a reaction system is defined as follows.

Definition 2.4. For a reaction system A = (S, A) and a set T ⊆ S, the result of A on T , denoted resA(T ), is defined
by resA(T ) = resA(T ). The set {a ∈ A | a is enabled by T } is called the T -activity of A (or activity of A on T ),
denoted by enA(T ).

We may drop the subscript A in our notations whenever A is understood from the context of considerations.
We assume that, for each nonempty reaction a, Ra ∩ Ia = ∅, Ia 6= ∅, and Pa 6= ∅.

Example 2.5. Let A = (S, A) be the rs such that S = {1, 2, 3, 4, 5}, and A = {a1, a2, a3, a4}, where a1 =

({1}, {2}, {2}), a2 = ({2}, {1}, {1}), a3 = ({3}, {4}, {3}), a4 = ({4}, {3}, {4}).
Intuitively, a1 with a2 form a flip-flop (for 1 and 2), a3 and a4 exclude each other, and {a1, a2}, {a3, a4} are “mutually
independent”.

(i) For T1 = {1, 2, 3}, resa1(T1) = resa2(T1) = resa4(T1) = ∅, and resa3(T1) = {3}. For A1 = {a1, a2}, resA1(T1) =

∅, and for A2 = {a1, a3}, resA2(T1) = {3}. Also, resA(T1) = {3}.
(ii) For T2 = {1, 3}, resa1(T2) = {2}, resa2(T2) = ∅, resa3(T2) = {3}, and resa4(T2) = ∅. For A1, A2 as above,

resA1(T2) = {2}, and resA2(T2) = {2, 3}. Also, resA(T2) = {2, 3}.

Definition 2.6. Let A = (S, A) be a rs. An interactive process π in A is a pair of finite sequences π = (γ, δ) such
that, for some n ≥ 1, γ = C0, C1, . . . , Cn , δ = D1, . . . , Dn where C0, . . . , Cn, D1, . . . , Dn ⊆ S, D1 = resA(C0)

and, for each 2 ≤ i ≤ n, Di = resA(Ci−1 ∪ Di−1).

We will use the “arrow notation” π : C0 → (D1, C1) → · · · → (Dn, Cn) to represent an interactive process π as
above.

The sequence C0, . . . , Cn is the interaction sequence of π , and the sequence D1, . . . , Dn is the result sequence of
π . For each 1 ≤ i ≤ n, we define Wi = Ci ∪ Di , and W0 = C0. The sequence W0, W1, W2, . . . , Wn is called the
state sequence of π , denoted by sts(π), while W0 is called the initial state of π . For each 0 ≤ j ≤ n, the set C j is
called the context of W j . Thus, for all 1 ≤ i ≤ n, the i th result of π (i.e., Di ) is obtained from the state (i − 1) of π

by applying resA. The sequence E0, E1, . . . , En−1 of subsets of A such that Ei = enA(Wi ), for all 1 ≤ i ≤ n − 1,
is called the activity sequence of π , denoted by act(π). Also, STS(A) denotes the set of all state sequences of A (i.e.,
all state sequences of all interactive processes in A).

Example 2.7. We continue Example 2.5.

(i) Since resA({1, 3}) = {2, 3} and resA({2, 3}) = {1, 3}, π1 : {1, 3} → ({2, 3}, ∅) → ({1, 3}, ∅) → ({2, 3}, ∅) is
an interactive process in A. Moreover, sts(π1) = {1, 3}, {2, 3}, {1, 3}, {2, 3}, and act(π1) = {a1, a3}, {a3}.

(ii) π2 : {1, 3} → ({2, 3}, {1}) → ({3}, ∅) → ({3}, ∅) is an interactive process in A with sts(π2) =

{1, 3}, {1, 2, 3}, {3}, {3}, and act(π2) = {a1, a3}, {a1, a2, a3}, {a3}.
(iii) π3 : {1, 3} → ({2, 3}, {4}) → ({1}, ∅) → ({2}, {4}) → ({1, 4}, ∅) is an interactive process in A with

sts(π3) = {1, 3}, {2, 3, 4}, {1}, {2, 4}, {1, 4}, and
act(π3) = {a1, a3}, {a2}, {a1}, {a2, a4}.

(iv) π4 : {1, 3} → ({2, 3}, {1, 4}) → (∅, {1, 3}) → ({2, 3}, {1, 4}) → (∅, ∅) is an interactive process in A with

sts(π4) = {1, 3}, {1, 2, 3, 4}, {1, 3}, {1, 2, 3, 4}, ∅, and
act(π4) = {a1, a3}, ∅, {a1, a3}, ∅.

(v) π5 : {1, 3} → ({2, 3}, {1, 4}) → (∅, ∅) → (∅, {1, 2, 3, 4}) → (∅, ∅) is an interactive process in A with

sts(π5) = {1, 3}, {1, 2, 3, 4}, ∅, {1, 2, 3, 4}, ∅, and
act(π5) = {a1, a3}, ∅, ∅, ∅.



A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16 7

(vi) π6 : {3} → ({3}, ∅) → ({3}, {4}) → (∅, {4}) → ({4}, ∅) is an interactive process in A with

sts(π6) = {3}, {3}, {3, 4}, {4}, {4} and
act(π5) = {a3}, {a3}, ∅, {a4}.

3. Extended reaction systems

In this paper we consider a generalization of a reaction system which results by equipping it with a restriction
relation which determines which pairs of sets can form consecutive states in state sequences. A possible interpretation
for a restriction relation is observability: only some successions of states are observable.

Definition 3.1. An extended reaction system, ers for short, is an ordered pair E = (A, R), where A = (S, A) is a rs,
and R ⊆ 2S

× 2S .

We refer to A as the underlying reaction system of E , denoted by und(E), and to R as the restriction relation of E .
We will also write E as a 3-tuple (S, A, R).

All the relevant notions, terminology and notation concerning reaction systems carry over to extended reaction
systems (through their underlying reaction systems). However, the notion of an interactive process gets modified as
follows.

Definition 3.2. Let E = (S, A, R) be an ers. An interactive process in E is an interactive process π = (γ, δ) in
und(E) such that sts(π) = W0, . . . , Wn satisfies the restriction condition: for all 0 ≤ i ≤ n − 1, (Wi , Wi+1) ∈ R.

We assume in this paper that extended reaction systems satisfy also the prolongation condition: if W0, . . . , Wn ∈

STS(E), n ≥ 1, for an ers E = (S, A, R), then there exists a W ⊆ S such that also W0, . . . , Wn, W ∈ STS(E).

Definition 3.3. Let E = (S, A, R) be an ers, and let t ∈ S. We say that t is periodic (in E) if there exists n ∈ N+ such
that, for each W0, . . . , Wn ∈ STS(E), t ∈ W0 if and only if t ∈ Wn . The smallest n satisfying this condition is the
period of t , denoted by perE (t).

We use per(E) to denote the set of periodic elements of E .

Example 3.4. Let E = (A, R) be the ers such thatA = (S, A) is the rs from Example 2.5, and R ⊆ 2S
×2S is defined

by: (X, Y ) ∈ R if and only if (1 ∈ X if and only if 2 ∈ Y and 1 /∈ Y ) and (2 ∈ X if and only if 1 ∈ Y and 2 /∈ Y ).

(i) Both 1 and 2 are periodic elements in E , and perE (1) = perE (2) = 2.

(ii) Inspecting the interactive processes π1, . . . , π6 from Example 2.7, we notice (by considering their state sequences)
that only π1, π3 and π6 satisfy the prolongation condition. Thus π1, π3, and π6 are also interactive processes in
E , while neither π2 nor π4 nor π5 is an interactive process in E .

Note that the notion of a periodic element is intrinsic for extended reaction systems. Elements of reaction systems
cannot be periodic, which (somewhat informally) can be shown as follows.
Let A = (S, A) be a rs, and assume that t ∈ S is a periodic element of A. Assume, e.g., that perA(t) = 3.
Let τ = W0, W1, W2, W3 ∈ STS(A) be such that t ∈ W0.
We modify τ to τ ′

= W0, W1, W ′

2, W ′

3 as follows.
Let π = C0 → (D1, C1) → (D2, C2) → (D3, C3) be an interactive process in A such that sts(π) = τ . Let
Z t = {a ∈ enA(W2) : t ∈ Pa}, and, for each a ∈ Z t , let ya be an arbitrary element of Ia . Then let Ut = {ya : a ∈ Z t }

— hence Ut contains at least one inhibiting element for each reaction in Z t . Now, we modify context C2 by adding
Ut to it, obtaining C ′

2 = C2 ∪ Ut and W ′

2 = D2 ∪ C ′

2, and we modify context C3 by removing t from it (if it was
there), obtaining C ′

3 = C3 − {t} and W ′

3 = W3 ∪ C ′

3. Since t /∈ C ′

3 and t cannot be produced by enE (W ′

2), t /∈ W ′

3,
contradicting the fact that perA(t) = 3; hence contradicting the fact that t is periodic. ThusA cannot contain periodic
elements.

The existence of periodic elements in extended reaction systems leads to a more refined view of states.

Definition 3.5. Let E = (S, A, R) be an ers.

(1) For T ⊆ S, the periodic part of T, denoted perE (T ), is defined by perE (T ) = T ∩ per(E).



8 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

(2) Let τ = W0, . . . , Wn ∈ STS(E), and let 1 ≤ i ≤ n.
(2.1) The truly produced i-part of τ , denoted by trpτ (i), is defined by trpτ (i) = resE (Wi−1) − perE (Wi ) =

resE (Wi−1) − per(E).
(2.2) The true i-context of τ , denoted by trcτ (i), is defined by trcτ (i) = Wi − (perE (Wi ) ∪ trpτ (i)) =

Wi − (perE (Wi ) ∪ resE (Wi−1)).

Example 3.6. We continue Example 3.4.

(i) Consider the interactive process π1.
Let τ1 = sts(π1) = W0, W1, W2, W3, hence W0 = W2 = {1, 3}, and W1 = W3 = {2, 3}. We have then
perE (W0) = perE (W2) = {1}, perE (W1) = perE (W3) = {2}, trpτ1

(1) = trpτ1
(2) = trpτ1

(3) = {3}, and
trcτ1(1) = trcτ1(2) = trcτ1(3) = ∅.

(ii) Consider the interactive process π3.
Let τ3 = sts(π3) = W0, W1, W2, W3, W4, hence W0 = {1, 3}, W1 = {2, 3, 4}, W2 = {1}, W3 = {2, 4},
and W4 = {1, 4}. Then perE (W0) = perE (W2) = perE (W4) = {1}, perE (W1) = perE (W3) = {2},

trpτ3
(1) = {3}, trpτ3

(2) = trpτ3
(3) = ∅, trpτ3

(4) = {4}, trcτ3(1) = trcτ3(3) = {4}, and trcτ3(2) = trcτ3(4) = ∅.
(iii) Consider the interactive process π6.

Let τ6 = sts(π6) = W0, W1, W2, W3, W4, hence now W0 = W1 = {3}, W2 = {3, 4}, W3 = W4 = {4}. Then
perE (Wi ) = ∅, for 0 ≤ i ≤ 4, trpτ6

(1) = trpτ6
(2) = {3}, trpτ6

(3) = ∅, trpτ6
(4) = {4}, trcτ6(1) = trcτ6(4) = ∅,

and trcτ6(2) = trcτ6(3) = {4}.

4. Events

Given a state Wi , i ≥ 1, in a state sequence τ , a subset U of Wi is just that: a mathematical (notion of a) subset.
However, if we consider the subset resEi (U ) of Wi+1, then it is not only a mathematical subset of Wi+1, but also the
result/product of the set Ei of reactions acting on U . Since reactions in an ers are in our framework formal models of
biochemical reactions, we may interpret resEi (U ) as a material/physical object. If we now follow the fate/evolution
of U as it gets transformed by the consecutive sequence of sets of reactions Ei , Ei+1, . . . then we get an event (or a
generalized event) which is formally defined as follows.

Definition 4.1. Let E = (S, A, R) be an ers, let τ = W0, . . . , Wn ∈ STS(E), let i, j ∈ {1, . . . , n} be such that i ≤ j ,
and let ω = Qi , . . . , Q j be such that Qi ⊆ Wi , . . . , Q j ⊆ W j .

(i) ω is a generalized event in τ if
(i.1) there is U ⊆ Wi−1 such that Qi = (resEi−1(U ∪ perE (Wi−1))) ∩ trpτ (i), and
(i.2) for each k ∈ {i + 1, . . . , j}, Qk = (resEk−1(Qk−1 ∪ perE (Wk−1)))∩ trpτ (k), where, for each 0 ≤ j ≤ n − 1,

E j = enE (W j ).
(ii) ω is an event (in τ ) if ω is a generalized event such that all Qi , . . . , Q j−1 are nonempty.

One should note that in the definition of Qi (see (i.1) above) one transforms U ∪ perE (Wi−1) by Ei−1, rather
than U alone. The reason is that periodic elements of Wi−1 are present in Wi−1 independently of how Wi−1 was
obtained, and therefore they will always participate in the transformation by Ei−1. Similarly, Qi is not defined as
resEi−1(U ∪ perE (Wi−1)), but rather as (resEi−1(U ∪ perE (Wi−1))) ∩ trpτ (i) = resEi−1(U ∪ perE (Wi−1)) − per(E),
because the periodic elements of Wi are there independently of the transformation of U ∪ perE (Wi−1) by Ei−1, and
so we do not count them as produced by transforming U ∪ perE (Wi−1). Analogous remarks hold for the definition of
Qk in (i.2) above.

For U and ω as above, we say that ω is tracing the fate of U . The sets Qi , . . . , Q j are called the modules of ω, and,
for i ≤ k ≤ j , Qk is the k-module of ω. We also say that ω is a generalized (i, j)-event in τ , and that ω is running
from i to j (and it is passing through each k ∈ {i, . . . , j}); when i = j then we say that ω is an i -event. Then, for
each pair (r, s) such that i ≤ r ≤ s ≤ j , the generalized event Qr , . . . , Qs is a restriction of ω; if (r, s) 6= (i, j), then
Qr , . . . , Qs is a strict restriction of ω.

It will be convenient to have a notation for the transformation used in Definition 4.1. Thus, for each i ∈

{1, . . . , n − 1} and each Q ⊆ Wi , we use tranτ,i (Q) to denote the set (resEi (Q ∪ perE (Wi ))) ∩ trpτ (i + 1) =

resEi−1(U ∪ perE (Wi−1)) − per(E).



A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16 9

We give now a classification of events which is helpful in the understanding of the nature of evolution of modules
in reaction systems.
An event ω is called (using the notation from Definition 4.1):

– trivial if i = j and Qi = ∅,
– maverick if Qi 6= ∅, but Qi+1 = ∅,
– reduced if all modules of ω are nonempty,
– complete if it is not a strict restriction of any event, and
– maximal if it is not a strict restriction of any reduced event.

Example 4.2. We continue Example 3.6.
(i) Consider the interactive process π1.

– {3} is a 1-event, it is tracing the fate of {1, 3} and of {3}; it is also a 2-event tracing the fate of {2, 3} and of {3}, and
a 3-event tracing the fate of {1, 3} and of {3}.

– {3}, {3} is a (1, 2)-event tracing the fate of {1, 3} and of {3}; it is also a (2, 3)-event tracing the fate of {2, 3} and
{3}.

– {3}, {3}, {3} is a complete (1, 3)-event tracing the fate of {1, 3} and {3}.
– ∅ is a (trivial) 1-event tracing the fate of ∅ and of {1}; it is also a 2-event tracing the fate of ∅ and of {2}, and a

3-event tracing the fate of ∅ and of {1}. It is a trivial event.

(ii) For the interactive process π3

– {3} is a 1-event, it is tracing the fate of {1, 3} and {3}.
– {4} is a 4-event, it is tracing the fate of {2, 4} and {4}.
– ∅ is a 1-event tracing the fate of {2} and ∅; it is also a 2-event tracing the fate of every subset of W1, it is also a

3-event tracing the fate of {1} and ∅, and a 4-event tracing the fate of {2} and ∅.

(iii) For the interactive process π6

– {3} is a 1-event, it is tracing the fate of {3}; it is also a 2-event tracing the fate of {3}.
– {4} is a 4-event, it is tracing the fate of {4}.
– {3}, {3} is a (1, 2)-event tracing the fate of {3}.
– {3}, {3}, ∅ is a (1, 3)-event tracing the fate of {3}.
– {3}, {3}, ∅, ∅ is a generalized (1, 4)-event (but not an event) tracing the fate of {3}.
– ∅ is a 1-event tracing the fate of ∅; it is also a 2-event tracing the fate of ∅, and a 3-event tracing the fate of every

subset of W2, and a 4-event tracing the fate of ∅.
– ∅, ∅ is a generalized (1, 3)-event tracing the fate of ∅; it is also a generalized (2, 3)-event tracing the fate of ∅, and

a generalized (3, 4)-event tracing the fate of every subset of W2.
– ∅, ∅, ∅ is a generalized (1, 3)-event tracing the fate of ∅; it is also a generalized (2, 4)-event tracing the fate of ∅.
– ∅, ∅, ∅, ∅ is a generalized (1, 4)-event tracing the fate of ∅.

Although empty sets are mathematically convenient they have very limited physical interpretation. Therefore in
this paper we consider only events. In an event the empty set may occur only as the last module signaling the “death”
of an event. In a generalized event empty modules may occur in many ways, allowing also “rising from the grave”,
where the nonempty module follows the empty module.

5. Modules and snapshots

We move now to investigate formal properties of events. We begin by the merging property of events: when an
event ω merges with an event ω′ in state Wi (i.e., the module of ω in Wi is a subset of the module of ω′ in Wi ) then
they remain merged as they evolve through the consecutive states Wi+1, Wi+2, . . ..

Lemma 5.1. Let E be an ers, and let τ = W0, . . . , Wn ∈ STS(E). Let 1 ≤ i < j ≤ n, and let ω = Qi , . . . , Q j and
ω′

= Q′

i , . . . , Q′

j be (i, j)-events in τ . If Qi ⊆ Q′

i , then Qk ⊆ Q′

k for all k ∈ {i, . . . , j}.

Proof. This follows directly from Definition 4.1(i.2). �



10 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

Events trace the fate (the evolution) of subsets of states in a given state sequence. In our framework one can view
events as the prime mechanism for the formation of modules. When an event ω is passing through a state Wk it leaves
a “trace” there, viz., its k-module. The set of all such traces left by all events passing through Wk form the snapshot
of Wk . This is formally defined as follows.

Definition 5.2. Let E = (S, A, R) be an ers, let τ = W0, . . . , Wn ∈ STS(E) and let 1 ≤ k ≤ n.

(i) A k-module of τ is a subset Q ⊆ Wk for which there exists an event ω in τ passing through k such that Q is the
k-module of ω.

(ii) The k-snapshot of τ , denoted by snpτ (k), is the set of all k-modules of τ .

Given a state sequence τ = W0, W1, . . . , Wn we get the corresponding sequence of snapshots
snpτ (1), . . . , snpτ (n), called the snapshot sequence of τ (denoted by snp(τ )) and a snapshot sequence of E . We
will also use Si to denote snpτ (i); thus S with a possible subscript is reserved to denote a snapshot (in the same way
as we use W to denote a state). Thus, snp(τ ) = S1, . . . ,Sn .

Now for each 1 ≤ k ≤ n − 1, we define the partial function nextτ,k : snpτ (k) → snpτ (k + 1) as follows. For
Q ∈ snpτ (k), nextτ,k(Q) = Q′ if and only if there exists an event ω in τ such that Q is the nonempty k-module of
ω, and Q′ is the nonempty (k + 1)-module of ω. If we extend the nextτ,k function also to pairs (Q, Q′), where Q is
nonempty but Q′ may be empty, then we obtain sucτ,k function.
We will use the notations nextk and suck whenever τ is clear from the context of considerations.

Example 5.3. We continue Example 4.2.

(i) For the interactive process π1, the snapshot sequence is S1,S2,S3, where S1 = S2 = S3 = {{3}, ∅}.
(ii) For the interactive process π3, the snapshot sequence is S1,S2,S3,S4, where S1 = {{3}, ∅}, S2 = S3 = {∅},

S5 = {{4}, ∅}.
(iii) For the interactive process π6, the snapshot sequence is S1,S2,S3,S4, where S1 = S2 = {{3}, ∅},S3 = {∅}, and

S4 = {{4}, ∅}.

Example 5.4. Let E = (S, A, R) be the ers such that S = {1, 2, 3, 4, 5, 6}, A = {b1, b2, b3, b4} with b1 =

({1}, {2}, {1, 6}), b2 = ({2}, {2}, {1, 6}), b3 = ({3}, {5}, {1, 3}), b4 = ({1, 4}, {5}, {4}), and R ⊆ 2S
× 2S is defined

by: (X, Y ) ∈ R if and only if (1 ∈ X if and only if 1 ∈ Y ). Hence per(E) = {1} and perE (1) = 1.
Consider the interactive process π in E such that π : {1, 3, 4} → ({1, 3, 4, 6}, {2}) → ({1, 3, 4}, {2}) →

({1, 3, 4}, {5}) → ({6}, {1, 2, 3, 4}). Hence τ = sts(π) = W0, W1, W2, W3, W4, where W0 = {1, 3, 4},
W1 = {1, 2, 3, 4, 6}, W2 = {1, 2, 3, 4}, W3 = {1, 3, 4, 5}, W4 = {1, 2, 3, 4, 6}, and act(τ ) = {b1, b3, b4},

{b3, b4}, {b3, b4}, {b1}.

Here are some events in τ .

– {3, 4, 6}, {3, 4}, {3, 4}, {6} is a maximal (1, 4)-event (tracing the fate of {1, 3, 4} and {3, 4}).
– {3, 6}, {3}, {3}, {6} is a maximal (1, 4)-event.
– {4, 6}, {4}, {4}, {6} is a maximal (1, 4)-event.
– {6}, ∅ is a maverick (1, 2)-event.

The snapshot sequence of τ is S1,S2,S3,S4, where S1 = {{3, 4, 6}, {3, 6}, {4, 6}, {6}}, S2 = S3 =

{{3, 4}, {3}, {4}, ∅}, and S4 = {{6}}.

We will relate now the transformation of a module Q common to two states Wk and W ′

` from possibly different
state sequences τ and τ ′, providing that the two states are in the same “phase”, i.e., they have the same set of periodic
elements. Assume that Q is the k-module of an event ω of τ and it is also the `-module of an event ω′ of τ ′. It turns
out that if Wk ⊆ W ′

`, then the successor of Q in ω′ is a subset of the successor of Q in ω. The intuition behind this
result is that, because of the inhibiting mechanism, for an i-module Q, everything outside Q in Wi (i.e., Wi − Q) is
an “adversary” of Q in the production of its successor module.

Lemma 5.5. Let E be an ers, and let τ, τ ′
∈ STS(E), where τ = W0, . . . , Wn and τ ′

= W ′

0, . . . , W ′
m , with n, m ≥ 2.

Let k ∈ {1, . . . , n − 1}, and ` ∈ {1, . . . , m − 1} be such that perE (Wk) = perE (W ′

`). Let Q ∈ snpτ (k) ∩ snpτ ′(`) be
nonempty. If Wk ⊆ W ′

` , then sucτ ′,`(Q) ⊆ sucτ,k(Q).



A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16 11

Proof. Let und(E) = (S, A).
Note that sucτ ′,`(Q) = (resB′(Q ∪ perE (W ′

`)))∩ trpτ ′(`+ 1), where B ′
= {a ∈ enE (W ′

`) : a ∈ enE (Q ∪ perE (W ′

`))}.
Clearly,

B ′
= {a ∈ A : Ra ⊆ Q ∪ perE (W ′

`) and Ia ∩ W ′

` = ∅}. (1)

On the other hand, sucτ,k(Q) = (resB(Q ∪ perE (Wk))) ∩ trpτ (k + 1), where B = {a ∈ enE (Wk) : a ∈

enE (Q ∪ perE (Wk))}. Clearly,

B = {a ∈ A : Ra ⊆ Q ∪ perE (Wk) and Ia ∩ Wk = ∅}. (2)

Since Wk ⊆ W ′

`, {a ∈ A : Ia ∩ W ′

` = ∅} ⊆ {a ∈ A : Ia ∩ Wk = ∅}. Thus, since perE (Wk) = perE (W ′

`), (1) and
(2) implies that B ′

⊆ B. Since perE (Wk) = perE (W ′

`), this implies that (resB′(Q ∪ perE (W ′

`))) ∩ trpτ ′(` + 1) =

resB′(Q ∪ perE (W ′

`)) − per(E) ⊆ resB(Q ∪ perE (Wk)) − per(E) = (resB (Q ∪ perE (Wk))) ∩ trpτ (k + 1).
Consequently, sucτ ′,`(Q) ⊆ sucτ,k(Q). �

6. The structure of snapshots

Since each snapshot Sk is a family of sets (subsets of Wk), (Sk, ⊆) is a partial order. In this section we analyze in
detail the structure of these partial orders.

Lemma 6.1. Let E be an ers, let τ = W0, . . . , Wn ∈ STS(E), and let 1 ≤ k ≤ n. Then the partial order (Sk, ⊆)
contains both the bottom and the top.

Proof. (1) Consider Wk−1 and choose U = ∅.
By Definition 4.1, Qk = tranτ,k−1(U ) is the first module of an event beginning in k, and so Qk ∈ Sk . It is also clear
from Definition 4.1 that Qk ⊆ Q for each Q ∈ Sk . Therefore Qk is the bottom element of (Sk, ⊆).
(2) Consider Wk−1 and choose U = Wk−1.
By Definition 4.1, Qk = tranτ,k−1(U ) is the first module of an event beginning in k, and so Qk ∈ Sk . It is also clear
from Definition 4.1 that Q ⊆ Qk for each Q ∈ Sk . Therefore Qk is the top element of Sk .

Lemma 6.1 follows now from (1) and (2). �

We will use ⊥k and >k to denote the bottom and the top elements of Sk respectively. Note that by Lemma 5.1,
nextk(>k) = >k+1, for k ∈ {1, . . . , n − 1}. Also, if nextk(⊥k) is defined, then nextk(⊥k) =⊥k+1.

Because the empty module ∅ has really no “physical interpretation”, but rather it is a signaling of the termination
(the death) of an event, it is convenient to consider snapshots with ∅ removed. Accordingly, given a snapshot sequence
S1, . . . ,Sn we set S̄k = Sk − {∅}, for each 1 ≤ k ≤ n. Then we also modify the nextk functions to rnextk functions,
where, for each 1 ≤ k ≤ n − 1, rnextk is nextk restricted to S̄k .

We state and prove now an important property of snapshots.

Theorem 6.2. Let E be an ers, let τ = W0, W1, . . . , Wn , with n ≥ 2, be a state sequence of E , and let Sk,Sk+1 be
two consecutive snapshots of τ for some 1 ≤ k ≤ n − 1. If F1,F2 ⊆ S̄k are nonempty families of sets such that F1 is
embedded in F2 and nextk is defined on all modules in F1 ∪F2, then nextk(F1) is separated from nextk(F2) in Sk+1.

Proof. Let Sk,Sk+1 and F1,F2 be as in the statement of the theorem. Let U = tranτ,k(
⋃
F1). From the definition of

U it follows that U ∈ Sk+1.
Note that, for each V ∈ F1, V ∪ perE (Wk) ⊆

⋃
F1 ∪ perE (Wk). Since nextk is defined on all modules in F1, this

implies that,

for each V ∈ F1, nextk(V ) ⊆ U. (1)

Also, since F1 is embedded in F2, for each Z ∈ F2,
⋃
F1 ∪ perE (Wk) ⊆ Z ∪ perE (Wk). Since nextk is defined on

all modules in F2, this implies that,

for each Z ∈ F2, U ⊆ nextk(Z). (2)

Since U ∈ Sk+1, it follows then from (1) and (2) that nextk(F1) is separated in Sk+1 from nextk(F2). Thus the theorem
holds. �



12 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

Thus one can view (extended) reaction systems as self-organizing systems, where a possible goal of its interactive
processes is to ensure (improve on) separability!

A run of an ers E (i.e., an interactive process of E) produces a sequence of snapshots S1, . . . ,Sk, . . . ,Sn where
in general there may be no (mathematical) similarity between two consecutive snapshots Sk and Sk+1. But when a
“strong similarity” between Sk and Sk+1 occurs one gets stability. A natural way to define a strong similarity is to
require that rnextk is an isomorphism between (S̄k, ⊆) and (S̄k+1, ⊆). When this happens, we get a local stability —
it is local because it may happen that then again there is no similarity between Sk+1 and Sk+2. This is formalised as
follows.

Definition 6.3. Let E be an ers, let τ = W0, W1, . . . , Wn ∈ STS(E), with n ≥ 2, and let Sk,Sk+1 be two consecutive
snapshots of τ for some 1 ≤ k ≤ n −1. We say that (Sk,Sk+1) is a locally stable situation if rnextk is an isomorphism
between (S̄k, ⊆) and (S̄k+1, ⊆).

It turns out that local stability is reflected in the structure of the corresponding snapshots: if (Sk,Sk+1) is a locally
stable situation, then both Sk and Sk+1 are complete lattices.

Corollary 6.4. Let E be an ers, let τ be a state sequence, and let S,S ′ be two consecutive snapshots of τ . If (S,S ′)

is a locally stable situation, then both (S, ⊆) and (S ′, ⊆) are complete lattices.

Proof. Let τ,S, and S ′ be as in the statement of the corollary, say τ = W0, W1, . . . , Wn , with n ≥ 2, and S = Sk ,
S ′

= Sk+1, for some 1 ≤ k ≤ n − 1. We define the function mnextk : Sk → Sk+1 as follows:

(i) if nextk(⊥k) is defined, then mnextk(Q) = nextk , and
(ii) if nextk(⊥k) is not defined, then mnextk(Q) = nextk(Q) for all Q ∈ Sk such that Q 6=⊥k , and mnextk(⊥k) =⊥k+1.

Thus mnextk is nextk possibly modified on ⊥k .

Let F1,F2 be arbitrary two nonempty subfamilies of Sk+1 such that F1 is embedded in F2.
Since (Sk,Sk+1) is a locally stable situation, rnextk is an isomorphism between (S̄k, ⊆) and (S̄k+1, ⊆). It follows

then from the definition of mnextk that mnextk is an isomorphism between (Sk, ⊆) and (Sk+1, ⊆). Therefore,
F ′

1 = mnext−1
k (F1) and F ′

2 = mnext−1
k (F2) are subfamilies of Sk such that F ′

1 is embedded in F ′

2. Hence, by
Theorem 6.2, mnextk(F ′

1) = F1 is separated from mnextk(F ′

2) = F2 in Sk+1. Since F1,F2 are two arbitrary
nonempty subfamilies of Sk+1 such that F1 is embedded in F2, it follows from Lemmas 6.1 and 1.1 that (Sk+1, ⊆)

is a complete lattice. Because (Sk, ⊆) is isomorphic with (Sk+1, ⊆), also (Sk, ⊆) is a complete lattice. Hence the
corollary holds. �

We end this section by pointing out that having S̄k = S̄k+1 does not necessarily imply that rnextk is an isomorphism
of S̄k onto S̄k+1.

Example 6.5. Let E = (S, A, R) be the ers such that S = { f, h, p, q, z}, A = {a1, a2, a3, a4} with a1 =

({q}, { f }, {u, v}), a2 = ({p}, { f }, {u}), a3 = ({z}, { f }, {u}), a4 = ({u, v}, { f }, {u, v}), and R = 2S
× 2S . Hence

R is not restrictive; thus in fact we consider the rs A = (S, A).
Consider the interactive process π in E such that π : {h, p, q} → ({u, v}, {z}) → ({u, v}, ∅).
Hence τ = sts(π) = W0, W1, W2, where W0 = {h, p, q}, W1 = {u, v, z}, W2 = {u, v}, and act(τ ) =

{a1, a2}, {a3, a4}.
There is only one reduced event, viz., (1, 2)-event {u, v}, {u, v}, and only one maverick event, viz., (1, 2)-event

{u}, ∅. Also, event {u, v}, event {u}, and event ∅ are both 1-events and 2-events. As a matter of fact, S1 = S2 =

{{u, v}, {u}, ∅}. On the other hand, rnext1 is not an isomorphism between S̄1 and S̄2, as it is not defined on {u}.

7. Abstract view of snapshots

In this section we view snapshots in a more abstract way. Given a snapshot Sk (of a state Wk in a state sequence
τ ) we replace (Sk, ⊆) by a partial order (a graph) Gk = (Mk, ⊆) isomorphic with (Sk, ⊆), where Mk is an arbitrary
subset of a given a priori universal setN of nodes. Then, as is standard in the theory of partial orders, we consider the
Hasse graph Hk of Gk . Similarly we replace S̄k by Gk and then by H k , which we will call the abstract k-snapshot
of τ . Thus in this section the snapshot sequence snp(τ ) = S1, . . . ,Sk of a state sequence τ will be replaced by the
abstract snapshot sequence of τ : H1, . . . , H k .



A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16 13

Fig. 7.1.

Fig. 7.2.

Fig. 7.3.

In considering Gk rather than Sk we lose all the “absolute” information about the sets in Sk , i.e., in general, given
a node z in Mk we do not know what set in 2S it represents, we even do not know the cardinality of a represented set.
We have here only “relative” information, viz., the relationship to some other sets in Sk (represented by the edges of
Gk).

Given the abstract snapshot sequence H1, . . . , Hn , for each 1 ≤ k ≤ n − 1, the restricted function, rnextk : S̄k →

S̄k+1 translates naturally into its abstract version arnextk : H k → H k+1.
Although the sequence H1, . . . , Hn is an abstract view of snp(τ ), together with the functions arnextk , for

1 ≤ k ≤ n − 1, it allows one to deduce various facts about events and modules in τ which are independent of
“implementation”, i.e., independent of the composition of sets (subsets of S) represented by nodes in Hasse graphs
H1, . . . , Hn .

Thus, e.g., for a node z in H k one can define the abstract structure of z (in H k) as the subgraph of H k rooted at z,
denoted by astH k

(z). For example, for H k given in Fig. 7.1, the abstract structures of t1 and t2 are given in Figs. 7.2
and 7.3, respectively.

As another example of reasoning in this abstract setting, assume that the abstract snapshot sequence together with
the functions arnext1 and arnext2 is as given in Fig. 7.4 (where arnext functions are represented by boldface directed
segments between H1 and H2, and between H2 and H3). Then, we conclude that there is only one reduced (1, 3)-
event (corresponding to the abstract reduced event r1, q1, p1), there are five reduced (1, 2)-events, and five reduced
(2, 3)-events. Also, there are three reduced events merging in a 2-module (corresponding to q7), and three reduced
events merging in a 3-module (corresponding to p2). Moreover, there are two maverick (1, 2)-events (corresponding to
t5 and t6), and two maverick (2, 3)-events (corresponding to q7 and q8). Note that, given asnp(τ ) and the corresponding
functions arnextk , one can also detect locally stable situations in τ .

Let us consider now the abstract snapshot sequence µ = H1, H2, H3, H4, H5, H6, H7 together with the
corresponding functions arnextk : H k → H k+1 as given in Fig. 7.5. This is a very simple example: all Hasse graphs



14 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

Fig. 7.4.

Fig. 7.5.

Fig. 7.6.

with the exception of H4 are discrete (i.e., they have the empty sets of edges), and there is only one edge in H4.
There are 15 events merging in the (abstract) module u — we have numbered the modules originating these 15 events
by 1 through 15.

It is easily seen that, in general, for a given ers E the number of events that can merge in an arbitrary module (of
some state of some state sequence of E) can be unbounded — i.e., there does not exist a positive integer s such that
for each (nonempty) module Q in each state sequence τ of E the number of events of τ merging in Q is bounded
by s. The generic situation preventing a common bound is shown in Fig. 7.6: a long path with many edges (or paths)
flowing into it. Such a situation may be troublesome when analyzing the origins (causes) of modules.

Note that when events merge into the empty module they all terminate/die. It would be convenient to have a
somewhat analogous situation for nonempty modules: sometimes when events merge in a nonempty module some of
them terminate. Towards this aim we will use the following antecedent reduction rule. Let τ = W0, W1, . . . , Wn be a
state sequence, let 1 ≤ k ≤ n − 1, and let u be a node in H k . If abstract events ω1, ω2 merge in u, where ω1 originates
in H i and ω2 originates in H j with i < j , then ω1 “wins”, i.e., ω2 discontinues (it ends in H k−1).
A possible interpretation of the ancienity reduction rule is: when we already have a cause (an explanation) for the
formation of module u, a younger cause (an explanation coming later) can be neglected.

Applying the ancienity reduction rule to the situation in Fig. 7.5 we get the situation in Fig. 7.7. We note that
now we have only two events merging in u (viz., the events originating in modules 1 and 2). As a matter of fact, the
ancienity rule guarantees an a priori bound on the number of events that can merge in a single nonempty module.



A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16 15

Fig. 7.7.

Fig. 7.8.

Theorem 7.1. Let E be an ers. There exists a positive integer s such that, for each state sequence W0, W1, . . . , Wn of
E , each k ∈ {1, . . . , n − 1}, and each u ∈ H k , the number of events merging in u under the ancienity reduction rule
does not exceed s.

Proof. Let E = (S, A, R) be an ers, let W0, . . . , Wn ∈ STS(E), let k ∈ {1, . . . , n − 1} and let u ∈ H k . Let ω1, . . . , ωr
be all abstract events in asnp(τ ) that merge in u under the ancienity reduction rule. Let, for each j ∈ {1, . . . , r}, i j be
the positive integer such that ω j originates in H i j . Since we consider the ancienity reduction rule, all integers i j must
be equal — say they are all equal to i . Therefore the number of events merging in u under the ancienity successor
rule cannot exceed the number of nodes in H i , which is certainly bounded by s = |2S

| − 1. Thus the theorem
holds. �

There is another reduction rule that seems to be natural from the biological point of view — it is the following
subset reduction rule.

Let τ = W0, W1, . . . , Wn be a state sequence, let 1 ≤ k ≤ n − 1, and let u be a node in H k . If abstract events
ω1, ω2 merge in u, z is the abstract module of ω1 in H k−1, and v is the abstract module of ω2 in H k−1, with z ≤ v in
H k−1, then ω1 “wins”, i.e., ω2 discontinues (it ends in H k−1).

A possible interpretation of the subset reduction rule is the parsimony principle: a simpler/smaller explanation is
retained. The subset reduction rule is illustrated in Fig. 7.8, where it is applied to the situation in Fig. 7.7.



16 A. Ehrenfeucht, G. Rozenberg / Theoretical Computer Science 376 (2007) 3–16

Acknowledgements

The authors are indebted to Marloes van der Nat for the expert typing of the manuscript, to R. Brijder and
H.J. Hoogeboom for useful comments on the first version of the manuscript, and to R. Brijder for his help with
producing the figures for this paper.

References

[1] A. Ehrenfeucht, G. Rozenberg, Basic Notions of Reaction Systems, in: Lecture Notes in Computer Science, vol. 3340, Springer, 2004,
pp. 27–29.

[2] A. Ehrenfeucht, G. Rozenberg, Reaction systems, Fundamenta Informaticae 75 (2007) 263–280.
[3] G. Schlosser, G.P. Wagner (Eds.), Modularity in Development and Evolution, The University of Chicago Press, Chicago, 2004.


	Events and modules in reaction systems
	Introduction
	Preliminaries
	Reaction systems
	Extended reaction systems
	Events
	Modules and snapshots
	The structure of snapshots
	Abstract view of snapshots
	Acknowledgements
	References


