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If a system H of triples (3-uniform hypergraph) on n vertices has the following property: for 
eyeD' 3-coloring of the vertex-set there exists a 3-colored triple, what is the minimum size (S(n)) 
of H? The first values of q(n) are coral, uteri, and the asymptotic behaviour of this function is 
studied 

O. Introduction 

A h-graph (or uniform hypergraph of rank h, see [ 1 ]) is a pair H = (X, ~), where 

is a set of subsets cf X, every subset having h elements: ~' C ~h(X).  
The elements of X are the vertices, the elements of ~ are the edges. 
In [2] the following problem is introduced: what is the minimum number of edges 

of a h-graph H with n vertices, such that, for every coloring of X with c colours, 
there exists at least one edge of H in which no color appears more than once'? 

S(n, h, c) denotes this minimum number of edges. 
The general case is studied in [2]. In [3], the special cases c = h and c = h = n - 2 

are studied. In the present paper, we consider the simplest (non-trivial) case: 

c = h = 3 .  

Definition 0.1. We call c-coloring of X any mapping g from X onto the set 

{1,2 , . , . ,c} .  For every x E X, g(x)  is the colour of x. 

Definition 0.2. 
colored in g iff 

Let E be a subset of X. and g a c-coloring of X, E is strongly 

x C E, y E E, g(x )= g('.; ) impl iesx  = y .  

Definition 0.3. Let ~ (n ,  h ,c )  be the set of all the h-graphs H with n vertices, 
such that, for every c-coloring of the vertex-set, there exists at least one strongly 
cc.lored edge ir H. S(n, h, c) is the minimum number of edges of an element of 

For the sake of s;mplicity, we set 

Yg(n)= A"(n, 3,3) and S(n)  = S,~n, 3,3). 
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Definition 0.4. Let g be a c .coloring of X, and x a fixed element of X. We say that 
g belongs to C(x) iff g ( y ) =  g ( x ) i m p l i e s  y = x (x is the only element of X with 

colour g (x)). 

Remark 0.5. Let H = (X, ~) be a h-graph, and x a vertex of H. Let Hx be the 
(h - 1)-graph defined as follows: 

By considering the c-colorings belonging to C(x), it was proved in [31 that, if 
H E ' J f ( r ~ h , h ) ,  then H x E ~ ( r . - 1 , , h - l , h - l ) ,  and hence that [ ~ x l ~  > 
S ( n -  I ,h  - l ,h  -- 1). 

For c = h = 3, this implies that if H E" ~ ( n ) ,  then for every vertex x the graph 

Hx is connected; hence, every vertex x is contained in at least n - 2 edges of H, 
arid S(n  ) >i n(n  - 2)/3. 

Mo'reover, for every 3-graph H, ( a )and  (b) are equivalent: 

(a) for every 3~coloring of X belonging to C(x)  there e~ists a strongly coloreti 
edge of H. 

(b) Hx is a connected graph. 

Remark 0.6. Le~ H be the 3-graph on n vertices whose edges are all the triples 
containing a given vertex. Then H E Y g ( n )  and hence S(n )<~(n  - 1 ) ( n - 2 ) / 2 .  
Hence 

1/3 ~ lira inf S(n  )/n 2 <~ lim sup S ( n ) / n  2 ~< I/2. 

Conjecture. L i , n S ( n ) / n  2 exists and is equal to 1/3. 

in this direction, we prove in this paper the following results: 

Theorem 0.1. For 3<~ n <~ 11, S ( n ) = { n ( n - 2 ) / 3 } .  ({A} is the smallest integer 
i~ A.) 

Theorem 0.2. Lim inf S ( n )/n 2 <~ 97/242 = 0.4008 . . . .  

Theorem 0.3. Lir : l supS(n) /n  2<0.5. 

I. Pro~f of Theorem 0.1 

By Remark 0.5, Theorem 0.I is a consequence of the following propositions: 

Proposition 1.1. S(3)<~ 1. (Immediate.) 

Proposition 1.2. S(4)<~ 3. (More generally, S ( n , h , n  - 1)= {(n - l)/(n - h)}, see 
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Proposition 1.3. S(5) ~ 5. 

Proof. Let X = Z / 5 Z ,  a n d ~ = { ( i , i ÷  l . i + 2 ) l i E Z / 5 Z } . T h e n ,  H = ( X . ' ~ ) b e  . 
longs to ~.(5). More generally, it is proved in [3] that S ( n , n - 2 ,  n - 2 ) =  
n(n  - I ) / 2 -  [(n) ,  where f (n )  is the maximum number nf ,~,lges of a graph of order 
n and girth 5 

Proposition 1.4. S(6) ~ 8. 

Proof. Let X = Z / 6 Z ,  and 

and 
~, = { ( i , i + l , i + 4 ) , ( L i + 4 .  i + 2 ) . ( i , i + 2 ,  i + 3 ) , ( i . i + 3 ,  i + 5 ) l i E X }  ~ 

H = 

t t  has exactly 8 edges, and, for every vertex x, l-ix is a connected graph. Hence, it 
follows from Remark 0.5 that, in order to prove that H E ~ie(6), it is enough to 
check that, for every 3-coloring g such that every color appears twice, there exist.-, ~t 
strongly colored edge. 

Let g be such a coloring, if, for every i, g ( i ) =  g(i + 3), then the edge (0,2,4) is 
strongly colored. Otherwise, by the cyclic symmetry of H, we can assume that 
g (0)=  1 and g (3)=  2. Then, i~' either g(2) or g(5) equals 3, then (0, 2, 3) or (0,3,5)is  
strongly colored, and if not, g ( l ) =  g (4)=  3 and (1,2,5,) is strongly colored. 

Proposition 1,5. S(7) <~ I2 

Proof. Let X ={1,2,  . . . .  7}, and (omitting the commas in the triples): ~. '= 
{(126), (147), (153), (234), (257), (367), (456)} (~ '  is a projective plane on 7 points). 

g'" = {(124), (157), (237), (356), (146)}, and H = (X, ~ '  t3 ~'"). 

For every vertex x, Hx is connected. Hence, f,-~r proving H ~ ~e(7), we can only 
consider the 3-colorings where two colours appear" exactly twice, and the last colour 
appears thrice (for example colour 1). Let g b,~ such a coloring, then at least oo, e 
edge of ~,' is s~rongly colored. Indeed, let a, b, c, d be four disiinct points st:ch that 
g (a )  = g(b) = 2 and g(c) = g(d)  = 3. Either these four points are independent (no 
three of them are collinear) or three of them are collinear. In either case, the 
existence of a strongly colored line is easily checked. 

Proposition 1.6. S(8) ~ 16. 

Proof. Let X = Z / 8 Z .  L.et H = ( X , * )  be the 3-graph defined as follows: ;~,, = 

{(6, 1), (1, 5), (5, 7), (7, 4), (4, 3), (3, 2)} 

g// = {(i,a + i,b + i)l i E Z I 8 Z , ( a ,  b ) E  ~o~'. 



!194 F. Sterboul 

H has exactly 16 edges, and, for every vertex x, Hx is connected. Hence, iit 
remains to consider the 3-colorings for which every colour appears at least twice:. 
Fo~ - such a coloring g, one of the colours (for example l) appears exactly twice. By 
the cyclic symmetry of/4, we can assume that g(0)= 1. If g(6), or g(1), or g(3), or 
g(2) equals I, there exist two consecutive elements a and b in the sequence 

(6, 1,5,7,4,3,2)such that g ( a ) =  2 and gtb) = 3, and hence (O,a,b) is a strongly 
colored edge of H. Otherwise, we can assume g(6)= 2, and either g(0)= g(5)= 1, 
g(6) = g(l)= 2, g(7)= g ( 4 ) =  g(3)= g ( 2 ) =  3 or g (0 )=  g ( 7 ) =  1, g(6)= g(1)= 
g(5) = 2, g(4)= g(3)= g(2)= 3 or g(0)= g(4)= 1, g(6)= g(1)= g(5)= g(7)= 2, 
g(3)= g(2)= 3, then either (1,4,5) or (1,2,7) or (1,3,4) is a strongly colored edge 
of /-/. 

Proposition 1.7. S(9) <~ 21. 

Proot. Let X = Z/9Z,  

~o = {(1,6), (6, 3), (3, 4), (4, 2), (2, 7), (7, 5), (5, 8)} 
and 

~ = { ( i , a + i , b + i ) l i E X , ( a , ~ ) f f .  ff;o}, H = (X, ~). 

Then, H has exactly 21 edges, and H ~ 9/'(9): as above, we consider only the 
3-colorings for which every colour appears z~ least twice: 

(i) 3-colorings in which every colour appears 3 times: we can assume g(0)= 1. 
Then either there exists a strongly colored edge in ~,, (see Remark 0.5), or the 
vector V = (g(l),  g,(0~, g(3), g(4), g(2), g(7), g(5), 8(8)) takes essentially one of the 
following values: 

(1,2,2,2,1,3,3,3), 

(2,2,2,1,3,1,3,3), 

(2,2,2,1,3,3,1,3), 

(2,2,2,1,3,3,3,1), 

(2,2,2,1,1,3,3,3), 

in each case, either (2, 3, 8) or (3, 5, 
(2) 3-colorings in which one of 

col,mr 1). 

(2,1,2,2,1,3,3,3) 

(2,1,3,3,3,1,2,2) 

(2,2,1,2,1,3,3,3) 

(2,2,1,3,3,3,1,2) 

7) or (3, 6, 7) is a strongly colored edge of H. 
the colours appears exactly twice (for example 

By the cyclic symmetry of/4, we can assume g(0)= I. Then either there exists a 
strongly coioured edge in ~,,, or the vector V takes essentially one of the following 
values: 

(2,2, 1,3,3,3,3,3), (2,2,2, 1,3,3,3,3) 

(2,2,2,2,1,3,3,3), (2,2,2,2,2,1,3,3) 

in each case either (3, 6, 7) or (~, 4, 7) or (1,2, 7) or (3, 5, 7) is a strongly colored edge 
of H. 
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Proposition 1.8. S (iO) ~ 27. 

Proof. 
triples) 

Let H = (X, ~)  with X = {0, 1,2 . . . . .  9}, and (omitting the comma,; in "he 

~, = {(012), (023), 

(129). (137). 

(248), (25f,), 

(457). (48t0. 

(034), (045), (056), (067), (078), (089), 

(146),(157),(158),(169),(189), (238), 

(268), (279), (346), (349), (359), (367), 

(579)}. 

Then H has 27 edges, and we have to  prove that H ~ ~/t;(10). For every vertex x, 
Hx is connected. Hence, we consider: 

(1) The 3-colorings for which one of tile colours (e.g. colour I) appears exactly 
twice: let g ( a ) =  g ( b ) =  1. 

We remark that if there exists such a coloring g for which no edge of H is 
strongly colored, then the graph 

where 
Ga, b = ( X  - { a . b } . ~ a , b )  

~a,  b = { F 1 F" E .~Ta.. b ~ F } O { F I F ~ :~b, a ~ F } 

is not connected. 
Hence, we have to check that the 45 graphs Ga, b are connected. We omit here 

this tedious operation. 
(2) The 3-coloring" where two colours appear exactly thrice, and the other one 

four times. Let g be such a coloring, and let us ~assume, in order to get a 
contradiction that no edge o',t H is strongly colored for g. 

Case 1. g ( 2 ) / g ( 8 ) ,  e.g. g(2~= i and g(8)= 2. Then g(3), g(4), g(6) have colour 1 
or 2. 

Subcase Ll :  g(9)= 1. Then g(0) and g( l )  equal 1 or 2, and we get a contradiction, 
since only two vertices are h:ft for colour 3. 

Subcase I.IL g(9)= 2. Ther. g( l )  and g(7) equal 1 or 2, and the contradiction 
follows as above. 

Subcase l . l lI ,  g(9) = 3. There, we can deduce successively: g (l) and g (7) equal I or 
3, g(0), g(l),  g(4) equal 2 or 3, g ( l ) : :  3, g(4)= 2, g(6) = 2 or 3, g(6)= 2. g ( 3 ) :  2. 
g(0) = 3, and the contradiction: (023) is strongly colored. 

Case If, g (2)=  g(8) 

Suacase ILL g(2)= g(8)= ~(0). Let V be the vector (g(0) ,g( l )  . . . . .  g(9)). Then, 
the only essential values of V for whi,ch no edge of ~'o ~s strongly colored are 
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(1,2, 1,2, 1,3.3, 3, 1,2), (1 ,2 ,1 ,2 ,2 ,1 ,3 ,3 ,1 ,3) ,  (I, 3, 1,2, 2, I, 3,3, 1,2) and 
(I, ]. 1,2, 2, 2.1,3, 1,3). But then. the edges (3, ,1, 6) or (4, 5, 7) or (4, 8, 9) are strongly 
colored. 

Subcase 1Lll. g(O)" 1, g (2)=  g(8)=  2. Then, the only essentia; values of V for 
which no edge of ~,, is strongly colored are (1,2,2, 1,3,3,3, 1,2,2), 
(I, [ .2 ,1 .3 ,3 ,3 ,1 ,2 ,2) ,  ( I ,2 ,2 ,1 ,3~3,3 ,1 ,2 ,1) ,  for which (3,4,9) or (5,7,9) or 
(4, 8, 9) are strongly colored. 

Proposition 1.9. S(l  1) ~<~ 33. 

Proof. 

and 

Let X = Z / I  1Z and H = (X, ~) the 3-graph such that 

~.,, = {(2, 10), (lO, 5), (5, 6), (6, 1 ), (1, 3), (3, 7), (7, 4), (4, 8), (8. 9)} 

~g = {(i,a + i,b + i)] i E X , ( a , b ) E  fro}. 

H has exactly 33 edges and, for every vertex x, H x  i~ connected. Hence, in order 
to prove H E X(I 1), we consider: 

(I) The 3-colorings where at least one colour appears exactly twice (e.g. colour 
1). Let g be such a coloring; we can assume, by the cyclic symmetry of H, that 
g ( 0 ) = l .  Let ,,,' be the vector V=(g(2) ,g ( lO) ,g (5 ) ,g (6 ) ,g (1 ) ,g (3 ) ,g (7 ) ,  
g(4), g(8), g(9)). Then, it is not difficult to make a census of the 6 essential values of 
V for which no edge of ~o is strongly colored. But then, for these 6 values, (4, 5, 10) 
or (5.6,8) or (1,6,7) or (3,7, lf,') or (4,5,7) or (1,4,8) are strongly colored. 

(2) The 3-colorings where all the colours appear at least thrice. Leg g be such a 
col~ring. We can assume that colour 1 appears exactiy thrice, and, by the cyclic 
sym.metry of H, that g (0)=  1 and at least one of the colours g(l) ,  g(2), g(3)is equal 
to I. Then, it is not difficult to make a census of ihe 22 essential values of the vector 
V for which no edge of :~ is strongly colored. But then, either (1,6, 7) or (5, 6, 8) or 
(2.7, 8) or (3, 4, 6) or (4, 5, 7) is strongly colored in these colorings. 

2. Asymptotic results 

Theorem 2.1. For every n ~ 3, S(2n)  <~ 4S(n)  + 3(n - 1). 

Proof. Let I-/= (X, ~) be a 3-graph such that H • ~ ( n )  and ] ~'] = S(n).  We shall 
constract a 3-graph H ' =  (X' ,~")  such that H ' ~  ~ ( 2 n )  and ]~"} = 
4 S ( n ) +  3 ( n -  1), hence proving the theorem. 

Let X = {x, . . . .  ,x,}, Y = {y~ . . . . .  y,} with X' 1"3 Y =(~ and X '  = X U Y. 
Lei ~"= {x,, yj, y~)I(x,,xj, x~)~  ~ } then 1~"[= 3S(n) .  
Let ~ , = { ( x , , x , . , , y , , , ) I I < ~ i < ~ n - 1 }  and " ~ 2 = { ( x , , y , , y ~ + , ) ! l ~ i < ~ n - l } U  

{ ( x , . , ,  y , ,  I i .<. n - 
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Finally, let if = ~ U ,~ U (~, U ~d2. Then,  H ' -  (X' ,  if') ~ ,7((2n): indeed, let g be 
a 3-co!~ring of X "  

Case I. The three coiours appear  in ,,~. Then, since H ~ ~ ( n ) ,  there exists a 
strongly colored edge in ~' C ~ ' .  

Case II. Exe :tly one colour appears in X (e.g. colour 1). Let Y,,, = {i ] g'(y,) = m} 
(m = 1,2, 3). Then Y: ~ 0 and Y~ # 0. 

Subcase ILl. Y, = 0. Then, there exist i and j such that !i - j l = 1, i ~ Y~,, ] ~ Y,. 
Then (x,, y,, y , ) ~  ~ is strongly colored in g. 

Subcase II.IL Y~ ~0 .  Let h be the 3-cole, ring of X defined by: h ( x , l =  .:., for' 
i~Y, , , ,  m = 1 , 2 , 3 .  There exists ( x , , x , , x ~ ) ~ ,  such that h ( x , ) = l ,  h(x,)=2.. 
h (x~) = 3. Then,  (x,, y,, y~)~  if" is strongly colored in the coloring g. 

Case 111. Exactly two colours appear  in X (e.g. colours 1 and 2). Let 

X~, = {i I g ( x , ) =  p} (p = 1,2) 

Y,, - {J ig(x , )= m} (m = 1,2,3) 

A = X l f l  Y~, B = X ~ A  Y~, C = X , A  Y.~ 

D = X 2 D  YI, E = X : A Y : ,  F = X , A  Y~. 

Since Y~ ~/0, we can assume for instance that F ~  0. 

Subcase III.1: E ~  O. Let h be the 3-coloring of X defined by h(x , )= 2 for i E E, 
h (x , )=  3 for i ~ F, and h ( x , ) -  1 for i E XI U D. Then there exists (x,, x,, .rk )E  '~, 
such that h (x,) = 1, h (xi) = 2, h (xk) = 3. 

If i E X~, then (x,, y;, yk)E g'" is strongly colored in g. 
If i E D, then (y,, xi, y~)E ~" is strongly colored for g. 

Subcase IlL II. E = f~. 

SScase Il l .ILl: A ~ 0 and C ~  0. This case is similar to the case l l l . I  
$Scase IH.II.II: A = ~ and C ~  ~ and B U D ~ 0. Then there exist i and/: such that" 

l i - ] l =  ': i E C t l F  and ] E B U D .  

Then (x,, y,, y~)E/~: is strongly colored in g. 
$Scase III.II.HI: A = ~ and C ~  ~ and B U D = 0. This meaas that only colour 3 

appears in Y. Then, there exist i and ] such that '  !i - j l  = L, i E X I and j E X:. 
Then,  (x, xj, y~,), with k = max (i, j), belongs to .~ and is strongly colored in g. 

SScase l lI . l l . lV" C =~ .  There exists i and j such that: l i - j [  = 1, i E F, and 
j E A O B U D. If ] E B U D, then (x,, y, yj)EE ~2 is strongly colored in g. If ] E A, 

then (x, ~,, y j ) ~  ~ is strong|~ colored in g. 

From Theorem 2.1. follows immediately: 
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Corollary 2.2. Let n,, be a fixed integer ~3,  and 3/ such that S(n, , )= 
:~,n:,-3n,,/2+ 1. Then S (n )<  fn:--3n/2 + I, for all the values of n of the form 

n :'= 2 ~ n.. 

Taking n,, = 11 and S(n,,) = 33 (by Theorem 0.1), we get the following result which 

implies Theorem {).2: 

Corollary 2.3. S(n)<~ (97/242~n"-3n/2 + I, for all the values of n of the form 
n = ! i .  2 ~ (k positive integer). 

I , e m m a  2.4.  S ( n )  ~< S (n - 1) + n - 2, n >~ 4. 

Proof. Let H = ( X ,  ff) with H 6 , ~ e ( n - l )  and [g'l = n - l .  Let x ~ X ,  X ' =  
X U{x}, and q3x be a set of n - 2  triples containing x and such that Gx = 
(X.{E -{x}[  E ~. :,qx}) is a connected graph. T h e ,  H' = (X', ~ U ~x) belon,,s to 
h,'(n) and has S(n - 1)+ n - 2 edges, hence proving the lemma. 

From Lemma 2.4 (which is a special case of a result of [2]), we can deduce an 
upper bound for S(n), valid for all values of n" 

Corollary 2.5. S (n )~<("~ ' ) - (3 /121 ) (n  + 1) 2 , n ---~- 11. 

Proof. i.et k be the integer such that 

m = 11.2 ~ ~<n ~ 11.2 T M  --1 = 2 m - 1 .  

By repeated use of Lemma 2.4, we have: 

S(n) ~ S(,n ) + (n - 2)+ (, - 3) +... + (m - l ). 

l lenc'c, by Corollary 2.3, 

S(n)<~(971242)m 2-  3ml2 + 1 + ( ~ " ) -  C'f ' ) ,  

and the result follows, using m ~ (n + I)/2. From Corollary 2.5, we get Theorem 
0.3: l imsupS(n)ln" <~0.5 - (3/121). 

Note added in proof. The conjective in Section 0 was recently proved by the 
author. 
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