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Over the past five years, the directional representation system of shearlets has received
much attention and has been shown to exhibit many advantageous properties. Over this
time period, there have been a number of attempts to associate shearlet systems with a
multiresolution analysis (MRA). However, one can argue that, in each of these attempts,
the following statement regarding the resulting shearlet MRA notion is inaccurate: “There
exist scaling functions satisfying various desirable properties, such as significant amounts
of decay or regularity, nonnegativity, or advantageous refinement or representation
conditions. Each such scaling function naturally induces an associated shearlet (either
traditional or cone-adapted) that satisfies similar desirable properties. Each such scaling
function/associated shearlet pair rationally induces a fast decomposition algorithm for
discrete data.” In this article, we attempt to provide explanation for this situation by
arguing the great difficulty of associating shearlet systems with such an MRA. We do so
by considering two very natural and general notions of shearlet MRA—one which leads to
traditional shearlets and one which leads to cone-adapted shearlets—each of which seems
to be an excellent candidate to satisfy the above quoted statement. For each of these
notions, we prove the nonexistence of associated scaling functions satisfying the above
mentioned desirable properties.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Over the past approximately twenty years, wavelets have been supplied with a rich mathematical theory and have estab-
lished themselves as very popular tools for a wide variety of applications. Perhaps two of the most well-known applications
of wavelets are their use in the new FBI fingerprint database [1] and in JPEG 2000, the new standard for image compression
[2]. There are three important general properties of wavelets which can be seen as primary contributors to this success. First,
wavelets are ideally suited for the study of a certain relevant class of functions: otherwise smooth functions that exhibit
point singularities, which we call type I functions. For example, discrete wavelets provide “optimally sparse” representations
of type I functions—i.e., very few terms from a discrete wavelet system are necessary to approximate such functions accu-
rately (fewer than with “any” other representation system) [3]—and continuous wavelets are able to detect the locations
of the singularities of type I functions [4]. Second, a wavelet can be associated with multiresolution analysis (MRA) and a
scaling function [5]. Most importantly, there exist scaling functions that are compactly supported and arbitrarily smooth [6]
which are associated with wavelets satisfying similar desirable properties. Third, each scaling function/associated wavelet
pair (particularly those mentioned in the previous sentence) is associated with a fast decomposition algorithm which is very
useful in the compression, analysis, etc. of discrete data [7].
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The great success of wavelets has resulted in their use in applications for which they are very likely far from the
ideal tool. A prominent example of such an application is image analysis/compression, for which the subideality of wavelet
systems manifests itself as follows: Type I functions provide a very poor model for image data, which typically possesses
edges. A more realistic model of such data and one that has been generally accepted is: otherwise C2 bivariate functions
which exhibit singularities along C2 curves [8], which we call type II functions. Wavelet systems are ill-suited for the study
of type II functions. For example, the representation of type II functions by discrete wavelet systems is far from optimally
sparse—i.e., a relatively large number of terms from a discrete wavelet system are necessary to approximate such functions
accurately (much larger than the theoretically optimal number) [3,9]—and while continuous wavelet systems are able to
detect the locations of the singularities of type II functions, they are unable to detect the wavefront set—i.e., the locations
and orientations of the singularities—of such functions [10].

1.1. Shearlet systems

This realization of wavelets as subideal has resulted in the introduction—over the past five to ten years—of a number of
so-called directional representation systems (e.g., shearlets [11] and curvelets [8,10]). Among all these directional represen-
tation systems, shearlets are uniquely identified by the satisfaction of a long list of advantageous properties. In particular,
they are generated by applying dilations and translations to a single generating function (or finite collection of such func-
tions); they provide optimally sparse representations of and are able to identify the wavefront set of type II functions [12,
13]; and shearlets with compact support have been constructed [14].

Shearlet systems are affine-like systems generated by applying scaling dilations, “shear” transformations, and translations
either in a continuous or discrete fashion to a collection {ψn: n = 1, . . . , N} ⊂ L2(R2), where N ∈ Z

+ . We are interested
in discrete shearlet systems, which come in one of two varieties. Let a1 > 0 and 0 < α < 1. Write a = diag(a1,aα

1 ), ã =
diag(aα

1 ,a1),

B =
{

b(l) =
(

1 l

0 1

)
: l ∈ Z

}
, and B̃ =

{
b̃(l) =

(
1 0

l 1

)
: l ∈ Z

}
.

If {ψn: n = 1, . . . , N} ⊂ L2(R2) and if the collection{
D− j

a Db Tkψn: j ∈ Z, b ∈ B, k ∈ Z
2, n = 1, . . . , N

}
(1.1)

forms a frame for L2(R2), then {ψn: n = 1, . . . , N} is said to be a traditional shearlet and (1.1) is said to be a traditional
shearlet system (see Section 2.1 for the various notation and [15] for the definitions of Bessel system, frame, dual frame,
Riesz basis, etc.). While traditional shearlet systems have a rich mathematical structure, they are strongly biased toward one
axis. To provide an essentially equal treatment of all directions, one often considers the second variant of discrete shearlet
systems—cone-adapted shearlet systems. Write

C = {
(ξ1, ξ2) ∈ R̂

2: |ξ1| � 1, |ξ1| � |ξ2|
}
,

C̃ = {
(ξ1, ξ2) ∈ R̂

2: |ξ2| � 1, |ξ2| � |ξ1|
}
,

and

R = {
(ξ1, ξ2) ∈ R̂

2: |ξ1|, |ξ2| � 1
}
.

If {ψn: n = 1, . . . , N} ⊂ L2(R2) and if the collection

S = {
D− j

a Db(l)Tkψn: j ∈ N, l = −⌈a(1−α) j
1

⌉
, . . . ,

⌈
a(1−α) j

1

⌉
, k ∈ Z

2, n = 1, . . . , N
}

forms a frame for L2(C)∨ (in the sense of the satisfaction of a frame inequality—S need not belong to L2(C)∨), then
{ψn: n = 1, . . . , N} is said to be a shearlet on C . In this case, one can easily obtain {ψ̃n: n = 1, . . . , N} ⊂ L2(R2) such that

S̃ = {
D− j

ã D b̃(l)Tkψ̃n: j ∈ N, l = −⌈a(1−α) j
1

⌉
, . . . ,

⌈
a(1−α) j

1

⌉
, k ∈ Z

2, n = 1, . . . , N
}

forms a frame for L2( C̃ )∨ . Moreover, one can also easily obtain a translation-generated frame B for L2(R)∨ . Finally, one
can obtain from the collections S , S̃ , and B a frame for L2(R2), and we call this frame a cone-adapted shearlet system.

1.2. Shearlet MRA and our results

Let a1, α, a, b(l) (l ∈ Z), and B be as in the previous subsection. Since shearlets are generated by applying dilations
and translations to a finite set of generating functions (unlike, for instance, curvelets), one would expect to be able to
successfully associate them with an MRA structure. By analogy with the wavelet case, the development of a notion of
shearlet MRA which satisfies the following Desirable Properties is clearly of great interest:
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(D1) There exist scaling functions satisfying various desirable properties, such as significant amounts of decay or regularity,
nonnegativity, or advantageous refinement or representation conditions.

(D2) Each scaling function referred to in (D1) naturally induces an associated shearlet (either traditional or cone-adapted)
that satisfies similar desirable properties.

(D3) Each scaling function/associated shearlet pair referred to in (D1) and (D2) rationally induces a fast decomposition algo-
rithm for discrete data. Here, rational is as indicated in [16]. In particular, the action of the induced fast decomposition
algorithm on discrete data should mirror the action of the scaling function/associated shearlet on continuous data.

1.2.1. Traditional shearlet MRA
In [17,18], traditional shearlet systems are considered within the context of composite wavelet systems (for which a

notion of MRA and scaling function exist). The following is a generalized version of the definition of traditional shearlet
MRA and scaling function from [17]:

Definition 1.1. A sequence {V j} j∈Z of closed linear subspaces of L2(R2) is said to be a traditional shearlet MRA if the
following conditions hold:

• V j ⊂ V j+1, for all j;

• V j = D− j
a V 0, for all j;

• ⋂
j∈Z

V j = {0};

• ⋃
j∈Z

V j is dense in L2(R2);
• there exists ϕ ∈ V 0 such that{

Db Tkϕ: b ∈ B, k ∈ Z
2} (1.2)

forms a frame for V 0.

In this case, we say ϕ is a traditional shearlet scaling function for the given MRA.

If {V j} j∈Z is a traditional shearlet MRA with scaling function ϕ , write W0 = V ⊥
0 ∩ V 1. If there exists {ψn: n = 1, . . . , N} ⊂

W0 (N ∈ Z
+) such that{

Db Tkψn: b ∈ B, k ∈ Z
2, n = 1, . . . , N

}
forms a frame for W0, then it follows from the MRA properties that{

D− j
a Db Tkψn: j ∈ Z, b ∈ B, k ∈ Z

2, n = 1, . . . , N
}

forms a frame for L2(R2); i.e., that {ψn: n = 1, . . . , N} is a traditional shearlet. In this situation, we say that ϕ and {ψn: n =
1, . . . , N} are associated.

Essentially, the only traditional shearlet/associated scaling function pairs that have been constructed are of “Shannon-
type”—i.e., their Fourier transforms are characteristic functions of measurable sets. The following shearlet/associated scaling
function example is adapted from [17]: Define ϕ,ψn ∈ L2(R2) (n = 1, . . . ,15) by ϕ̂ = χE0 and ψ̂n = χEn , where χE denotes
the characteristic function of E , En = E+

n ∪ E−
n , E−

n = −E+
n , and E+

n is rectangle/triangle number n in Fig. 1. It follows that
ϕ is an orthonormal traditional shearlet scaling function and {ψn: n = 1, . . . ,15} is an associated orthonormal traditional
shearlet with dilation matrix a = diag(4,2) (where the adjective “orthonormal” has the obvious meaning).

1.2.2. Cone-adapted shearlet MRA
Refs. [19–21] each contains an attempt to associate cone-adapted shearlet systems with an MRA. However, one can argue

that, in each case, the resulting shearlet MRA notion fails to satisfy at least one of (D2) or (D3). We propose the following
notion of shearlet MRA and scaling function which is inspired by the Unitary Extension Principle (UEP) of wavelet theory
[22] (in a different fashion than in [20]):

Assume, for this discussion, that aα
1 ,a1−α

1 ∈ Z. Let ϕ ∈ L2(R2), and, for j ∈ N, write

B j = {
b(l): −a(1−α) j

1 + 1 � l � a(1−α) j
1

}
and define ω j ∈ L1(R̂2) by

ω j(ξ) =
∑
b∈B j

∣∣ϕ̂(ξa− jb
)∣∣2.

Since B ⊂ S̃L2(Z), we have{
Db Tkϕ: k ∈ Z

2}= {
Tk Dbϕ: k ∈ Z

2}, (1.3)
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Fig. 1. The sets E+
n (n = 0, . . . ,15).

for all b ∈ B . If f ∈ L∞
c (R̂2)∨ , then Fatou’s lemma, (1.3), and part (vi) of Lemma 2.1 imply that

lim inf
j→∞

∑
b∈B j ,k∈Z2

∣∣〈 f , D− j
a Db Tkϕ

〉∣∣2 �
∫
R̂2

∣∣ f̂ (ξ)
∣∣2 lim inf

j→∞
ω j(ξ)dξ. (1.4)

If f ∈ L∞
c (R̂2)∨ and if 〈ω j〉 j∈N is essentially bounded on supp( f̂ ), then the Dominated Convergence Theorem, (1.3), and

part (vi) of Lemma 2.1 imply that

lim sup
j→∞

∑
b∈B j ,k∈Z2

∣∣〈 f , D− j
a Db Tkϕ

〉∣∣2 �
∫
R̂2

∣∣ f̂ (ξ)
∣∣2 lim sup

j→∞
ω j(ξ)dξ. (1.5)

Let N ∈ Z
+ and let Γ be a collection of the a1+α

1 distinct representatives of Ẑ
2/Ẑ

2a with 0 ∈ Γ . Suppose {mn
p: p =

0, . . . ,a1−α
1 − 1, n = 0, . . . , N} ⊂ L2(T̂2) satisfy

ϕ̂(ξa) =
a1−α

1 −1∑
p=0

m0
p(ξ)ϕ̂

(
ξb(−p)

)
,

for a.e. ξ , and

N∑
n=0

mn
p(ξ)mn

p′
(
ξ + γ a−1

)=
{

1, if p = p′ and γ = 0,

0, otherwise,

for a.e. ξ , all p, p′ ∈ {0, . . . ,a1−α
1 − 1}, and all γ ∈ Γ . Define {ψn: n = 1, . . . , N} ⊂ L2(R2) by

ψ̂n(ξa) =
a1−α

1 −1∑
p=0

mn
p(ξ)ϕ̂

(
ξb(−p)

)
,

for a.e. ξ . It follows from standard UEP-type arguments that∑
b∈B j+1,k∈Z2

∣∣〈 f , D−( j+1)
a Db Tkϕ

〉∣∣2 =
∑

b∈B j ,k∈Z2

∣∣〈 f , D− j
a Db Tkϕ

〉∣∣2
+

∑
n=1,...,N,b∈B j ,k∈Z2

∣∣〈 f , D− j
a Db Tkψn

〉∣∣2, (1.6)

for all j ∈ N and all f ∈ L∞
c (R̂2)∨ .
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Suppose that 〈ω j〉 j∈N is essentially bounded on compact subsets of C and that

C � lim inf
j→∞

ω j(ξ) � lim sup
j→∞

ω j(ξ) � D,

for a.e. ξ ∈ C . Using (1.4), (1.5), (1.6), and that L∞
c (C)∨ is dense in L2(C)∨ , it follows that{

Db Tkϕ: b ∈ B0, k ∈ Z
2}∪ {D− j

a Db Tkψn: j ∈ N, b ∈ B j, k ∈ Z
2, n = 1, . . . , N

}
forms a frame (with constants C � D) for L2(C)∨; i.e., that {ψn: n = 1, . . . , N} is a shearlet on C (essentially). In this case,
we call ϕ a shearlet scaling function on C and say that ϕ and {ψn: n = 1, . . . , N} are associated. We note that, with ϕ and
ψ1, . . . ,ψ15 as defined above, ϕ is a shearlet scaling function on C (with C = D = 1 and a = diag(4,2)) and ψ1, . . . ,ψ15 is
an associated shearlet on C .

1.2.3. Our results
The notions of traditional shearlet scaling function and shearlet scaling function on C introduced above are both very

natural and general, and each seems to be an excellent candidate to satisfy the Desirable Properties, particularly (D2) and
(D3). However, our main results (Theorems 3.1, 3.2, 3.3, 4.1, and 4.2) show that both definitions fail completely in the
satisfaction of (D1).

2. Preliminaries

In this section, we collect the various notation and results that are used throughout the article.

2.1. Notation

Throughout, a1, α, a, b(l) (l ∈ Z), and B are as defined in Section 1.1 and ϕ denotes an element of L2(R2). Unless
indicated otherwise, all norms are assumed to be L2-norms.

We represent elements of the time domain, R
2, by column vectors x = ( x1

x2

)
and elements of the frequency domain, R̂

2,

by row vectors ξ = (ξ1, ξ2). We use N and Z
+ to denote {p ∈ Z: p � 0} and {p ∈ Z: p > 0}, respectively. S̃L2(Z) denotes

the collection of all c ∈ GL2(Z) such that |det c| = 1. If E is a measurable subset of R̂
2, L∞

c (E) denotes the collection of all
f ∈ L∞(R̂2) such that f is compactly supported and supp( f ) ⊂ E .

We use the Fourier transform F : L2(R2) → L2(R̂2) defined for f ∈ L1(R2) ∩ L2(R2) by

F f (ξ) = f̂ (ξ) =
∫
R2

f (x)e−2πıξx dx.

If f ∈ L2(R2), we denote F −1 f by f̌ . For each 1 � p � ∞ and each y ∈ R
2, we define the translation operator T y :

L p(R2) → L p(R2) by T y f (x) = f (x − y). If η ∈ R̂
2, Tη : L p(R̂2) → L p(R̂2) is defined similarly. For each c ∈ GL2(R), we define

the dilation operator Dc : L2(R2) → L2(R2) by Dc f (x) = |det c|−1/2 f (c−1x).

2.2. Shift invariant spaces

We require some basic terminology and results from shift invariant space theory. If f , g ∈ L2(R̂2), the bracket product of
f and g , denoted by [ f , g], is defined by

[ f , g](ξ) =
∑
k∈Ẑ2

f (ξ + k)g(ξ + k),

for a.e. ξ , where Ẑ
2 denotes the collection of all 1 × 2 row vectors with integer entries. It is straightforward to verify that

the above sum converges absolutely for a.e. ξ and that [ f , g] ∈ L1(T̂2), where, for 1 � p � ∞, L p(T̂2) denotes the space of
all measurable Ẑ

2-periodic functions f : R̂
2 → C satisfying ‖ f ‖Lp(T̂2)

< ∞, where

‖ f ‖L p(T̂2)
=
{

(
∫
[0,1]2 | f (ξ)|p dξ)1/p, if 1 � p < ∞,

ess supξ∈[0,1]2 | f (ξ)|, if p = ∞.

We have the following collection of basic results (see, for instance, [23–25] and [15]):

Lemma 2.1. Let f , g ∈ L2(R2) and let {ϕi: i ∈ I} ⊂ L2(R2), where I is a countable indexing set. Denote the closed linear spans of the
collections {Tk f : k ∈ Z

2}, {Tk g: k ∈ Z
2}, and Φ = {Tkϕi: k ∈ Z

2, i ∈ I} by X, Y , and Z , respectively.
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(i) X ⊥ Y if and only if [ f̂ , ĝ](ξ) = 0, for a.e. ξ .
(ii) If X and Y are Bessel systems, then [ f̂ , ĝ] ∈ L∞(T̂2).

(iii) If m ∈ L∞(T̂2), then m f̂ ∈ X̂ .
(iv) If Φ is a Bessel system with constant D, then∑

i∈I

∥∥[ f̂ , ϕ̂i]
∥∥2

L2(T̂2)
� D‖ f ‖2.

(v) If Φ forms a frame for Z with dual frame {Tkθi: k ∈ Z
2, i ∈ I} and if f ∈ Z , then f̂ = ∑

i∈I [ f̂ , θ̂i]ϕ̂i, with unconditional

convergence in L2(R̂2).
(vi) If f ∈ L∞

c (R̂2)∨ , there exists J = J ( f ) ∈ N such that∑
k∈Z2

∣∣〈 f , D− j
a Tkh

〉∣∣2 =
∫
R̂2

∣∣ f̂ (ξ)
∣∣2∣∣ĥ(ξa− j)∣∣2 dξ,

for all j � J and all h ∈ L2(R2).

2.3. Decay, regularity, and the Fourier transform

We require two somewhat nonstandard results regarding the connection, via the Fourier transform, between decay and
regularity. We have the following definition:

Definition 2.1. Let γ ∈ [0,1) and p ∈ {1,2}.

• The space Hγ
p (R̂2) consists of all f ∈ L∞(R̂2) such that

‖ f − Ttêp
f ‖L∞(R̂2)

� M(t)|t|γ ,

for all t ∈ R, where M = M( f ) is bounded and satisfies M(t) → 0, as t → 0 and êp denotes the pth canonical basis
vector of R̂

2.
• The space Hγ (R̂2) consists of all f ∈ L∞(R̂2) such that

‖ f − Tη f ‖L∞(R̂2)
� M(η)‖η‖γ ,

for all η ∈ R̂
2, where M = M( f ) is bounded and satisfies M(η) → 0, as η → 0.

If 0 < γ � 1, we recall that f ∈ L∞(R2) is said to be Hölder continuous with exponent γ if there exists 0 < K < ∞ such
that ‖ f − T y f ‖L∞(R2) � K‖y‖γ , for all y ∈ R

2. We have the following result:

Lemma 2.2.

(i) If γ ∈ [0,1) and (1 + ‖x‖γ ) f ∈ L1(R2) (where x denotes the identity function on R
2), then f̂ ∈ Hγ (R̂2).

(ii) If f ∈ L2(R2) is compactly supported and Hölder continuous with exponent γ > 1/2, then |ξ2|γ f̂ ∈ H1/2
1 (R̂2), where ξ2 denotes

the second coordinate function of R̂
2 .

Proof. To prove (i), let γ ∈ [0,1) and suppose that (1 + ‖x‖γ ) f ∈ L1(R2). Since f ∈ L1(R2), the Riemann–Lebesgue lemma
implies that f̂ ∈ L∞(R̂2). Using again that f ∈ L1(R2), we have∣∣ f̂ (ξ) − Tη f̂ (ξ)

∣∣= ∣∣((1 − e2πıη·) f
)̂

(ξ)
∣∣� ∫

R2

∣∣1 − e2πıηx
∣∣∣∣ f (x)

∣∣dx,

for all ξ and η, implying that

‖ f̂ − Tη f̂ ‖L∞(R̂2)
� M(η)‖η‖γ , (2.1)

for all η �= 0, where

M(η) =
∫
R2

‖η‖−γ
∣∣1 − e2πıηx

∣∣∣∣ f (x)
∣∣dx.

Using that∣∣1 − eix
∣∣� |x|, (2.2)
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it follows easily that∣∣1 − eix
∣∣� 2|x|γ , (2.3)

for all x ∈ R. Using this observation and the Cauchy–Schwarz inequality, we obtain

‖η‖−γ
∣∣1 − e2πıηx

∣∣∣∣ f (x)
∣∣� ‖η‖−γ 2|2πηx|γ ∣∣ f (x)

∣∣
� ‖η‖−γ 2γ +1πγ ‖η‖γ ‖x‖γ

∣∣ f (x)
∣∣

= 2γ +1πγ ‖x‖γ
∣∣ f (x)

∣∣, (2.4)

for a.e. x and all η �= 0. Using (2.2), the Cauchy–Schwarz inequality, and that γ < 1, we have

‖η‖−γ
∣∣1 − e2πıηx

∣∣∣∣ f (x)
∣∣ = ‖η‖1−γ ‖η‖−1

∣∣1 − e2πıηx
∣∣∣∣ f (x)

∣∣
� ‖η‖1−γ ‖η‖−1|2πηx|∣∣ f (x)

∣∣
� ‖η‖1−γ ‖η‖−12π‖η‖‖x‖∣∣ f (x)

∣∣
= 2π‖η‖1−γ ‖x‖∣∣ f (x)

∣∣
→ 0, (2.5)

as η → 0, for a.e. x. Using (2.4), that ‖x‖γ f ∈ L1(R2), (2.5), and the Dominated Convergence Theorem, it follows that M is
bounded and that M(η) → 0, as η → 0. In conjunction with (2.1), this proves (i).

To prove (ii), suppose that f ∈ L2(R2) is compactly supported and Hölder continuous with exponent γ > 1/2. For s ∈ R,
write Es = supp(Tse2 f ) = E0 + se2. Define g : R̂

2 → C by g(ξ1, ξ2) = |ξ2|γ f̂ (ξ1, ξ2). If h ∈ L1(R2), we have

|s|−γ
∣∣(1 − e−2πıξ2s)ĥ(ξ)

∣∣= |s|−γ
∣∣(h − Tse2 h)̂ (ξ )

∣∣� M(h)(s),

where

M(h)(s) = |s|−γ

∫
R2

∣∣h(x) − Tse2 h(x)
∣∣dx,

for all s �= 0 and all ξ = (ξ1, ξ2). Substituting 1/(2ξ2) for s in the above inequality, we obtain

2γ +1|ξ2|γ
∣∣ĥ(ξ)

∣∣= ∣∣1/(2ξ2)
∣∣−γ ∣∣(1 − e−2πıξ2/(2ξ2)

)
ĥ(ξ)

∣∣� M(h)
(
1/(2ξ2)

)
, (2.6)

for all ξ = (ξ1, ξ2) with ξ2 �= 0.
Since f ∈ L1(R2), (2.6) implies that |g(ξ)| = |ξ2|γ | f̂ (ξ)| � M( f )(1/(2ξ2)), for all ξ = (ξ1, ξ2) with ξ2 �= 0, where

M( f )(s) = |s|−γ

∫
R2

∣∣ f (x) − Tse2 f (x)
∣∣dx

= |s|−γ

∫
E0∪Es

∣∣ f (x) − Tse2 f (x)
∣∣dx

� |s|−γ

∫
E0∪Es

K1|s|γ dx

� 2K1|E0|,
for all s �= 0, where 0 < K1 < ∞ is the Hölder constant of f . It follows that g ∈ L∞(R̂2). Using again that f ∈ L1(R2) and
(2.6), we obtain∣∣g(ξ) − Ttê1

g(ξ)
∣∣= |ξ2|γ

∣∣ f̂ (ξ) − Ttê1
f̂ (ξ)

∣∣
= |ξ2|γ

∣∣((1 − e2πıtê1·) f
)̂

(ξ)
∣∣

� M
((

1 − e2πıtê1·) f
)(

1/(2ξ2)
)
, (2.7)

for all ξ = (ξ1, ξ2) with ξ2 �= 0. Choose 0 < K2 < ∞ such that |ê1x| � K2, for all x ∈⋃s∈R
Es . Using (2.2) and (2.3), it follows

that
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M
((

1 − e2πıtê1·) f
)
(s) = |s|−γ

∫
R2

∣∣1 − e2πıtê1x
∣∣∣∣ f (x) − Tse2 f (x)

∣∣dx

= |s|−γ

∫
E0∪Es

∣∣1 − e2πıtê1x
∣∣∣∣ f (x) − Tse2 f (x)

∣∣dx

�
{ |s|−γ

∫
E0∪Es

|2πtê1x|K1|s|γ dx, if |t| � 1,

|s|−γ
∫

E0∪Es
2|2πtê1x|1/2 K1|s|γ dx, if |t| > 1,

�
{

4π K1 K2|E0||t|, if |t| � 1,

4K1(2π K2)
1/2|E0||t|1/2, if |t| > 1,

for all s �= 0. Part (ii) of this lemma follows from (2.7) and the above inequality. �
3. Cone-adapted shearlet scaling functions

We use the following notation in this section: Let L−
0 , L+

0 , L−
1 , L+

1 , . . . ∈ Z
+ and β, K ∈ (0,∞) satisfy

lim
j→∞

a−β j
1 L−

j = lim
j→∞

a−β j
1 L+

j = K .

For j ∈ N, define B j = {b(l): l = −L−
j , . . . , L+

j } and ω j ∈ L1(R̂2) by

ω j(ξ) =
∑
b∈B j

∣∣ϕ̂(ξa− jb
)∣∣2.

In this section, we prove three results (Theorems 3.1–3.3) regarding the convergence of 〈ω j〉 j∈N . The case β = 1 − α < 1
is relevant to shearlet scaling functions on C and, as we see in Section 4, the case β > 1 is relevant to traditional shearlet
scaling functions. Moreover, one can imagine more general notions of cone-adapted shearlet and cone-adapted shearlet
scaling function that correspond to α and β such that 1 − α �= β � 1; we therefore study these cases as well. We have the
following results:

Theorem 3.1. Assume β < 1 and write γ = max{β/(2α),β/(2 − 2β)}. Suppose (1 + ‖x‖γ )ϕ ∈ L1(R2).

(i) If ∂
p
2 ϕ̂(0) �= 0, for some 0 � p < γ , then lim j→∞ ω j(ξ) = ∞, for a.e. ξ .

(ii) If γ ∈ Z, if ∂
p
2 ϕ̂(0) = 0, for all 0 � p < γ , and if ∂

γ
2 ϕ̂(0) �= 0, then 〈ω j〉 j∈N converges uniformly to P on compact subsets of R̂

2 ,

where P : R̂
2 → [0,∞) is defined by

P (ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2K |∂γ
2 ϕ̂(0)|2
γ !2 ξ

2γ
2 , if α + β < 1,

2|∂γ
2 ϕ̂(0)|2
γ !2

∑γ
p=0

K 2p+1

2p+1

(2γ
2p

)
ξ

2p
1 ξ

2γ −2p
2 , if α + β = 1,

2K 2γ +1|∂γ
2 ϕ̂(0)|2

γ !2(2γ +1)
ξ

2γ
1 , if α + β > 1,

for all ξ = (ξ1, ξ2).
(iii) If ∂

p
2 ϕ̂(0) = 0, for all 0 � p � γ , then 〈ω j〉 j∈N converges uniformly to 0 on compact subsets of R̂

2 .

Theorem 3.2. Suppose that β = 1 and that ϕ ∈ L1(R2). Write S = {|ξ2|: ϕ̂(0, ξ2) �= 0} and, if S �= ∅, write S = inf S .

(i) If S = 0, then lim j→∞ ω j(ξ) = ∞, for a.e. ξ .
(ii) If S > 0, then lim j→∞ ω j(ξ) = ∞, for all (ξ1, ξ2) with |ξ1| > S/K . If, in addition, ‖x‖1/2ϕ ∈ L1(R2), then 〈ω j〉 j∈N converges

uniformly to 0 on compact subsets of {(ξ1, ξ2): |ξ1| < S/K }.
(iii) If S = ∅ and if ‖x‖1/2ϕ ∈ L1(R2), then 〈ω j〉 j∈N converges uniformly to 0 on compact subsets of R̂

2 .

Theorem 3.3. Suppose ϕ ∈ L1(R2).

(i) If ϕ̂(0, η2) �= 0, for some η2 , and if β > 1, then lim j→∞ ω j(ξ) = ∞, for a.e. ξ .

(ii) If ϕ̂(0, ξ2) = 0, for all ξ2 , if β < 2, and if ‖x‖β/2ϕ ∈ L1(R2), then 〈ω j〉 j∈N converges uniformly to 0 on compact subsets of R̂
2 .

(iii) If ϕ̂(0, ξ2) = 0, for all ξ2 , and if one of the following two conditions holds:
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• ϕ is compactly supported and Hölder continuous with exponent γ > 1/2;
• ϕ ∈ C0(R

2) ∩ C1(R2) and (1 + ‖x‖1/2)∂νϕ ∈ L1(R2), for all multi-indices ν with |ν| � 1;
then 〈∑b∈B |ϕ̂(·a− jb)|2〉 j∈N converges uniformly to 0 on compact subsets of R̂

2 . In particular, the same is true of 〈ω j〉 j∈N .

We make the following remarks regarding Theorems 3.1–3.3: First, in part (ii) of Theorem 3.2, more can be said regarding
the convergence of 〈ω j〉 j∈N near {(ξ1, ξ2): |ξ1| = S/K }. However, since the case β = 1 is of least interest, we investigate this
case no further. Second, if ϕ ∈ L1(R2) and ϕ(x) � 0, for a.e. x, then

ϕ̂(0) =
∫
R2

ϕ(x)dx > 0,

provided ϕ �= 0. This comment is relevant, in particular, to ϕ of Haar-type or of nonnegative spline-type. Finally, we note
that, combined with the preceding remark and the various observations of Section 1.2.2, Theorems 3.1–3.3 provide very
strong evidence against the existence of shearlet scaling functions on C (and any other notion of cone-adapted shearlet
scaling function based on similar ideas) satisfying (D1). We now prove Theorem 3.1.

Proof. Since (1 + ‖x‖γ )ϕ ∈ L1(R2), standard results regarding the connection, via the Fourier transform, between decay
and regularity (e.g. Theorem 8.22 of [26]) together with part (i) of Lemma 2.2 imply that ϕ̂ ∈ C�γ �(R̂2) and that ∂

�γ �
2 ϕ̂ ∈

Hγ −�γ �(R̂2).

Proof of parts (i) and (ii). Suppose that, for some 0 � p � γ , we have ∂
q
2 ϕ̂(0) = 0, for all q = 0, . . . , p − 1, and ∂

p
2 ϕ̂(0) �= 0.

Using Taylor’s theorem, it follows that∣∣ϕ̂(ξ)
∣∣2 = E(ξ)ξ1 + F (ξ)ξ

2p
2 , (3.1)

for all ξ = (ξ1, ξ2), where E : R̂
2 → R and F : R̂

2 → [0,∞) are bounded on compact subsets of R̂
2 and

lim
ξ→0

F (ξ) = |∂ p
2 ϕ̂(0)|2

p!2 . (3.2)

If j ∈ N, −L−
j � l � L+

j , and ξ = (ξ1, ξ2), note that

ξa− jb(l) = (
a− j

1 ξ1,a−α j
1 ξ2 + a− j

1 lξ1
)

(3.3)

and, since β < 1, that∣∣a−α j
1 ξ2 + a− j

1 lξ1
∣∣� a−α j

1 |ξ2| + a− j
1 max

{
L−

j , L+
j

}|ξ1| → 0, (3.4)

as j → ∞. Using (3.1) and (3.3), we obtain

ω j(ξ) = Ẽ j(ξ) + F̃ j(ξ), (3.5)

for all j ∈ N and ξ = (ξ1, ξ2), where

Ẽ j(ξ) = ξ1a− j
1

L+
j∑

l=−L−
j

E
(
a− j

1 ξ1,a−α j
1 ξ2 + a− j

1 lξ1
)

and

F̃ j(ξ) =
L+

j∑
l=−L−

j

F
(
a− j

1 ξ1,a−α j
1 ξ2 + a− j

1 lξ1
)(

a−α j
1 ξ2 + a− j

1 lξ1
)2p

.

Using (3.4), that E is bounded on compact subsets of R̂
2, and that β < 1, it follows that

〈̃E j〉 j∈N converges uniformly to 0 on compact subsets of R̂
2. (3.6)
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For j ∈ N and ξ = (ξ1, ξ2), write G̃ j(ξ) =∑L+
j

l=−L−
j
(a−α j

1 ξ2 + a− j
1 lξ1)

2p . Using the binomial theorem, we obtain

G̃ j(ξ) =
L+

j∑
l=−L−

j

2p∑
q=0

(
2p

q

)(
a−α j

1 ξ2
)2p−q(

a− j
1 lξ1

)q

=
2p∑

q=0

σqj

(
2p

q

)
ξ

q
1 ξ

2p−q
2

= σ0 j

2p∑
q=0

σqj

σ0 j

(
2p

q

)
ξ

q
1 ξ

2p−q
2

= σ2pj

2p∑
q=0

σqj

σ2pj

(
2p

q

)
ξ

q
1 ξ

2p−q
2 , (3.7)

for all j ∈ N and all (ξ1, ξ2), where σqj = a−((1−α)q+2pα) j
1

∑L+
j

l=−L−
j

lq . If λ ∈ [0,∞), integral estimation implies that

lim
L→∞

∑L
l=0 lλ

Lλ+1
= 1

λ + 1
. (3.8)

Using (3.8), it follows that

σqj = a−((1−α)q+2pα) j
1

(
L−

j

)q+1
∑L−

j

l=1(−l)q

(L−
j )q+1

+ a−((1−α)q+2pα) j
1

(
L+

j

)q+1
∑L+

j

l=0 lq

(L+
j )q+1

→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞, if q = 0, 2pα < β,

2K , if q = 0, 2pα = β,

∞, if q = 2p, 2p/(2p + 1) < β,

2K 2p+1/(2p + 1), if q = 2p, 2p/(2p + 1) = β,

(3.9)

as j → ∞. If r,q ∈ {0, . . . ,2p} and r is even, (3.8) implies that

σqj

σr j
= a−(q−r)(1−α−β) j

1

a−(q+1)β j
1 (L−

j )q+1
∑L−

j
l=1(−l)q

(L−
j )q+1 + a−(q+1)β j

1 (L+
j )q+1

∑L+
j

l=0 lq

(L+
j )q+1

a−(r+1)β j
1 (L−

j )r+1
∑L−

j
l=1(−l)r

(L−
j )r+1 + a−(r+1)β j

1 (L+
j )r+1

∑L+
j

l=0 lr

(L+
j )r+1

→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if α + β < 1, r < q,

0, if α + β > 1, r > q,

0, if α + β = 1, q odd,

(r + 1)K q−r/(q + 1), if α + β = 1, q even,

(3.10)

as j → ∞. Finally, note that β/(2 − 2β) ∼ β/(2α) if and only if α + β ∼ 1 and that 2p/(2p + 1) ∼ β if and only if p ∼
β/(2 − 2β), where ∼ is any of the relations <, =, or >.

To prove (i), suppose p < γ . By (3.2) and (3.4)–(3.6), it suffices to show lim j→∞ G̃ j(ξ) = ∞, for a.e. ξ . This follows by
considering each of the cases α + β < 1, α + β > 1, and α + β = 1 separately and using (3.7), (3.9), (3.10), and the last
sentence of the previous paragraph.

To prove (ii), suppose p = γ . By (3.2) and (3.4)–(3.6), it suffices to show 〈G̃ j〉 j∈N converges uniformly to (γ !2/|∂γ
2 ϕ̂(0)|2)P

on compact subsets of R̂
2. This follows by considering each of the cases α +β < 1, α +β > 1, and α +β = 1 separately and

using (3.7), (3.9), (3.10), and the last sentence of the penultimate paragraph. �
Proof of part (iii). Suppose ∂

p
2 ϕ̂(0) = 0, for all 0 � p � γ . Note that, for each λ > 0, there exists 0 < K ′ = K ′(λ) < ∞ such

that

|ξ1 + ξ2|λ � K ′(|ξ1|λ + |ξ2|λ
)
, (3.11)

for all (ξ1, ξ2). Using this observation and Taylor’s theorem, it follows that
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∣∣ϕ̂(ξ)
∣∣2 � E(ξ)|ξ1| + F (ξ)|ξ1|2γ + F (ξ)|ξ2|2γ , (3.12)

for all ξ = (ξ1, ξ2), where E, F : R̂
2 → [0,∞) are bounded on compact subsets of R̂

2 and

lim
ξ→0

F (ξ) = 0. (3.13)

Using (3.12) and (3.3), we obtain

ω j(ξ) � Ẽ j(ξ) + F̃ j(ξ) + G̃ j(ξ), (3.14)

for all j ∈ N and ξ = (ξ1, ξ2), where

Ẽ j(ξ) = |ξ1|a− j
1

L+
j∑

l=−L−
j

E
(
a− j

1 ξ1,a−α j
1 ξ2 + a− j

1 lξ1
)
,

F̃ j(ξ) = |ξ1|2γ a−2γ j
1

L+
j∑

l=−L−
j

F
(
a− j

1 ξ1,a−α j
1 ξ2 + a− j

1 lξ1
)
,

and

G̃ j(ξ) =
L+

j∑
l=−L−

j

F
(
a− j

1 ξ1,a−α j
1 ξ2 + a− j

1 lξ1
)∣∣a−α j

1 ξ2 + a− j
1 lξ1

∣∣2γ
.

By definition of γ , we have β � 2αγ < 2γ . Using also that β < 1, (3.4), and that E and F are bounded on compact subsets
of R̂

2, it follows that

〈̃E j〉 j∈N, 〈 F̃ j〉 j∈N converge uniformly to 0 on compact subsets of R̂
2. (3.15)

By (3.11), there exists 0 < K ′ < ∞ such that

L+
j∑

l=−L−
j

∣∣a−α j
1 ξ2 + a− j

1 lξ1
∣∣2γ �

L+
j∑

l=−L−
j

K ′(∣∣a−α j
1 ξ2

∣∣2γ + ∣∣a− j
1 lξ1

∣∣2γ )
= K ′|ξ2|2γ a−2αγ j

1

(
L−

j + L+
j + 1

)
+ K ′|ξ1|2γ a−2γ j

1

( L−
j∑

l=0

l2γ +
L+

j∑
l=0

l2γ

)
, (3.16)

for all j ∈ N and all (ξ1, ξ2). Since 2αγ � β , we have

a−2αγ j
1

(
L−

j + L+
j + 1

)
� a−β j

1

(
L−

j + L+
j + 1

)→ 2K , (3.17)

as j → ∞. Since γ � β/(2 − 2β), we have 2γ /(2γ + 1) � β . Using also (3.8), we obtain

a−2γ j
1

( L−
j∑

l=0

l2γ +
L+

j∑
l=0

l2γ

)
= (

a−2γ j/(2γ +1)

1 L−
j

)2γ +1
∑L−

j

l=0 l2γ

(L−
j )2γ +1

+ (
a−2γ j/(2γ +1)

1 L+
j

)2γ +1
∑L+

j

l=0 l2γ

(L+
j )2γ +1

�
(
a−β j

1 L−
j

)2γ +1
∑L−

j

l=0 l2γ

(L−
j )2γ +1

+ (
a−β j

1 L+
j

)2γ +1
∑L+

j

l=0 l2γ

(L+
j )2γ +1

→ 2K 2γ +1

2γ + 1
, (3.18)

as j → ∞. Part (iii) follows from (3.4) and (3.13)–(3.18). �
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We require the following three lemmas in the proofs of Theorems 3.2 and 3.3:

Lemma 3.1. Suppose that ϕ ∈ L1(R2) and that ϕ̂(0, η2) �= 0, for some η2 .

(i) If β = 1, then lim j→∞ ω j(ξ) = ∞, for all ξ = (ξ1, ξ2) such that |ξ1| > |η2|/K .
(ii) If β > 1, then lim j→∞ ω j(ξ) = ∞, for a.e. ξ .

Proof. Since ϕ ∈ L1(R2), the Riemann–Lebesgue lemma implies that ϕ̂ ∈ C(R̂2). Since also ϕ̂(0, η2) �= 0, there exist ε,γ > 0
such that

ξ ∈ E = [−ε, ε] × [η2 − ε,η2 + ε]
implies |ϕ̂(ξ)|2 � γ . For ξ ∈ R̂

2 and j ∈ N, write C j(ξ) = {b ∈ B j: ξa− jb ∈ E}. Then, ω j(ξ) � γ |C j(ξ)|, for all j ∈ N and all ξ ,
where |C j(ξ)| denotes the cardinality of C j(ξ). If β = 1 and |ξ1| � |η2|/K or if β > 1 and ξ1 �= 0, it follows from inspection
of (3.3) that |C j(ξ1, ξ2)| → ∞, as j → ∞. The lemma follows. �
Lemma 3.2. Let S > 0. Suppose that β = 1, that (1+‖x‖1/2)ϕ ∈ L1(R2), and that ϕ̂(0, ξ2) = 0, for all ξ2 with |ξ2| � S. Then, 〈ω j〉 j∈N

converges uniformly to 0 on compact subsets of {(ξ1, ξ2): |ξ1| < S/K }.

Proof. The Riemann–Lebesgue lemma and part (i) of Lemma 2.2 imply that ϕ̂ ∈ C(R̂2) ∩ H1/2
1 (R̂2). Using also the assump-

tion regarding the vanishing of ϕ̂ , it follows that∣∣ϕ̂(ξ)
∣∣2 � M(ξ1)|ξ1|, (3.19)

for all ξ = (ξ1, ξ2) with |ξ2| � S , where M is bounded and satisfies

M(ξ1) → 0, as ξ1 → 0. (3.20)

Let E be a compact subset of {(ξ1, ξ2): |ξ1| < S/K }. Using that β = 1 and the compactness of E , it follows that |a−α j
1 ξ2 +

a− j
1 lξ1| � S , for all large enough j ∈ N, all l = −L−

j , . . . , L+
j , and all ξ = (ξ1, ξ2) ∈ E . For these j and ξ , using (3.3) and (3.19),

we obtain

ω j(ξ) =
L+

j∑
l=−L−

j

∣∣ϕ̂(a− j
1 ξ1,a−α j

1 ξ2 + a− j
1 lξ1

)∣∣2

�
L+

j∑
l=−L−

j

M
(
a− j

1 ξ1
)∣∣a− j

1 ξ1
∣∣

= |ξ1|M
(
a− j

1 ξ1
)
a− j

1

(
L−

j + L+
j + 1

)
.

The lemma follows from the above inequality, β = 1, and (3.20). �
Lemma 3.3. If λ > 1, then

∞∑
l=−∞

1

(1 + |x + ly|)λ � 2

(λ − 1)|y|(1 − |y|)λ−1
,

for all x, y ∈ R with 0 < |y| < 1.

Lemma 3.3 follows easily from integral estimation; we therefore omit its proof. Theorem 3.2 follows immediately from
part (i) of Lemmas 3.1 and 3.2. We now prove Theorem 3.3.

Proof. Part (i) follows immediately from part (ii) of Lemma 3.1.
To prove part (ii), suppose that ϕ̂(0, ξ2) = 0, for all ξ2, that β < 2, and that ‖x‖β/2ϕ ∈ L1(R2). We proceed similarly to

as in the proof of Lemma 3.2. The Riemann–Lebesgue lemma and part (i) of Lemma 2.2 imply that ϕ̂ ∈ C(R̂2) ∩ Hβ/2
1 (R̂2).

Using also the assumption regarding the vanishing of ϕ̂ , it follows that∣∣ϕ̂(ξ)
∣∣2 � M(ξ1)|ξ1|β, (3.21)
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for all ξ = (ξ1, ξ2), where M is bounded and satisfies

M(ξ1) → 0, as ξ1 → 0. (3.22)

Using (3.3) and (3.21), we obtain

ω j(ξ) =
L+

j∑
l=−L−

j

∣∣ϕ̂(a− j
1 ξ1,a−α j

1 ξ2 + a− j
1 lξ1

)∣∣2

�
L+

j∑
l=−L−

j

M
(
a− j

1 ξ1
)∣∣a− j

1 ξ1
∣∣β

= |ξ1|β M
(
a− j

1 ξ1
)
a−β j

1

(
L−

j + L+
j + 1

)
,

for all j ∈ N and all ξ = (ξ1, ξ2). Part (ii) follows from the above inequality and (3.22).
To prove part (iii), suppose that ϕ̂(0, ξ2) = 0, for all ξ2, and that one of the following two conditions holds:

• ϕ is compactly supported and Hölder continuous with exponent γ > 1/2;
• ϕ ∈ C0(R

2) ∩ C1(R2) and (1 + ‖x‖1/2)∂νϕ ∈ L1(R2), for all multi-indices ν with |ν| � 1.

We proceed similarly to as in the previous paragraph. Standard results regarding the connection, via the Fourier transform,
between regularity and decay (e.g. Theorem 8.22 of [26]) and Lemma 2.2 imply that ϕ̂, |ξ2|γ ϕ̂ ∈ C(R̂2) ∩ H1/2

1 (R̂2), for
some γ > 1/2. Using also the assumption regarding the vanishing of ϕ̂ and (3.11), it follows that∣∣ϕ̂(ξ)

∣∣2 � M(ξ1)|ξ1|
(1 + |ξ2|)2γ

,

for all ξ = (ξ1, ξ2), where M is bounded and satisfies M(ξ1) → 0, as ξ1 → 0. Using this and Lemma 3.3, we have∑
b∈B

∣∣ϕ̂(ξa− jb
)∣∣2 =

∞∑
l=−∞

∣∣ϕ̂(a− j
1 ξ1,a−α j

1 ξ2 + a− j
1 lξ1

)∣∣2
�

∞∑
l=−∞

M(a− j
1 ξ1)|a− j

1 ξ1|
(1 + |a−α j

1 ξ2 + a− j
1 lξ1|)2γ

= M
(
a− j

1 ξ1
)∣∣a− j

1 ξ1
∣∣ ∞∑

l=−∞

1

(1 + |a−α j
1 ξ2 + a− j

1 lξ1|)2γ

� M
(
a− j

1 ξ1
)∣∣a− j

1 ξ1
∣∣ 2

(2γ − 1)|a− j
1 ξ1|(1 − |a− j

1 ξ1|)2γ −1

= 2

(2γ − 1)(1 − a− j
1 |ξ1|)2γ −1

M
(
a− j

1 ξ1
)
,

for all j ∈ N and all ξ = (ξ1, ξ2) with 0 < |ξ1|a− j
1 < 1. Part (iii) follows. �

4. Traditional shearlet scaling functions

In this section, we prove two results (Theorems 4.1 and 4.2) which provide very strong evidence against the existence
of traditional shearlet scaling functions satisfying (D1). Throughout this section, we assume ϕ �= 0 and we let V denote the
closed linear span of the collection Φ = {Db Tkϕ: b ∈ B, k ∈ Z

2}. The following is our first result.

Theorem 4.1. The following three properties cannot all be satisfied:

(i) Da V ⊂ V .
(ii) Φ forms a frame for V .

(iii) One of the following is satisfied:
(a) ϕ is compactly supported and Hölder continuous with exponent γ > 1/2.
(b) ϕ ∈ C0(R

2) ∩ C1(R2) and (1 + ‖x‖1/2)∂νϕ ∈ L1(R2), for all multi-indices ν with |ν| � 1.
(c) ϕ ∈ L1(R2) and ϕ(x) � 0, for a.e. x.
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It turns out that we can omit the regularity assumptions from property (iii) of the above theorem, provided we, first,
strengthen the refinement property (property (i)) to a “B-finite” refinement property and, second, strengthen the represen-
tation property (property (ii)) to a “semi-biorthogonal” frame property. Both of these (which are defined/indicated below)
are very desirable properties for a traditional shearlet scaling function to possess. We have the following definition:

Definition 4.1. We say Φ forms a semi-biorthogonal frame for V if it forms a frame for V and if there exists a finite subset
G of B and a dual frame to Φ of the form Θ = {Db Tkθ : b ∈ B, k ∈ Z

2} such that ϕ ⊥ Db Tkθ , whenever b ∈ B \ G and k ∈ Z
2.

We make the following remarks regarding the above definition: First, if Φ forms a frame for V , then its canonical dual
frame {(Db Tkϕ)∼: b ∈ B, k ∈ Z

2} automatically satisfies (Db Tkϕ)∼ = Db Tk(ϕ)∼, for all b ∈ B and k ∈ Z
2. Second, if Φ forms

a Riesz basis for V, then it forms a semi-biorthogonal frame for V . We can now state our second result.

Theorem 4.2. Assume aα
1 ,a1−α

1 ∈ Z. The following three properties cannot all be satisfied:

(i) There exists a finite subset F of B such that Daϕ belongs to the closed linear span of {Db Tkϕ: b ∈ F , k ∈ Z
2}.

(ii) Φ forms a semi-biorthogonal frame for V .
(iii) (1 + ‖x‖(1−α)/2)ϕ ∈ L1(R2).

We now prove Theorem 4.1.

Proof. To obtain a contradiction, suppose that properties (i)–(iii) are satisfied. Let C � D denote the frame constants of Φ ,
and, for j ∈ N, write V j = D− j

a V . Since the operator Da is unitary, the collection{
D− j

a Db Tkϕ: b ∈ B, k ∈ Z
2}

forms a frame for V j with constants C � D , for each j ∈ N.

We claim that ϕ̂(0, ξ2) = 0, for all ξ2. Otherwise, choose 0 �= f ∈ L∞
c (R̂2)∨ . Using the Bessel property, (1.3), part (vi) of

Lemma 2.1, Fatou’s lemma, and part (i) of Theorem 3.3, it follows that

D‖ f ‖2 � lim inf
j→∞

∑
b∈B,k∈Z2

∣∣〈 f , D− j
a Db Tkϕ

〉∣∣2
= lim inf

j→∞

∫
R̂2

∣∣ f̂ (ξ)
∣∣2∑

b∈B

∣∣ϕ̂(ξa− jb
)∣∣2 dξ

�
∫
R̂2

∣∣ f̂ (ξ)
∣∣2 lim inf

j→∞
∑
b∈B

∣∣ϕ̂(ξa− jb
)∣∣2 dξ = ∞,

a contradiction. By the second comment following Theorem 3.3, it follows that property (iii)(c) cannot be satisfied.
For j ∈ N, let P j : L2(R2) → V j denote the orthogonal projection of L2(R2) onto V j . Choose f ∈ L∞

c (R̂2)∨ such that
P0 f �= 0. Using properties (i) and (ii), that either (iii)(a) or (iii)(b) is satisfied, (1.3), part (vi) of Lemma 2.1, the vanishing
property of ϕ̂ , and part (iii) of Theorem 3.3, for large enough j ∈ N, we have

0 < ‖P0 f ‖2 � ‖P j f ‖2

� C−1
∑

b∈B,k∈Z2

∣∣〈P j f , D− j
a Db Tkϕ

〉∣∣2
= C−1

∑
b∈B,k∈Z2

∣∣〈 f , D− j
a Db Tkϕ

〉∣∣2
= C−1

∫
R̂2

∣∣ f̂ (ξ)
∣∣2∑

b∈B

∣∣ϕ̂(ξa− jb
)∣∣2 dξ → 0,

as j → ∞. This contradiction completes the proof. �
For the remainder of the section, we assume aα

1 ,a1−α
1 ∈ Z. We note that

b(l)b
(
l′
)= b

(
l + l′

)
and ab(l)a−1 = b

(
a1−αl

)
, (4.1)
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for all l, l′ ∈ Z. We use the following notation: For j, L ∈ Z
+ and E ⊂ B , write B(L) = {b(l): |l| � L} and

E j =
{ j−1∏

p=0

apbpa−p: bp ∈ E, for each p

}
.

It follows from (4.1) that E j ⊂ B , for all j. We require the following lemma in the proof of Theorem 4.2:

Lemma 4.1. We have the following:

(i) If j, L ∈ Z
+ , then B(L) j ⊂ B(La(1−α) j

1 ).

(ii) If E is a finite subset of B and if there exists {mb: b ∈ E} ⊂ L∞(T̂2) such that

ϕ̂(ξa) =
∑
b∈E

mb(ξ)ϕ̂(ξb), (4.2)

for a.e. ξ , then, for each j ∈ Z
+ , D j

aϕ belongs to the closed linear span of {Db Tkϕ: b ∈ E j,k ∈ Z
2}.

Proof. If j, L ∈ Z
+ and l0, . . . , l j−1 ∈ Z with |lp| � L (for all p), using (4.1), we have

j−1∏
p=0

apb(lp)a−p = b

( j−1∑
p=0

lpa(1−α)p
1

)

and, since a1−α
1 ∈ {2,3,4, . . .},∣∣∣∣∣

j−1∑
p=0

lpa(1−α)p
1

∣∣∣∣∣� L
j−1∑
p=0

a(1−α)p
1 = L

a(1−α) j
1 − 1

a1−α
1 − 1

� La(1−α) j
1 .

Part (i) follows.
To prove (ii), suppose that E is a finite subset of B and that there exists {mb: b ∈ E} ⊂ L∞(T̂2) such that (4.2) holds, for

a.e. ξ . We claim that, for each j ∈ Z
+ , there exists {m j

b: b ∈ E j} ⊂ L∞(T̂2) such that

ϕ̂
(
ξa j)=

∑
b∈E j

m j
b(ξ)ϕ̂(ξb), (4.3)

for a.e. ξ . We proceed by induction on j. The case j = 1 follows by assumption. Fix j ∈ Z
+ and suppose there exists

{m j
b: b ∈ E j} ⊂ L∞(T̂2) such that (4.3) is satisfied, for a.e. ξ . Using (4.3) and (4.2), we obtain

ϕ̂
(
ξa j+1)= ϕ̂

(
ξaa j)

=
∑
b∈E j

m j
b(ξa)ϕ̂(ξab)

=
∑
b∈E j

m j
b(ξa)ϕ̂

(
ξaba−1a

)
=
∑
b∈E j

m j
b(ξa)

∑
b′∈E

mb′
(
ξaba−1)ϕ̂(ξaba−1b′), (4.4)

for a.e. ξ . If b ∈ E j and b′ ∈ E , it follows that aba−1b′ ∈ E j+1 and, since a,aba−1 ∈ GL2(Z), that m j
b(·a),mb′(·aba−1) ∈ L∞(T̂2).

These observations imply that the final quantity in (4.4) may be written as
∑

b∈E j+1 m j+1
b (ξ)ϕ̂(ξb), for a suitable collection

{m j+1
b : b ∈ E j+1} ⊂ L∞(T̂2). This completes the induction and proves the claim.
For each j ∈ Z

+ , using (4.3) we obtain(
D j

aϕ
)̂

(ξ) = |det a| j/2ϕ̂
(
ξa j)

= |det a| j/2
∑
b∈E j

m j
b(ξ)ϕ̂(ξb)

=
∑
b∈E j

|det a| j/2m j
b(ξ)(Dbϕ)̂ (ξ),

for a.e. ξ . Part (ii) follows from (1.3), the above equality, and part (iii) of Lemma 2.1. �
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We now prove Theorem 4.2.

Proof. Suppose, in order to obtain a contradiction, that properties (i)–(iii) are satisfied. Let G , θ , and Θ be as in Defi-
nition 4.1. Choose L ∈ Z

+ such that F , G ⊂ B(L) and let 0 < D < ∞ be the Bessel constant of Θ . For p ∈ Z
+ , let V (p)

and W (p) denote the closed linear spans of {Db(l)Tkϕ: |l| � p, k ∈ Z
2} and {Db(l)Tkθ : |l| � p, k ∈ Z

2}, respectively. Using
property (ii), that G ⊂ B(L), (4.1), and that B ⊂ S̃L2(Z), it follows that

V (p) ⊥ W (p + L + 1), (4.5)

for all p ∈ Z
+ . Using property (ii) and that a ∈ GL2(Z), it follows that {Tk Daϕ: k ∈ Z

2} forms a Bessel system. Using these
two observations, properties (i) and (ii), (1.3), and parts (i), (ii), and (v) of Lemma 2.1, we obtain {mb: b ∈ B(2L)} ⊂ L∞(T̂2)

such that

ϕ̂(ξa) =
∑

b∈B(2L)

mb(ξ)ϕ̂(ξb),

for a.e. ξ . By Lemma 4.1, D j
aϕ ∈ V (2La(1−α) j

1 ), for each j ∈ Z
+ . Using (4.5), property (ii), (1.3), and parts (i), (iv), and (v) of

Lemma 2.1, for each j ∈ Z
+ , we obtain {m j

b: b ∈ B(L j)} ⊂ L2(T̂2) such that

|det a| j/2ϕ̂
(
ξa j)= (

D j
aϕ
)̂

(ξ) =
∑

b∈B(L j)

m j
b(ξ)ϕ̂(ξb), (4.6)

for a.e. ξ , and∑
b∈B(L j)

∥∥m j
b

∥∥2 � D
∥∥D j

aϕ
∥∥2 = D‖ϕ‖2, (4.7)

where L j = 2La(1−α) j
1 + L.

For j ∈ Z
+ define ω j ∈ L1(R̂2) by ω j(ξ) = ∑

b∈B(L j)
|ϕ̂(ξa− jb)|2. Using the argument of the second paragraph of the

proof of Theorem 4.1, it follows that ϕ̂(0, ξ2) = 0, for all ξ2. Using also property (iii) and part (ii) of Theorem 3.3, it follows
that

〈ω j〉 j∈Z+ converges uniformly to 0 on compact subsets of R̂
2. (4.8)

Let E be a bounded and measurable subset of R̂
2 satisfying E ∩ (E + k) = ∅, for all k ∈ Ẑ

2 \ {0}. Using (4.6) and two
applications of the Schwarz inequality, we obtain∫

E

∣∣ϕ̂(ξ)
∣∣dξ = |det a|− j/2

∫
E

∣∣∣∣ ∑
b∈B(L j)

m j
b

(
ξa− j)ϕ̂(ξa− jb

)∣∣∣∣dξ

� |det a|− j/2
∫
E

( ∑
b∈B(L j)

∣∣m j
b

(
ξa− j)∣∣2)1/2( ∑

b∈B(L j)

∣∣ϕ̂(ξa− jb
)∣∣2)1/2

dξ

� |det a|− j/2
(∫

E

∑
b∈B(L j)

∣∣m j
b

(
ξa− j)∣∣2 dξ

)1/2(∫
E

∑
b∈B(L j)

∣∣ϕ̂(ξa− jb
)∣∣2 dξ

)1/2

=
(

|det a|− j
∫
E

∑
b∈B(L j)

∣∣m j
b

(
ξa− j)∣∣2 dξ

)1/2(∫
E

ω j(ξ)dξ

)1/2

, (4.9)

for all j ∈ Z
+ . Using a change of variable, choice of E , that a ∈ GL2(Z), and (4.7), it follows that

|det a|− j
∫
E

∑
b∈B(L j)

∣∣m j
b

(
ξa− j)∣∣2 dξ =

∫
Ea− j

∑
b∈B(L j)

∣∣m j
b(ξ)

∣∣2 dξ

�
∫

[0,1]2

∑
b∈B(L j)

∣∣m j
b(ξ)

∣∣2 dξ

=
∑

b∈B(L j)

∥∥m j
b

∥∥2

� D‖ϕ‖2,

for each j ∈ Z
+ . Letting j → ∞ in (4.9) and using (4.8), choice of E , and the above inequality, we obtain

∫
E |ϕ̂(ξ)|dξ = 0.

Varying E , it follows that ϕ = 0. This contradiction completes the proof. �
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5. Remark

Let z,d1,d2 > 0 and write d = diag(d1,d2) and

B(z) =
{(

1 lz

0 1

)
: l ∈ Z

}
.

Let I ∈ Z
+ and {ϕi: i = 1, . . . , I} ⊂ L2(R2). The notions of traditional shearlet, traditional shearlet MRA and scaling function,

shearlet on C , shearlet scaling function on C , etc. can be generalized, for instance, by replacing ϕ with {ϕi: i = 1, . . . , I},
B with B(z), and/or the translation lattice Z

2 with dZ
2. Versions of Theorems 3.1–4.2 hold for these generalized notions as

well (in some cases, additional assumptions must be made on z and d).
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