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If a system H of triples (3-uniform hypergraph) on n vertices has the following property: for
every 3-coloring of the vertex-set there exists a 3-colored triple, what is the minimum size (S(n))
of H? The 4rst values of €(n) are computeu, and the asymptotic behaviour of this function is
studied.

9. Introduction

A h-graph (or uniform hypergraph of rank h, see {1]) is a pair H = (X, &), where
€ is a set of subsets cf X, every subset having h elements: € C 2, (X).

The elemants of X are the vertices, the elements of € are the edges.

In [2] the following problem is introduced: what is the minimum number of edges
of a h-graph H with n vertices, such that, for every coloring of X with ¢ colcurs,
there exists at least one edge of H in which no color appears more than once?
S(n, h, ¢) denotes this minimum number of edges.

The general case is studied in [2]. Ir: [3]. the special casesc =h andc =h =n -2
are studied. in the present paper, we consider the simplest (non-trivial) case:
c=h=3.

Definition 0.1. We call c-coloring of X any mapping g from X onfo the set
{1,2,...,c}. For every x € X, g(x) is the colour of x.

Definition 0.2. Let E be a subset of X, and g a c-coloring of X, E is strongly
colored in g iff

xEE y€EE, g(x)=g(y}) impliesx =y.
Definition 0.3. iet (n h,c) be the set of all the h-graphs H with n vertices,
such that, for every c-coloring of the vertex-set, there exists at least one strongly

colored edge ir H. S(n, h, ¢) is the miniraum number of edges of an element of
#(n, h,c).

For the sake of s'mplicity, we set
¥(n)= #(n,3,3) and S(n)=Sn3,3).
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Definition 0.4. l.ct g be a ¢ -coloring of X, and x a fixed element of X. We say that
g belongs to C(x) iff g(y) = g(x) implies y = x (x is the only element of X with
colour g(x)).

Remark 0.5. Let H = (X, &) be a h-graph, and x a vertex of H. Let Hx be the
(h - 1)-graph defined as follows:
gx ={E|E€ % x€E} %x={E-{x}|E€ &} Hx=(X-{x}, %x).

By considering the c-colorings belonging to C(x), it was proved in [3] that, if
HeE ¥(nh,h), then Hx€ ¥(n—-1,h~1,h~1), and hence that |&x|=
S(n-1,h~1,h-1) :

For ¢ = h =3, this implies that if H € 3 (n), then for every vertex x the graph
Hx is connected; hence, every vertex x is contained in at least n — 2 edges of H,
and S(n)=n(n - 2)/3. ’

Moreover, for cvery 3-graph H, (a) and (b) are equivalent:

(a) for every 3-coloring of X belonging to C(x) there exists a strongly colored
edge of H.

(b) Hx is a connected graph.

Remark 0.6. Le: H be the 3-graph on n vertices whose edges are all the triples
containing a given vertex. Then H € ¥(n) and hence S(n)<(n - 1)(n-2)/2.
Hence

1/3 < liminf S(n)/n* < limsup S(n)/n*< 1/2.

Conjecture, Lun §(n)/n® exists and is equal to 1/3.

In this direction, we prove in this paper the following results:

Theorem 0.1. For 3<n <11, S{n)={n(n~2)/3}. A} is the smallest integer
z\)

Thecrem 0.2. LiminfS(n)/n’<97/242=0.4008... .
Theorem 0.3. Lirisup S(n)/n*<0.5.
1. Procf of Theorem 0.1
By Remark 0.5, Theorem 0.1 is a consequence of the following propositions:
Proposition 1.1. S(3)< 1. (Immediate.)

Proposition 1.2. S(4)<3. (More generally, S(n,h,n ~ 1) = {(n - 1)/{(n ~ h)}, see
izl



A problem on triples 193

Proposition 1.3. S(5)=5.

Proof. Let X =2/5Z and & = {(i,i +1,i + 2)! i€ Z/SZ}. Then, H = (X, &) be-
longs to #(5). More generally, it is proved in [3] that S(nnn-2,n-2)=
n(n — 1)/2— f(n), where f(n) is the maximum number of ~dges of a graph of order
n and girtn 5.

Propesition 1.4, S(6)<8.

Proof. lLet X = Z/6Z, and

€={(i,i+1,i+d),(Li+4.i+2).(Li+2.i+3).(Gi+3i+5)]ieXx}
and
H = (X, €).

H has exactly 8 edges, and, for every vertex x, hx is a connected graph. Hence, it
follows from Remark 0.5 that, in order to prove that H € 3(6), it is enough to
check that, for every 3-coloring g such that every color appears twice, there exists a
strongly colored edge.

Let g be such a coloring. If, for every i, g(i) = g(i + 3), then the edge (0,2,4) is
strongly colored. Otherwise, by the cyclic symmetry of H, we can assume that
g(0)= 1 and g(3) = 2. Then, if cither g(2) or g(5) equals 3, then (0,2,3) or (0,3, 5} is
strongly colored, and if not, g(1) = g(4) =3 and (1,2,5) is strongly colored.

Proposition 1.5. S(7)< 12

Proof. Let X ={1,2,...,7}, and (omitting the commas in thc triples): & =
{(126), (147), (153), (234), (257), (367), (456)} (€' is a projective plane on 7 points).

€" = {(124), (157), (237), (356), (146)}, and H = (X, €' U &").

For every vertex x, Hx is connected. Hence, for proving H € #(7), we can only
consider the 3-colorings where two colours appear exactly twice, and the last colour
appears thrice (for example colour 1). Let g be such a coloring, then at least orc
edge of €' is sirongly colored. Indeed, let a, b, ¢, d be four disiinct points such that
g(a)=g(b)=2 and g(c) = g(d) = 3. Either these four points are independent (no
three of them are collinear) or three of them are collinear. In either case, the
existence of a strongly colored line is easily checked.

Proposition 1.6. S(8) = l6.

Proof. Let X = Z/82Z. Let H = (X, %) be the 3-graph defined as follows: %, =
{(6,1),(1,5),(5,7).(7,4),(4,3).(3,2}

€={(i,a+ib+i)|i€ Z/BZ (ab)E F)}
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H has exactly 16 edges, and, for every vertex x, Hx is connected. Hence, it
remains to consider the 3-colorings for which every colour appears at least twice.,
For such a coloring g, one of the colours (for example 1) appears exactly twice. By
the cyclic symmetry of H, we can assume that g(0) = 1. f g(6), or g(1), or g(3), or
8(2) equals 1, there exist two consecutive ¢lements ¢ and b in the sequence
(6,1,5,7,4,3,2) such that g(‘a) =2 and g‘b)=3, and hence (0, a, b) is a strongly
colored edge of H. Otherwise, we can assume g(6) = 2, and either g(0) = g(5) =1,
g6)=g(1)=2, g(7)=g@)=g(3)=g@2)=3 or g(0)=g(N=1, g6)=g(l)=
806)=2, g4)=g@B)=g@)=3 or g(O)=gH) =1, g(6)=g(1)=g(5)=g(7) =2,
g(3) = g(2) = 3, then either (1,4,5) or (1,2,7) or (1, 3,4) is a strongly colored edge
of H.

Proposition 1.7. $(9)<21.

Proof. Let X =7/92Z,

Fo=1{(1,6),(6,3%(3,4),(4,2),(2,7).(7,5), (5. 8)}
and

E={ia+ib+i)|i€ X, (a,})E F}, H=(X €).
Then, H has exactly 21 edges, and H € %{9): as above, we consider only the
3-colorings for which every colour appears z: least twice:
(1) 3-colorings in which every colour appears 3 times: we can assume g(0) = 1.
Then either there exists a strongly colored edge in %, (see Remark 0.5), or the

vector V = (g(1), 8(6). g(3), g(4), g(2), g(7), g (5), g(8)) takes essentially one of the
following values:

(1.2,2,2,1,3,3,3), (2,1,2,2,1,3,3,3)
‘(2,2,2,1,3,1,3,3), (2,.1,3,3,3,1,2,2)
(2,2,2,1,3,3,1,3), (2,2,1,2,1,3,3,3)
(2,2,2,1,3,3,3, 1), (2.2,1,3,3,3,1,2)
(2,2,2,1,1,3,3,3),

in each case, either (2,3,8) or (3,5,7) or (3,6, 7) 15 a strongly cclored edge of H.

(2) 3-colorings in which one of the colours appears exactly twice (for example
colour 1),

By the cyclic symmetry of H, we can assume g(0) = 1. Then either there exists a

strongly coloured edge in &,, or the vector V takes cssentially one of the following
values:

(2,2,1,3,3,3,3,3), 2,2,2,1,3,3,3,3)
(2.2,2,2,1,3,3,3), (2,2,2,2,2,1,3,3)

in each case either (3,6,7) or (i, 4, T)yor(1,2,7)or (3,5,7) is a strongly colored edge
of H.
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Proposition 1.8. S(i0)<27.

Proof. Let H =(X, €) with X ={0,1,2,...,9}, and (omitting the commas in the
triples)

€ = {(012), (023), (034), (045), (056), (067), (078), (089),
(129), (137). (146), (157). (158). (169), (189), (238),
(248).(25¢6), (268), (279). (346). (349), (359), (367),
(457). (489), (579)}.

Then H has 27 edges. and v-e have to prove that H € % (10). For every vertex x,
Hx is connected. Hence, we consider:

(1) The 3-colorings for which one of the colours (e.g. colour 1) appears exactly
twice: let g(a)=g(b)=1.

We remark that if there exists such a coloring g for which no edge of H is
strongly colored, then the graph

Ga,. b = (X -{a, b}, %a,b)
where

Fa,b={F|F€ Fa.bg F}U{F|F € %b,ag F}

is not connected.

Hence, we have to check that the 45 graphs Ga, b are conne:ted. We omit here
this tedious operation.

(2) The 3-coloring~ where two colours appear exactly thrice, and the other one
four times. Let g be such a coloring, and let us issume. in order to get a
contradiction that no edge of H is strongly colored for g.

Case 1. g(2)# g(8),e.g. g(2)= 1 and g(8) = 2. Then g(3), g(4), g(6) have colour !
or 2.

Subcase IL1: g(9) = 1. Then g{0) and g(1) equal 1 or 2, and we get a contradiction,
since only two vertices are left for colour 3.

Subcase 1.I1. g(9)=2. Ther: g(1) and g(7) equal 1 or 2, and the contradiction
follows as above.

Subcase LIII.  g(9) = 3. Ther, we can deduce successively: g(1) and g(7)equal ! or
3,80) g(1), g equal20r3, g(1)=3,g(d)=2,g(6)=20r3,g(6)=2.g(3)= 2.
2(0) = 3, and the contradiction: (023) is strongly colored.

Case II. g(2)=g(8)

Subcase IL1. g(2)= g(8) = g(0). Lzt V be the vector (g(0}, g(1).. .., g(9)). Then,
the only essential values of V for which no edge of &, is strongly colored are
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(1,2,1,2,1,3,3,3,1,2), (1,2,1,2,2,1,3,3,1,3), (1,3,1,2,2,1,3,3,1,2) and
(1,3.1,2,2,2,1,3,1,3). But then, the edges (3,4, 6) or (4,5, 7) or (4, 8, 9) are strongly
colored.

Subcase ILII. g()=1, g(2) = g(8) = 2. Then, the only essentiai values of V for
which no edge of &, is strongly colored are (1,2,2,1,3,3,3,1,2,2),
(1.1.2,1,3,3.3,1,2,2), (1,2,2,1,3.3,3,1,2,1), for which (3,4,9) or (5,7,9) or
(4,4,9) are strongly colored.

Proposition 1.9. S(11)=33.

Proof. Let X = Z/11Z and H = (X, €) the 3-graph such that

Z,=1{(2,10).(10,5),(5,6),(6, 1),(1,3),(3,7),(7.4). (4, 8). (8.9)}
and _
€={(ia+ib+i)|i€ X, (a,b)E F}.

H has exactly 33 edges and, for every vertex x, Hx is connected. Hence, in order
to prove H € #(11), we consider:

(1) The 3-colorings where at least one colour appears exactly twice (e.g. colour
1). Let g be such a coloring; we can assume, by the cyclic symmetry of H, that
g0)=1. Let » be the vector V =(g(2),g(10),g(5),g(6).g(1),g(3).g(M.
g(4), g(8), g(9)). Then, it is not difficult to inake a census of the 6 essential values of
V for which no edge of &, is strengly colored. But then, for these 6 values, (4, 5, 10)
or {5.6,8) or (1,6,7) or (3,7,1C) or (4,5,7) or (1,4,8) are strongly colored.

(2) The 3-colorings where all the colours appear at least thrice. Leg g be such a
coloring. We can assume that colour 1 appears exactiy thrice, and, by the cyclic
symmetry of H, that g(6) = 1 and at least one of the colours g(1), g(2), g(3) is equal
to 1. Then, it is not difficult to make a census of ine 22 essential values of the vector
V for which no edge of %, is strongly colored. But then, either (1,6, 7) or (5, 6, 8) or
(2.7.8}) or (3.4,6) or (4,5,7) is strongly colored in these colorings.

2. Asymptotic results
Theorem 2.1. For every n =3, S2n)<4S8(n)+3(n-1).

Proof. Let H = (X, €)be a 3-graph such that H € %(n) and | €| = S(n). We shall
constract a  3-graph H'=(X',%') such that H'€ ¥(2n) and |€'|=
45(n)+ 3(n - 1), hence proving the theorem.

Let X ={x,,...x.}, Y={yn....,ya} with XOY=0and X'=XUY.

Let €" = {x,y, y)|(x, x, )€ €} then | €"| = 35(n).

Let % ={x,x.,y.)|1si<sn-1} and % ={(x. yoviedlsisn-1u
{nyey)lsisn-1}
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Finally,let &' = € U £"U 4, U %,. Then, H' = (X', &')E ¥#(2n): indeed, let g be
a 3-co'oring of X"

Case I. The three colours appear in X. Then, since H € #(n), there exists a
strongly colored edge in € C €’

Case 1. Exz:tly one colour appears in X (e.g. colour 1). Let Y,, ={i|g(y.) = m}
(m=1,2,3. Then Y,#0 and Y.#0.

Subcase IL1. 'Y, =. Then, there exist i and j such that |i ~j|=1,i€ Y., j € Y.
Then (x, y, y,) € %: is strongly colored in g.

Subcase ILIL. Y, #§. Let h be the 3-coloring of X defined by: h(x,)= .., for
i€Y, m=123 There exists (x,x,x)€E € such that h(x,)=1, h(x,)=2.
h(x.)=3. Then, (x.y. y)€E €" is strongly colored in the coloring g.

Case IIl. Exactly two colours appear in X (e.g. colours 1 and 2). Let
X, ={ilg(x)=p} (p=12)
Y. ={i|g(x)=m)} (m=12.23)
A=XNY, B=X,NY, C=X,nY,
D=X.NY,, E=X.NY, F=X:NY.
Since Y.#®, we can assume for instance that F# §.

Subcase IIL.1: E#@. Let h be the 3-coloring of X defined by h(x,)=2 for i € E,
h(x)=3fori € F, and h(x;) =1 for i € X, U D. Then there exists (x, x,, X, ) € €,
such that A(x,)=1, h(x;)=2, h(x)=3.

If i € X,, then (x.y, y«) € &" is strongly colored in g.

If i € D, then (y;, x;, vi) € &" is strongly colored for g.

Subcase IILIL E = @.

SScase IILILI: A#® and C# @. This case is similar to the case III.1
SScase IILILII: A =@and C# Mand B U D # . Then there exist i and j such that:

li—jl="*. ieCUF and jEBUD.

Then (x, y, ¥,) € 4. is strongly colored in g.
SScase HLILIII: A =90 and C# @ and B U I? = @. This means that only colour 3
appears in Y. Then, there exist i and j such that: i —j|=., i€ X, and j € X
Then, (x. X, y+). with k = max (i, j), belongs to %, and is strongly colored in g.
SScase IILILIV: C =®. There exists i and j such that: [i—j|=1, i€ F, and
jEAUBUD.If j€ BUD, then (x;, y. y,) € 4. is strongly colored in g. Ifj€ A,
then (x;, 1, 5,3 & % is strongly colored in g.

From Theorem 2.1. follows immediately:
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Corollary 2.2. Let n, be o fixed integer =3, and y such that S{n))=
yni-3n,/2+ 1. Then S(n)< yn’~3n/2+ 1, for all the values of n of the form
n = 2'n,.

Taking n, = 11 and S(n.) = 33 (by Theoremn 1).1), we get the following result which
implies Theorem (.2:

Corollary 2.3. S(n)=<(97/242;n° ~3n/2 + 1, for all the values of n of the form
n = 11.2* (k positive integer).

Lemma 24. S(n)=sS(n-1)+n—-2, n=4,

Proof. Let H=(X, &) with HE¥(n-1) and [€|{=n—-1. Let x&€X, X'=
X U{x}, and ¥x be a set of n—2 triples containing x and such that Gx =
(X.{E - {x}| E € %x}) is a connected graph. Then H’'= (X', % U &x) belongs to
#(n) and has S(n - 1)+ n ~ 2 edges, hence proving the temma.

From Lemma 2.4 (which is a special case of a result of [2]), we can deduce an
upper bound for §(n), valid for all values of n:

Corollary 2.5. S(n)<(%")—(3/121)(n + 1), n =11,

Proof. Lect k be the integer such that
m=11.2"sn<s11.2""'~1=2m - 1.
By repeated use of Lemma 2.4, we have:
S{ny=sS(m)+(n-2)+(n-3)+---+(m~1).
Hence. by Corollary 2.3,
S(n)=(97/242)m* - 3m 2+ 1+ (")~ ("),

and the result follows, using m 2 (n + 1)/2. From Corollary 2.5, we get Theorem
0.3: limsup S(n)/n’ < 0.5 - (3/121).

Note added in proof. The conjective in Section 0 was recently proved by the
author.
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