A PROBLEM ON TRIPLES

F. STERBOUL

Universit(Pierre et Marie Curie. 75010 Paris, France

Received 13 October 1975

If a system H of triples (3-uniform hypergraph) on n vertices has the following property: for every 3-coloring of the vertex-set there exists a 3-colored triple, what is the minimum size $(S(n))$ of H ? The first values of $S(n)$ are computed, and the asymptotic behaviour of this function is studied

O. Introduction

A h-graph (or uniform hypergraph of rank h, see [1]) is a pair $H = (X, \mathcal{E})$, where $\mathscr E$ is a set of subsets cf X, every subset having h elements: $\mathscr E \subset \mathscr P_h(X)$.

The elements of X are the vertices, the elements of $\mathscr E$ are the edges.

In [2] the following problem is introduced: what is the minimum number of edges of a h-graph H with n vertices, such that, for every coloring of X with c colours, there exists at least one edge of H in which no color appears more than once? *S(n, h, c)* denotes this minimum number of edges.

The general case is studied in [2]. In [3], the special cases $c = h$ and $c = h = n - 2$ are studied. In the present paper, we consider the simplest (non-trivial) case: $c = h = 3$.

Definition 0.1. We call c-coloring of X any mapping g from *X onto* the set $\{1, 2, \ldots, c\}$. For every $x \in X$, $g(x)$ is the *colour* of x.

Definition 0.2. Let E be a subset of X. and g a c-coloring of X, E is *strongly colored* in g iff

$$
x \in E, y \in E, g(x) = g(y) \text{ implies } x = y.
$$

Definition 0.3. Let $\mathcal{H}(n, h, c)$ be the set of all the h-graphs H with n vertices, such that, for every c-coloring of the vertex-set, there exists at least one strongly cclored edge ir $H. S(n, h, c)$ is the minimum number of edges of an element of $\mathcal{H}(n, h, c)$.

For the sake of simplicity, we set

$$
\mathcal{H}(n) = \mathcal{H}(n,3,3) \quad \text{and} \quad S(n) = S(n,3,3).
$$

Definition 0.4. Let g be a c coloring of X, and x a fixed element of X. We say that g belongs to $C(x)$ iff $g(y) = g(x)$ implies $y = x$ (x is the only element of X with colour $g(x)$).

Remark 0.5. Let $H = (X, \mathcal{E})$ be a h-graph, and x a vertex of H. Let Hx be the $(h - 1)$ -graph defined as follows:

$$
\mathscr{E}x = \{E \mid E \in \mathscr{E}, x \in E\} \quad \mathscr{F}x = \{E - \{x\} \mid E \in \mathscr{E}x\} \quad Hx = (X - \{x\}, \mathscr{F}x).
$$

By considering the c-colorings belonging to $C(x)$, it was proved in [3] that, if $H \in \mathcal{H}(n, h, h)$, then $Hx \in \mathcal{H}(n-1, h-1, h-1)$, and hence that $|\mathcal{E}x| \ge$ $S(n-1,h-1,h-1)$.

For $c = h = 3$, this implies that if $H \in \mathcal{H}(n)$, then for every vertex x the *graph* Hx is connected; hence, every vertex x is contained in at least $n - 2$ edges of H, and $S(n) \ge n(n - 2)/3$.

Moreover, for every 3-graph H , (a) and (b) are equivalent:

(a) for every 3-coloring of X belonging to $C(x)$ there exists a strongly colored edge of H.

(b) *Hx* is a connected graph.

Remark 0.6. Let H be the 3-graph on n vertices whose edges are all the triples containing a given vertex. Then $H \in \mathcal{H}(n)$ and hence $S(n) \leq (n-1)(n-2)/2$. Hence

$$
1/3 \leq \liminf S(n)/n^2 \leq \limsup S(n)/n^2 \leq 1/2.
$$

Conjecture. Lim $S(n)/n^2$ exists and is equal to 1/3.

In this direction, we prove in this paper the following results:

Theorem 0.1. *For* $3 \le n \le 11$, $S(n) = \{n(n-2)/3\}$. $(\{\lambda\})$ is the smallest integer $\geq \lambda$.)

Theorem 0.2. Lim inf $S(n)/n^2 \le 97/242 = 0.4008...$

Theorem 0.3. Lirisup $S(n)/n^2 < 0.5$.

1. Proof of Theorem 0.1

By Remark 0.5, Theorem 0.I is a consequence of the following propositions:

Proposition 1.1. $S(3) \le 1$. *(Immediate.)*

Proposition 1.2. $S(4) \le 3$. *(More generally,* $S(n, h, n - 1) = \{(n - 1)/(n - h)\}$, see $[2]$.)

Proposition 1.3. $S(5) \le 5$.

Proof. Let $X = Z/5Z$, and $\mathscr{C} = \{(i, i + 1, i + 2) | i \in Z/5Z\}$. Then, $H = (X, \mathscr{C})$ be. longs to $\mathcal{H}(5)$. More generally, it is proved in [3] that $S(n, n-2, n-2)$ = $n(n-1)/2 - f(n)$, where $f(n)$ is the maximum number of edges of a graph of order n and girth 5

Proposition 1.4. $S(6) \leq 8$.

Proof. Let $X = Z/6Z$, and

 $\mathscr{E} = \{ (i, i+1, i+4), (i, i+4, i+2), (i, i+2, i+3), (i, i+3, i+5) \mid i \in X \} ^{+}$

and

 $H = (X, \mathcal{E}).$

H has exactly 8 edges, and, for every vertex *x*, *Hx* is a connected graph. Hence, it follows from Remark 0.5 that, in order to prove that $H \in \mathcal{H}(6)$, it is enough to check that, for every 3-coloring g such that every color appears twice, there exists a strongly colored edge.

Let g be such a coloring. If, for every i, $g(i) = g(i + 3)$, then the edge (0, 2, 4) is strongly colored. Otherwise, by the cyclic symmetry of H , we can assume that $g(0) = 1$ and $g(3) = 2$. Then, if either $g(2)$ or $g(5)$ equals 3, then $(0, 2, 3)$ or $(0, 3, 5)$ is strongly colored, and if not, $g(1) = g(4) = 3$ and $(1, 2, 5)$ is strongly colored.

Proposition 1.5. $S(7) \le 12$.

Proof. Let $X = \{1, 2, ..., 7\}$, and (omitting the commas in the triples): $\mathscr{E}' =$ $\{(126), (147), (153), (234), (257), (367), (456)\}$ (*E'* is a projective plane on 7 points).

$$
\mathscr{E}'' = \{ (124), (157), (237), (356), (146) \}, \text{ and } H = (X, \mathscr{E}' \cup \mathscr{E}'').
$$

For every vertex x, Hx is connected. Hence, for proving $H \in \mathcal{H}(7)$, we can only consider the 3-colorings where two colours appear exactly twice, and the last colour appears thrice (for example colour 1). Let g be such a coloring, then at least one edge of Z' is strongly colored. Indeed, let a, b, c, d be four distinct points such that $g(a) = g(b) = 2$ and $g(c) = g(d) = 3$. Either these four points are independent (no three of them are collinear) or three of them are collinear. In either case, the existence of a strongly colored line is easily checked.

Proposition 1.6. $S(8) \le 16$.

Proof. Let $X = Z/8Z$. Let $H = (X, \mathcal{E})$ be the 3-graph defined as follows: $\mathcal{F}_0 =$ $\{(6, 1), (1, 5), (5, 7), (7, 4), (4, 3), (3, 2)\}$

$$
\mathscr{E} = \{ (i, a + i, b + i) \mid i \in \mathbb{Z}/8\mathbb{Z}, (a, b) \in \mathscr{F}_0 \}.
$$

H has exactly 16 edges, and, for every vertex x , Hx is connected. Hence, it remains to consider the 3-colorings for which every colour appears at least twice:. For such a coloring g, one of the colours (for example 1) appears exactly twice. By the cyclic symmetry of H, we can assume that $g(0) = 1$. If $g(6)$, or $g(1)$, or $g(3)$, or $g(2)$ equals 1, there exist two consecutive elements a and b in the sequence $(6, 1, 5, 7, 4, 3, 2)$ such that $g(a) = 2$ and $g(b) = 3$, and hence $(0, a, b)$ is a strongly colored edge of H. Otherwise, we can assume $g(6) = 2$, and either $g(0) = g(5) = 1$, $g(6) = g(1) = 2$, $g(7) = g(4) = g(3) = g(2) = 3$ or $g(0) = g(7) = 1$, $g(6) = g(1) = 1$ $g(5) = 2$, $g(4) = g(3) = g(2) = 3$ or $g(0) = g(4) = 1$, $g(6) = g(1) = g(5) = g(7) = 2$, $g(3) = g(2) = 3$, then either (1, 4, 5) or (1, 2, 7) or (1, 3, 4) is a strongly colored edge of H .

Proposition 1.7. $S(9) \le 21$.

Proof. Let $X = Z/9Z$.

~o = {(1,6), (6, 3), (3, 4), (4, 2), (2, 7), (7, 5), (5, 8)}

and

 $\mathscr{E} = \{(i, a+i, b+i) | i \in X, (a, b) \in \mathscr{F}_0\}, \quad H = (X, \mathscr{E}).$

Then, H has exactly 21 edges, and $H \in \mathcal{H}(9)$: as above, we consider only the 3-colorings for which every colour appears z_t least twice:

(1) 3-colorings in which every colour appears 3 times: we can assume $g(0) = 1$. Then either there exists a strongly colored edge in \mathscr{E}_0 (see Remark 0.5), or the vector $V = (g(1), g(6), g(3), g(4), g(2), g(7), g(5), g(8))$ takes essentially one of the following values:

in each case, either $(2, 3, 8)$ or $(3, 5, 7)$ or $(3, 6, 7)$ is a strongly colored edge of H.

(2) 3-colorings in which one of the colours appears exactly twice (for example $color 1)$.

By the cyclic symmetry of H, we can assume $g(0) = 1$. Then either there exists a strongly coloured edge in \mathscr{E}_0 , or the vector V takes essentially one of the following values:

$$
(2, 2, 1, 3, 3, 3, 3, 3),
$$
 $(2, 2, 2, 1, 3, 3, 3, 3)$
 $(2, 2, 2, 2, 1, 3, 3, 3),$ $(2, 2, 2, 2, 2, 1, 3, 3)$

in each case either $(3, 6, 7)$ or $(i, 4, 7)$ or $(1, 2, 7)$ or $(3, 5, 7)$ is a strongly colored edge of H.

Proposition 1.8. $S(10) \le 27$.

Proof. Let $H = (X, \mathcal{E})$ with $X = \{0, 1, 2, \ldots, 9\}$, and (omitting the commas in the triples)

$$
\mathcal{E} = \{(012), (023), (034), (045), (056), (067), (078), (089), (129), (137), (146), (157), (158), (169), (189), (238), (248), (256), (268), (279), (346), (349), (359), (367), (457), (489), (579)\}.
$$

Then H has 27 edges, and we have to prove that $H \in \mathcal{H}(10)$. For every vertex *x*, *Hx* is connected. Hence, we consider:

(1) The 3-colorings for which one of the colours (e.g. colour 1) appears exactly twice: let $g(a) = g(b) = 1$.

We remark that if there exists such a coloring g for which no edge of H is strongly colored, then the graph

$$
Ga, b = (X - \{a, b\}, \mathscr{F}a, b)
$$

where

$$
\mathscr{F}_a, b = \{F \mid F \in \mathscr{F}_a, b \notin F\} \cup \{F \mid F \in \mathscr{F}_b, a \notin F\}
$$

is not connected.

Hence, we have to check that the 45 graphs *Ga, b* are connected. We omit here this tedious operation.

(2) The 3-coloring" where two colours appear exactly thrice, and the other one four times. Let g be such a coloring, and let us assume, in order to get a contradiction that no edge of H is strongly colored for g.

Case 1. $g(2) \neq g(8)$, e.g. $g(2) = 1$ and $g(8) = 2$. Then $g(3)$, $g(4)$, $g(6)$ have colour 1 or 2.

Subcase I.I: $g(9) = 1$. Then $g(0)$ and $g(1)$ equal 1 or 2, and we get a contradiction, since only two vertices are left for colour 3.

Subcase I.II. $g(9) = 2$. Then $g(1)$ and $g(7)$ equal 1 or 2, and the contradiction follows as above.

Subcase I.III. $g(9) = 3$. Then, we can deduce successively: $g(1)$ and $g(7)$ equal 1 or 3, g(0), g(1), g(4) equal 2 or 3, g(1) = 3, g(4) = 2, g(6) = 2 or 3, g(6) = 2. g(3) = 2. $g(0) = 3$, and the contradiction: (023) is strongly colored.

Case II. $g(2) = g(8)$

Subcase II.I. $g(2) = g(8) = g(0)$. Let V be the vector $(g(0), g(1), ..., g(9))$. Then, the only essential values of V for which no edge of \mathscr{E}_0 is strongly colored are $(1, 2, 1, 2, 1, 3, 3, 3, 1, 2),$ $(1, 2, 1, 2, 2, 1, 3, 3, 1, 3),$ $(1, 3, 1, 2, 2, 1, 3, 3, 1, 2)$ and $(1, 3, 1, 2, 2, 2, 1, 3, 1, 3)$. But then, the edges $(3, 4, 6)$ or $(4, 5, 7)$ or $(4, 8, 9)$ are strongly colored.

Subcase II.II. $g(0) = 1$, $g(2) = g(8) = 2$. Then, the only essential values of V for which no edge of \mathscr{E}_0 is strongly colored are $(1,2,2,1,3,3,3,1,2,2)$, $(1, 1, 2, 1, 3, 3, 3, 1, 2, 2), (1, 2, 2, 1, 3, 3, 3, 1, 2, 1),$ for which $(3, 4, 9)$ or $(5, 7, 9)$ or (4, 8, 9) are strongly colored.

Proposition 1.9. $S(11) \le 33$.

Proof. Let $X = Z/11Z$ and $H = (X, \mathcal{E})$ the 3-graph such that

 $\mathcal{F}_9 = \{(2, 10), (10, 5), (5, 6), (6, 1), (1, 3), (3, 7), (7, 4), (4, 8), (8, 9)\}\$

and

$$
\mathscr{E} = \{(i, a + i, b + i) | i \in X, (a, b) \in \mathscr{F}_0\}.
$$

H has exactly 33 edges and, for every vertex x , Hx is connected. Hence, in order to prove $H \in \mathcal{H}(11)$, we consider:

(I) The 3-colorings where at least one colour appears exactly twice (e.g. colour 1). Let g be such a coloring; we can assume, by the cyclic symmetry of H , that $g(0) = 1$. Let V be the vector $V = (g(2), g(10), g(5), g(6), g(1), g(3), g(7))$, $g(4)$, $g(8)$, $g(9)$). Then, it is not difficult to make a census of the 6 essential values of V for which no edge of \mathcal{E}_0 is strengly colored. But then, for these 6 values, (4, 5, 10) or $(5,6,8)$ or $(1,6,7)$ or $(3,7,10)$ or $(4,5,7)$ or $(1,4,8)$ are strongly colored.

(2) The 3-colorings where all the colours appear at least thrice. Leg g be such a coloring. We can assume that colour 1 appears exactly thrice, and, by the cyclic symmetry of H, that $g(0) = 1$ and at least one of the colours $g(1)$, $g(2)$, $g(3)$ is equal to I. Then, it is not difficult to make a census of ihe 22 essential values of the vector V for which no edge of \mathscr{E}_0 is strongly colored. But then, either (1, 6, 7) or (5, 6, 8) or $(2, 7, 8)$ or $(3, 4, 6)$ or $(4, 5, 7)$ is strongly colored in these colorings.

2. Asymptotic results

Theorem 2.1. *For every n* ≥ 3 , $S(2n) \leq 4S(n) + 3(n - 1)$.

Proof. Let $H = (X, \mathcal{C})$ be a 3-graph such that $H \in \mathcal{H}(n)$ and $|\mathcal{C}| = S(n)$. We shall constract a 3-graph $H' = (X', \mathcal{E}')$ such that $H' \in \mathcal{H}(2n)$ and $|\mathcal{E}'| =$ $4S(n) + 3(n - 1)$, hence proving the theorem.

Let $X = \{x_1, ..., x_n\}$, $Y = \{y_1, ..., y_n\}$ with $X \cap Y = \emptyset$ and $X' = X \cup Y$. Let $\mathcal{E}'' = \{x_i, y_j, y_k\} | (x_i, x_j, x_k) \in \mathcal{E} \}$ then $|\mathcal{E}''| = 3S(n)$.

Let $\mathscr{G}_i = \{(x_i, x_{i+1}, y_{i+1}) | 1 \le i \le n-1\}$ and $\mathscr{G}_2 = \{(x_i, y_i, y_{i+1}) | 1 \le i \le n-1\} \cup$ $\{(x_{i-1}, y_i, y_{i+1}) \mid 1 \le i \le n-1\}.$

Finally, let $\mathscr{E}' = \mathscr{E} \cup \mathscr{E}'' \cup \mathscr{G}_1 \cup \mathscr{G}_2$. Then, $H' = (X', \mathscr{E}') \in \mathscr{H}(2n)$: indeed, let g be a 3-coloring of X' :

Case I. The three colours appear in X. Then, since $H \in \mathcal{H}(n)$, there exists a strongly colored edge in $C C'$.

Case II. Exectly one colour appears in X (e.g. colour 1). Let $Y_m = \{i \mid g(y_i) = m\}$ $(m = 1, 2, 3)$. Then $Y_2 \neq \emptyset$ and $Y_3 \neq \emptyset$.

Subcase II.I. $Y_1 = \emptyset$. Then, there exist i and j such that $|i - j| = 1$, $i \in Y_2$, $j \in Y_3$. Then $(x_i, y_i, y_j) \in \mathscr{G}_2$ is strongly colored in g.

Subcase II.II. $Y_1 \neq \emptyset$. Let h be the 3-coloring of X defined by: $h(x_1) = .$..., for $i\in Y_m$, $m = 1,2,3$. There exists $(x_i, x_i, x_k) \in \mathcal{E}$, such that $h(x_i) = 1$, $h(x_i) = 2$. $h(x_k) = 3$. Then, $(x_i, y_i, y_k) \in \mathcal{E}^n$ is strongly colored in the coloring g.

Case III. Exactly two colours appear in X (e.g. colours 1 and 2). Let

$$
X_{p} = \{i \mid g(x_{i}) = p\} \qquad (p = 1, 2)
$$

\n
$$
Y_{m} = \{i \mid g(x_{i}) = m\} \qquad (m = 1, 2, 3)
$$

\n
$$
A = X_{1} \cap Y_{1}, \qquad B = X_{1} \cap Y_{2}, \qquad C = X_{1} \cap Y_{3}
$$

\n
$$
D = X_{2} \cap Y_{1}, \qquad E = X_{2} \cap Y_{2}, \qquad F = X_{2} \cap Y_{3}.
$$

Since $Y_3 \neq \emptyset$, we can assume for instance that $F \neq \emptyset$.

Subcase III.1: $E \neq \emptyset$. Let h be the 3-coloring of X defined by $h(x_i) = 2$ for $i \in E$, $h(x_i) = 3$ for $i \in F$, and $h(x_i) = 1$ for $i \in X_i \cup D$. Then there exists $(x_i, x_i, x_k) \in \mathcal{E}$, such that $h(x_i) = 1$, $h(x_i) = 2$, $h(x_k) = 3$.

If $i \in X_1$, then $(x_i, y_i, y_k) \in \mathcal{E}^n$ is strongly colored in g.

If $i \in D$, then $(y_i, x_j, y_k) \in \mathcal{C}^n$ is strongly colored for g.

Subcase III.II. $E = \emptyset$.

SScase III.II.I: $A \neq \emptyset$ and $C \neq \emptyset$. This case is similar to the case III.I. *SScase III.II.II:* $A = \emptyset$ and $C \neq \emptyset$ and $B \cup D \neq \emptyset$. Then there exist i and j such that:

 $|i-j|=$ $i \in C \cup F$ and $j \in B \cup D$.

Then $(x_i, y_i, y_j) \in \mathscr{G}_2$ is strongly colored in g.

SScase III.II.III: $A = \emptyset$ and $C \neq \emptyset$ and $B \cup D = \emptyset$. This means that only colour 3 appears in Y. Then, there exist i and j such that: $|i - j| = 1$, $i \in X_i$ and $j \in X_2$. Then, (x_i, x_j, y_k) , with $k = \max(i, j)$, belongs to \mathcal{G}_1 and is strongly colored in g. *SScase III.II.IV:* $C = \emptyset$. There exists i and j such that: $|i - j| = 1$, $i \in F$, and $j \in A \cup B \cup D$. If $j \in B \cup D$, then $(x_j, y_j, y_j) \in \mathscr{G}_2$ is strongly colored in g. If $j \in A$, then $(x_i, y_i, y_j) \in \mathscr{G}_2$ is strongly colored in g.

From Theorem 2.1. follows immediately:

Corollary 2.2. Let n_0 be a fixed integer ≥ 3 , and γ such that $S(n_0) =$ $\gamma n_v^2 - 3n_v/2 + 1$. Then $S(n) \leq \gamma n^2 - 3n/2 + 1$, for all the values of n of the form $n = 2^k n_{0}$.

Taking n₀ = 11 and $S(n_0)$ = 33 (by *Theorem* (0.1), we get the following result which *implies Theorem 0.2:*

Corollary 2.3. $S(n) \leq (97/242)n^2 - 3n/2 + 1$, *for all the values of n of the form* $n = 11.2^k$ (k positive integer).

Lemma 2.4. $S(n) \leq S(n-1) + n-2, n \geq 4.$

Proof. Let $H=(X, \mathscr{C})$ with $H \in \mathscr{H}(n-1)$ and $|\mathscr{C}| = n-1$. Let $x \notin X$, $X' =$ $X \cup \{x\}$, and $\mathscr{G}x$ be a set of $n-2$ triples containing x and such that $Gx =$ $(X, {E - {x} \mid E \in \mathcal{G}x})$ is a connected graph. Then $H' = (X', \mathcal{E} \cup \mathcal{E}x)$ belongs to $\mathcal{H}(n)$ and has $S(n - 1) + n - 2$ edges, hence proving the lemma.

From Lemma 2.4 (which is a special case of a result of [2]), we can deduce an upper bound for $S(n)$, valid for all values of n:

Corollary 2.5. $S(n) \leq {n-1 \choose 2} - (3/121)(n + 1)^2$, $n \geq 11$.

Proof. Let k be the integer such that

 $m = 11.2^{k} \le n \le 11.2^{k+1} - 1 = 2m - 1.$

By repeated use of Lemma 2.4, we have:

 $S(n) \le S(m) + (n-2) + (n-3) + \cdots + (m-1)$.

Hence, by Corollary 2.3,

$$
S(n) \leq (97/242)m^2 - 3m/2 + 1 + {^{n-1} \choose 2} - {^{m-1} \choose 2},
$$

and the result follows, using $m \ge (n + 1)/2$. From Corollary 2.5, we get Theorem 0.3: $\limsup S(n)/n^2 \le 0.5 - (3/121)$.

Note added in proof. The conjective in Section 0 was recently proved by the author.

References

- [1] C. Berge. Graphes et Hypergraphes (Dunod, ,Paris. 1970).
- [2] F. Sterboul, A new combinatorial parameter, Colloquia Mathematica Societatis J. Bolyai, 10, Infinite and finite sets (Keszthely, Hungary, 1973) 1387-1404.
- [3] F. Sterboul, Un problème extrémal pour les g. aphes et les hypergraphes, Discrete Math. 11 (1975). 71-78,