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Abstract Although three-dimensional protein structure determination using nuclear magnetic res-

onance (NMR) spectroscopy is a computationally costly and tedious process that would benefit

from advanced computational techniques, it has not garnered much research attention from special-

ists in bioinformatics and computational biology. In this paper, we review recent advances in com-

putational methods for NMR protein structure determination. We summarize the advantages of

and bottlenecks in the existing methods and outline some open problems in the field. We also dis-

cuss current trends in NMR technology development and suggest directions for research on future

computational methods for NMR.
Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the

main methods for determining three-dimensional (3D) struc-
tures of proteins [1]. The underlying idea for NMR protein
structure determination is that if a large number of distance
constraints are known between atom pairs of a target protein,

the conformational space of possible protein structures will be
restricted to a few structures [2]. The physical principle of
NMR structure determination is that when a certain isotope

(e.g., 1H, 13C or 15N) is placed in a strong magnetic field, the
nucleus will absorb electromagnetic radiation at a frequency
that is characteristic of the isotope. Depending on different
X).
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local chemical and geometric environments, different nuclei
resonate at different frequencies. Since frequency is a magnetic
field-dependent measure, it is often converted into a relative

frequency with respect to a reference frequency. Such relative
frequencies are referred to as chemical shifts. The resonances
of nuclei that are close in Euclidean space couple, either
through covalent bonds or through space. NMR experiments

capture such coupling.
The outputs from NMR experiments are NMR spectra,

which are, mathematically speaking, multi-dimensional matri-

ces. The indices for each dimension are the discrete chemical
shift values of a certain nucleus, and the entries of the matrices
are the intensity values of the coupling. For instance, 15N-

HSQC is one of the most commonly-used NMR spectra. It
captures the coupling between the backbone nitrogen (N)
and the hydrogen (H) that is attached to this nitrogen. For a

protein with n amino acids, there are (n–p) expected peaks in
the 15N-HSQC spectrum, where p is the number of proline
(Pro) in the protein. However, the amine groups in the side
chains of some amino acids are also visible in the 15N-HSQC

spectrum, such as arginine (Arg), asparagine (Asn) and gluta-
mine (Gln). To eliminate the peaks of these side chains,
ademy of Sciences and Genetics Society of China. Published by Elsevier Ltd
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information from different spectra needs to be combined.
There are additional sources of error in NMR spectra, includ-
ing missing signals, chemical shift degeneracy, sample impu-

rity, water bands, artifacts and experimental errors [2]. All of
these sources of error need to be taken into account.

Another important NMR spectrum is the nuclear Overha-

user enhancement (NOE) spectrum, which is a through-space
experiment that captures certain atoms that are close to each
other in the Euclidean space. Here, ‘close’ often refers to a dis-

tance smaller than 6 Å. Thus, the NOE spectrum is a through-
space spectrum and each peak in the NOE spectrum provides a
distance constraint that can reduce the conformational space
of possible protein structures.

In contrast to NOE that provides short-range interactions
(<6 Å), there are experiments that can provide long-range
information. One example is residual dipolar couplings

(RDCs), which provides long-range orientational information
relative to an external alignment tensor [3–5]. Another example
is paramagnetic relaxation enhancement (PRE) [6,7]. PRE ef-

fect can be detected in large magnetic moment of protons
and unpaired electron up to 35 Å.

Traditionally, determination of NMR protein structure

mainly follows the four-step process described by Wüthrich
[1]. After the spectra are collected, the four steps involve peak
picking, resonance assignment, NOE assignment and structure
calculation. The peak picking step takes the through-bond

and through-space NMR spectra as inputs and identifies peaks
in these spectra. The peaks of certain through-bond spectra are
then used to assign the chemical shift values to the correspond-

ing atoms of the protein, which is the so-called resonance assign-
ment step. After resonance assignment, mapping between the
chemical shift values and the indices of the atoms is built. Such

mapping is applied to interpret the NOE peaks and extract dis-
tance constraints. Since the chemical shift values of all the atoms
of the protein are distributed within a small range, overlaps in

chemical shift values are expected. Thus, the interpretation of
the NOE peaks can be ambiguous. The structure calculation
step takes the distance constraints (both ambiguous and unam-
biguous) to determine the final structure(s) of the protein.

Most NMR labs process NMR data either manually or
semi-automatically with the help of visualization tools. The en-
tire process is computationally costly and time-consuming. Re-

cently, attention has been paid to developing computational
methods that can significantly accelerate the NMR data pro-
cessing and reduce the errors introduced by manual process-

ing. However, NMR is still a new field to the computational
community. Even in the field of bioinformatics and computa-
tional biology, computational problems in NMR structure
determination have not been well studied. Here, we review

some recent advances in computational methods for NMR
protein structure determination.
Peak picking

The goal of the peak picking step is to identify peaks, i.e., the

chemical shift coordinates of the coupling nuclei, in any given
spectrum. This is the key step in the entire NMR protein struc-
ture determination process because the following steps are all
built upon this step [8,9]. The automated peak picking problem

was first studied two decades ago [10]. Expected properties of
peak shapes, such as the symmetry property, were used to
identify peaks. Since then, a variety of computational methods
have been utilized, including peak-property-based methods
[11,12], machine learning methods [13–16], and spectra-decom-

position-based methods [17–19].
Recently, image processing techniques have been applied to

the peak picking problem and they have demonstrated promis-

ing performance [20,21]. Alipanahi et al. proposed a multi-stage
method, PICKY, to automatically identify peaks from a given
set of N–H-rooted NMR spectra [20]. PICKY considers an

NMR spectrum as an image and estimates the noise level by
estimating the variance in local neighborhoods, which is based
on the assumption that the noise is white Gaussian noise. All the
‘pixels’ of the image, i.e., data points of the spectrum, that have

intensity values lower than the estimated noise level are believed
to contain no signal and are thus removed. The disconnected
components of the remaining spectrum are identified, some of

which may contain a number of peaks due to peak overlapping
or inaccuracy in the estimation of the noise level. The compo-
nents are further decomposed to smaller ones by checking the

levels of overlapping of adjacent local maxima. Rank-one sin-
gular value decomposition (SVD) is applied to each small com-
ponent to identify peaks, which can eliminate false local

maxima in the component. Finally, cross-referenced informa-
tion between spectra that share common nuclei, such as 15N
and 1H, is used to refine the peak lists. Another contribution
of [20] is to propose a benchmark set that contains 32 2D and

3D spectra extracted from eight proteins. This is the most com-
prehensive data set to date for the peak picking problem.

Although PICKY demonstrated significantly better perfor-

mance than previous peak picking methods, it has two bottle-
necks. PICKY is not sensitive enough to replace manual peak
picking in the sense that weak peaks may be eliminated in the

denoising step of PICKY if they have intensity values lower than
the estimated noise level. On the other hand, the number of false
positives is high in PICKYpeak lists due to the fact that PICKY

ranks peaks by intensity values, which can be badly biased.
WaVPeak was developed to overcome these two bottlenecks
[21]. Like PICKY, WaVPeak is also based on image processing
techniques. Specifically, WaVPeak uses wavelets. Wavelets are

mathematical functions that cut data into different frequency
components. Each component is then studied with a resolution
matched to its scale.WaVPeak applies multi-dimensional wave-

lets to the NMR spectra to smooth the spectra. In contrast to
PICKY,WaVPeak aims to eliminate noise from the data points
instead of eliminating noisy data points. This can preserve the

shapes of the peaks, including the weak ones. Furthermore,
WaVPeak ranks the peaks by their estimated volumes. On
PICKY’s benchmark set,WaVPeak showed significantly higher
sensitivity and included a smaller number of false positives than

did PICKY. To bemore specific,WaVPeak achieved an average
of 88% recall value and 74% precision value.

One remaining problem in automatic peak picking is how

to select true peaks from a large number of predicted peaks
[9]. If a set of spectra is available for a target protein, the peak
lists for these spectra can be used as cross-checks for each

other [20,22]. For instance, the chemical shifts of 15N and 1H
in a true peak in a CBCA(CO)NH spectrum are expected to
be visible in the 15N-HSQC spectrum of the same protein

and they can be cross-checked. It is also possible to select
the true peaks of a single spectrum. To do so, Abbas et al. cast
the peak selection problem as a multiple testing problem in
statistics [22]. They first converted the peak ranking criterion,
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such as intensity or volume, into a P-value. They then applied
a Benjamini–Hochberg algorithm to control the false discovery
rate (FDR) and select the true peaks. Their method can be

potentially applied to different bioinformatic problems in
which true predictions must be differentiated from a large
number of false ones, such as protein function annotation

[23]. However, the Benjamini–Hochberg algorithm only selects
a ‘cutting point’ in the ranked peak list. Its performance there-
fore depends on the quality of the ranking criteria. Designing a

ranking measure that is better than volume or symmetry still
remains an open problem in peak picking.

Resonance assignment

After the peaks are identified, the peak lists from the through-
bond spectra are first combined to assign the chemical shift

values to the corresponding atoms of the protein. For reso-
nance assignment, the peaks that share common nuclei, 15N
and 1H, are first grouped into spin systems. The spin systems

are then assigned to the residues of the protein using both in-
ter-residue and intra-residue information contained in the spin
systems. Ideally, there are n spin systems to be assigned to n
residues. However, due to incomplete peak picking, there are

often missing spin systems, missing chemical shifts in spin sys-
tems and false spin systems, which make the resonance assign-
ment problem practically difficult. A variety of computational

methods have been explored to solve the resonance assignment
problem, including search algorithms [24–27], maximum inde-
pendent set algorithms [28], sequential algorithms [29,30], logic

algorithms [31], fragment-based algorithms [32,33] and optimi-
zation algorithms [34–37].

Many target proteins of NMR experiments have closely

homologous structures that are stored in the protein data bank
(PDB) [38]. Depending on whether the homologous structures
are utilized to assist the assignment process, resonance assign-
ment methods can be classified as either ab initio or structure-

based assignments. To make an assignment method practically
useful, themethodhas to be error-tolerant because the input peak
lists or spin systems could contain missing or false information.

Another major difficulty is caused by chemical shift degeneracy,
that is, the same nucleusmay have slightly different chemical shift
values in different spectra. This introduces ambiguities in the

assignment process, especially for large proteins and proteins
containing residues with similar chemical shift values, such as
all-a proteins, which is a class of structural domains in which

the secondary structure is composed entirely of a-helices.
IPASS was developed as an error-tolerant assignment

method that automatically takes picked peaks as inputs [34].
IPASS is built based on the optimization techniques. The

peaks from different spectra are first grouped into spin systems
by a two-round algorithm that can eliminate the effects of
chemical shift degeneracy. The spin systems are then evaluated

by a probabilistic model to calculate the probability of being
assigned to different residues. After that, the problem becomes
one of finding the mapping between the spin system set and the

residue set. Finding the optimal mapping, however, is NP-hard
in the worst case. IPASS formulates the problem as an integer
linear programming (ILP) formulation. For most of the cases,
the probabilistic model can reduce the search space to a

reasonable size in which state-of-the-art ILP solvers can find
the optimal solutions. Tycko and Hu, on the other hand,
solved the resonance assignment problem in a completely
probabilistic manner [30]. They formulated the assignment
problem as a local search problem and developed a Monte

Carlo simulated annealing algorithm to explore the assignment
search space. In this way, they could handle chemical shift
degeneracy and missing/false chemical shifts in spin systems.

When close homology to the target protein can be found in
PDB, the problem becomes more tractable. Jang et al. pro-
posed the structure-based assignment problem and developed

a general integer linear programming framework to solve the
problem [35,36]. Their method simultaneously assigns back-
bone chemical shifts and interprets NOE peaks. The underly-
ing idea is that given the homologous structure, a contact

graph can be built in which each node is a residue and each
edge denotes a pair of residues that are closer than 6 Å in
Euclidean space. A similar graph can also be built based on

spin systems and the NOE peaks that are associated with such
spin systems. In this graph, each node is a spin system and each
edge represents two spin systems that are associated by an

NOE peak. The goal is to find the common edge matching be-
tween the two graphs that maximizes the matching scores.
Their method was highly accurate, even when automatically

picked peaks were used as the inputs.
The performance of all the aforementioned methods, how-

ever, largely depends on the accuracy of amino acid typing and
secondary structure prediction of spin systems. Probabilistic

models have been built based on statistics from the Biological
Magnetic Resonance Bank (BMRB) [39], to predict amino acid
and secondary structure types of spin systems to reduce the

search space [34,35,40]. However, the accuracy of such models
remains modest, which leaves room for improvement.

NOE assignment and structure calculation

NOE assignment and structure calculation are often combined
together to calculate final structures [34,41–44]. A widely used

method is the CYANA package [43]. CYANA is based on lo-
cal search techniques, i.e., simulated annealing by molecular
dynamics simulations in the torsion angle space. However,

CYANA requires manually processed assignments and NOE
peaks to accurately determine the final structures. To make
the structure calculation more error-tolerant, Gao et al. devel-

oped AMR (automated NMR protocol) [2,34]. AMR is an
end-to-end computational pipeline that consists of the peak
picking module, PICKY, the resonance assignment module,

IPASS, and the NOE assignment and structure calculation
module, FALCON-NMR [45]. Given a target protein and its
resonance assignment, FALCON-NMR first searches for
homologs of the protein in PDB. If homologs are found, it re-

fines the structure by encoding chemical shift information.
Otherwise, it makes an ab initio prediction of the structure of
the protein. The chemical shifts are used to search for frag-

ments of the target protein, from which the backbone angle
distributions are extracted. An order-nine hidden Markov
model (HMM) is built to sample the conformational space.

It has been shown recently that little information is worthwhile
beyond the residues that are more than nine residues apart
[46]. The sampled structures are thus ranked by the ambiguous
NOE constraints and the top ones are selected to generate

fragments for the next iteration. FALCON-NMR works in
an iterative manner until convergence.
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The main bottleneck to ab initio protein structure calcula-
tion methods is that the size of the search space is intractable.
Although the aforementioned methods use chemical shift

information to significantly reduce the search space, they do
not work well on large proteins. Besides, NMR information
has mainly been used in the scoring function and the fragment

selection parts of such methods. A method that can encode the
chemical shift information to direct the search procedure may
give better scalability.

Automated structure determination from spectra

The ultimate goal for all the aforementioned efforts is to

greatly accelerate, and even fully automate, the currently
time-consuming NMR protein structure determination pro-
cess, i.e., from the set of NMR spectra to the final 3D structure

of the protein. Despite the large number of computational
methods developed for different steps of the NMR data pro-
cessing procedure, a crucial question is that whether the ‘‘iso-

lated’’ methods can be combined into a pipeline to work
together. In fact, this is one of the most important questions
for the general bioinformatics field. In bioinformatics, a com-
plex problem is often decomposed into smaller ones or consec-

utive steps. Computational efforts can usually solve the smaller
problems relatively well. However, such methods are devel-
oped independently of each other and often have different

assumptions, inputs and outputs, and error tolerant levels.
From a user point of view, it is very difficult to make a correct
combination of the methods to solve the big problem.

As mentioned in the previous section, Gao et al. developed a
fully automated pipeline, AMR, as a proof-of-concept [2].
PICKY was applied to identify peaks from a set of six spectra,

including 15N-HSQC, HNCO or HNCA, CBCA(CO)NH,
HNCACB, HCCONH-TOCSY and N-NOESY [20]. The six
peak lists were then used to cross check to remove false positives.
The refined peak lists were fed into IPASS for resonance assign-

ment [34]. IPASS was specifically developed to deal with highly
noisy and incomplete peak lists generated by automatic peak
picking methods. The resonance assignment was then applied

to assign NOE peaks. FALCON-NMR was used to calculate
the final 3D structure by using both chemical shift information
and distance constraints [34]. AMRwas applied on the spectrum

sets of four proteins and generated final structures within 1.5 Å
to the experimentally determined ones. Another successful at-
tempt is FLYA [47,44], which uses AUTOPSY as the peak pick-

ing tool [17], GARANT as the chemical shift assignment tool
[48], ARIA as the NOE assignment tool [49] and CYANA as
the structure calculation tool [43].

Outlook

Despite of some progress in developing computational meth-

ods for NMR data processing, the main bottlenecks to analysis
of NMR spectroscopy data remain, i.e., solving structures of
large proteins and solving loop structures. If the target protein

is a large protein, the number of atoms will be higher and the
spectra will become more crowded. On the other hand, if the
target protein contains flexible loops, their peaks tend to have
weak intensities and sometimes overlap with each other. To

overcome these bottlenecks, efforts have been extended in
three directions. First, NMR spectrometers with stronger mag-
netic fields, such as 950 MHz, have been developed and uti-
lized in labs. Such machines can generate spectra with much
higher resolutions and their peaks are more concentrated. Sec-

ond, higher-dimensional NMR experiments have been devel-
oped and used. Up to now, 6D spectra have been used in
practice [50]. Far fewer overlapping peaks are expected in

higher-dimensional spectra. Third, 13C-labeled spectra can be
used to replace traditional 1H-labeled proteins to reduce the
number of peaks significantly and thus reduce ambiguities.

Any of these directions will require computational efforts to
extend the current methods or develop novel methods to deal
with new types of data, especially for the peak picking step and
the structure calculation step.

Conclusion

Here, we have briefly reviewed recent advances in computa-
tional methods for NMR protein structure determination,
which is a relatively new field of inquiry for bioinformaticians

and computational biologists. We have provided a summary of
the advantages to and bottlenecks in existing methods and out-
lined some open questions. We have also discussed current
trends in the development of NMR technologies and have

pointed out directions for the development of future computa-
tional methods.
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