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Abstract

We study the twistorformulation of the classical\ = 4 super-Yang—Millstheory on the quadric submanifotd CP3B x
CP313. We reformulatethe twistorequationsin six dimension,wherethe superconformabymmetryis manifest,and find a

connectiorto complexifiedAdSs.
0 2005ElsevierB.V. Open access under CC BY license.

1. Introduction

Recently there has been a renewedinterest in
twistor formulationsof gaugetheories.By studying
the structureof maximally helicity violating amplk
tudes Witten has constructed anew formulation of
N = 4 gaugetheory[1]. The structureof theseam-
plitudes becomesapparentwhen transformingfrom
momentum to twistospacewheretheamplitudesare
supportedon holomorphiccurves.Follow-up works
extendedthis result for non-maximally helicity vio-
lating amplitudes[2], for “googly amplitudes”(i.e.,
amplitudesin the opposite helicity description|3],
for analyzingloop amplitudeg4] andgravity ampli-
tudes[5]. For further extensionof the formalismand
for advancesnthediagrammatics odmplitudecom
putationssee]6].
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Theseresultscan be interpreted[1] by formulat
ing N = 4 gaugetheoryasatopologicalstringtheory,
the B-model with target spacef the supermanifold
CP34. In this way the structureof perturbativeYang—
Mills amplitudesarisesby including the contribution
of D-instantons.Alternative string formulations for
describingthe perturbative\ = 4 twistor spaceam
plitudeshasalso been proposed [7], seealso[8]. In
this note we areinterested ina differentformulation
of the N = 4 SYM, proposeddy Witten [9]. Accord
ing to[9], thefull classicalyang—Millsfield equations,
notjust theself-dualor anti-self-duajpart,can be con-
structedin termsof a vectorbundleon a quadricsub-
manifold Q € CP3® x CP31, This formulationgen-
eralizesWard’s construction[10] of (anti-)self-dual
gaugefields from vector bundleson a single CP°.
A concisesummaryof Ward’sformulationis givenin
theappendixof [1]. Unlike the formulationon CP3/4,
the constructionfrom Q € CP3° x CP3R is parity
symmetrica helicity flip exchangethe twoCP3PBs.
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The connection between Yang—Mills theory and the
quadric Q has gained further interest through the re-
cent duality conjectures iropological string theory.
First, in [11] it was argued that an S-duality relates
the B-model onCP3* to the A-model on the same
supermanifold, see al§®2]. Secondly, it was conjec-
tured that by mirror symmetry the A-model @4
becomes the B-model on the quadgcin CP3® x
CP33. A proof of this mirror map was presented in
[13], see alsd14]. The D-instanton contributions of
the original B-model are mapped first through the S-
duality to perturbative A-model amplitudes. After the
additional mirror symmetry we arrive again at the B-
model, but without the D-instanton contributions. This
means the Yang—Mills equations could be directly re-
lated to the B-model on the quadric, and may thus be
formulated in terms of a holomorphic Chern—Simons
theory on this space. This possibility was already men-
tioned in[1], but for a concrete realization of this idea
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spaceM so that the coordinate € My are complex.

In this Letter we will write most equations explic-
itly in coordinates that are defined for non-compact
Minkowski space, but our results can be extended to
its compactified version, which we also denote\fy.
Undotted and dotted indices denote spinors transform-
ing in the (1/2,0) and (0, 1/2) representations, and
can be raised and lowered with the two-index anti-
symmetric tensoe. In spinor notation

Xag = Ufﬁldxﬂ = x08uq + X0uq.
The bosonic twistor equation is written @3

Vi+x,4VP=0, a=12. (2.2)

It can be viewed in two ways: given, it determines

a curve in the spac€P?, which is parametrized by
the homogeneous coordinateandy. The spac€P?

is called twistor space. The curve itself is a copy of

one needs to overcome the obstacle of finding a proper CP?, since the equation can be solved 16 of V,

measure on the quadric.

It is interesting to note that, while the B-model on
CP3* is related to weakly coupled/’ = 4 SYM, the
B-model on the quadric should again be give a strong
coupled formulation, since it follows from the con-
jectured S-duality for topolgical strings and mirror
symmetry[11,12] Furthermore, the target spa@e of
the B-modelis a complex five-dimensional supermani-
fold and is symmetric under the superconformal group
SU(4)3). Itis therefore natural to ask whether there is
a connection with th&dS; x $°, which is also dual to
the same theory in the same regime. In this Letter we
will make a step in this direction by reformulating the
(supen)twistor equations in a 6-dimensional notation
that makes the superconformal invariance manifest. In
our formulation 4d Minkowski space will be identified
with the lightcone embedded in the six-dimensional
flat space modded out by rescalings. This projective

or the reverse. In the analysis of the scattering am-
plitudes, this curve arises after Fourier transforming
the amplitudes from momentum to twistor space. Af-
ter the transformation, the amplitudes are localized on
the curve given by the twistor equation. From another
point of view, givenV“ and V;, the twistor equa-
tion determines a two-dimensional subspacévip,
called alpha-plane. The twistor equation is naturally
connected to the (anti-)self-dual Yang—Mills equation
via Ward’s construction. The basic idea of this con-
struction is that the information of (anti-)self-dual
gauge fields can be encoded in the structure of com-
plex vector bundles. Consider a complex vector bundle
over My with a connection on it. In general, paral-
lel transport with this connection is not integrable.
However, according to Ward’s construction, we have
integrability when restricting to the alpha-planes, if
and only if the gauge field is anti-self-dual. The set

version of 6d space has also other components, one ofof all alpha-planes is the twistor spa€®3. There is

which can be identified witihdSs. The twistor equa-
tions rewritten in the 6d notation take a particularly
simple form.

2. Twistor construction of the Yang—Mills
equations

Let us first fix conventions. We work in signature
n* ={—, 4, +, +}, and use complexified Minkowski

of course analogous construction for a self-dual gauge
field, where the complex 2-planes of integrability are
now called beta-planes. Thus by Ward’s theorem, an
(anti-)self-dual gauge field corresponds to a vector
bundle on the twistor spad&P?, and this vector bun-
dle is trivial when restricted to a 2-dimensional sub-
space defined by the twistor equation. It is natural to
try to extend this construction to the full Yang—Mills
equations. While the self-dual gauge field equations
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are algebraic, the full Yang—Mills equations are a dif-
ferential equation. If9] Witten achieves the extension
by embedding Minkowski space in a bigger space,
My x M. By writing x € My asx = 3(y + ) with

(y,2) € Mg x Mg,
one can split the 4d connectidf, as
(2.2)

The original Minkowski space thus corresponds to the
diagonaly = z inside My x My. The connectiorv,
satisfies the Yang—Mills field equations¥f, is anti-
self-dual,V; is self-dual and both connections mutu-
ally commute. Thus we have

V.=V, +V..

[Vy, Vi1 +[Vy, Vy]* =0,
[va vz] - [vzv vz]* =0 (2-3)

and
[Vy, V.]=0.
From these relations it follows that
[Vi, Vil = [Vy, Vy] + [Vz, Vz]
and finally the Jacobi identity implies
[VXv [v)h v)C]*]
=[Vy + Vo [V, V1 +[V2, Vo1 =0, (24)

One of the main points dB] is that a gauge connec-
tion can only be split in this way if it corresponds to
a vector bundle of€P® x CP®, again trivial on each
CP! x CPL. This is a very strong requirement that is
not satisfied by a general solution of the Yang—Mills
field equations. Every gauge field &fis, not neces-
sary satisfying any equation, is equivalent to a vector
bundle on the manifold

Qs = {(U, V) € CP® x CP®

4
D ugv® = o}. (2.5)
a=1

Herea = (a, a) is a four-component spinor index. The
spaceQs has complex dimension 5 and can be viewed
as the space of all lightlike lines 4. The lightlike
lines through a given point itvi form aCP! x CP?
inside 05, with oneCP! in each factor ofC P2 x CP3.

A vector bundle associated with a gauge field\énis
trivial on every suctCP! x CP!. Gauge fields that sat-
isfy the Yang—Mills equatio* F = O corresponds to
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Fig. 1. Twistor spac&€P3 and Minkowski spacl4 can be regarded
as the base of a fiber bundle with total sp&ege The corresponding
fibers are the alpha-plang5 and cprl.

a vector bundle o5 that can be extended to a small
local neighborhood o5 inside CP? x CP3. To be
precise, it is necessary and sufficient to extend the vec-
tor bundle fromQs up to third order in a local Taylor
expansion. This means that the vector bundle actually
lives on a quadric given byU, V¥)* = 0, which can
then be taken as the actual defining equatiorQef
The extension of the connection to third order away
from Qs also implies that the Yang—Mills gauge field
can be extended Wl x My away from the diagonal
up to third order in thev = y — z. Ward’s construction
relates a connection o@s to an anti-self-dual con-
nectionV, and self-dual connectiovi,, but to get the
Yang—Mills equations these connections also have to
commute in the neighborhood of the diagonal. This is
what leads to the above mentioned requirements.

It is useful to compare this twistor construction of
the Yang—Mills equations with the usual one for the
(anti-)self-dual equation in terms of a schematic dia-
gram, as indicated iRkig. 1 Complexified Minkowski
M4 and the usual twistor spa@P’3 can both be seen
as projections of the same five-dimensional space de-
noted byFs. The CP* fiber overM, corresponds to
the set of all alpha-planes through a given point. The
two-dimensional fiberZ5 over CP? is just the alpha-
plane itself. Similarly we can construct a fiber bundle
over Qs by taking the lightrayC; ~ CP* parametrized
by a point inQs as the fiber. The resulting total space
Fe is also a fiber bundle ovévl, with fiber equal to
CP! x CP?, which is the space of all lightrays through
a given point oM. This is shown irFig. 2

2.1. Supersymmetric extension

As in the bosonic space, we can examine if the
supersymmetric Yang—Mills equations are equivalent
to an integrability conditns along lightlike lines
through a given point in the superspace. It turns out
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Ly Lipn
Fe Qs Fojan Qs
1 \ 1 \
CP* x CP CP* x CP
My Myjan
Fig. 2. The total spacé is fibered over the space of lightragss Fig. 3. The total spacs 4y is fibered over the space of supersym-
with the Illghtraylll_l itself as fiber. Points in Minkowski spadé4 metric lightraysQs;2y as well as over supersymmetric Minkowski
lift to CP* x CP* fibers inFe. Myjay . The corresponding fibers are the superlightiayy and
CP! x CPL.

that this is indeed the case fo&f = 3 or ' =4 su-
persymmetry (these two theories are basically equiv- The supersymmetry and superconformal variations
alent). The supertwistor equations for the alpha-plane which leave the beta-planésvariant are completely

are[1] analogous. By comparing the transformation rules we
v, +xaRdV” —0, a=12 gr;d the chiral and anti-chiral coordinates are related
Y +0,4Vi=0, I=1,...,N. (2.6)

Xgq = ~Xgy +6a16; -

Here we introduced anti-commuting coordinafgs,
I =1,....N for N supersymmetries. The super- Super lightrays are obtained by intersecting the alpha-
twistor spaceCP3 is thus parametrized bev @, V, and beta-planes. Imposing both the alpha-plane equa-
¥!), where they! are spinless anti-commuting vari-  tions (2.6) as well as those for the beta-plan@s7)

ables. Analogously, the beta-plane equations are givenleads to a condition on the supertwistors. Namely, one

as only obtains a non-trivial solution provided that

Ua +x45U% =0, UaV + UV + ! =0, 2.8)
1 Iyra

n' +6,U"=0. 2.7) This defines the generalization of the manifgld to

The pair of Eqs(2.6) for the alpha-planes can, as in the supersymmetric situation
the bosonic case, be found by a partial Fourier trans-

formation of the MHV amplitudes to twistor space. sy = {(U,n, V, ) € CPAY < CPY|

Similarly, the beta-plane equatiorf2.7) arise by a UV + ! =0}. (2.9)
Fourier transformation of the MHV amplitudes with
opposite helicity. It turns out, however, that the
coordinate that appears in these equations is different
for the left-handed and right-handed helicities, hence
the superscript.

The alpha- and beta-planes are invariant under su-
persymmetry and superconformal variations. The su-
persymmetry variations which leave the set of alpha-
plane equations invariant are

The quadric submanifol®spy is the space of all
supersymmetric lightlike linegl5]. Just as in the
bosonic case one can define a fibre bundle over it
with total spaceFgj4n, Which projects down oy
alongCP?! x CP* fibers, sedig. 3.

The supersymmetric lightlike lineS; 2, unlike in
the bosonic case, are not one-dimensional, thus inte-
grability along them is not any more a trivial con-
dition. According to[9], for A/ = 3 supersymme-
SxR = —€lo,r, 86041 = €14, try the integrability on the quadric corresponds to

| _ a the /' = 3 supersymmetric equations of motion. For
Va=—€yr  Sr=—caV". N = 4 supersymmetry an additional condition is nec-
The alpha-planes are also invariant under the super-essary, seg]. Henceforth, in the rest paper we will
conformal variations take N = 3. Ward’s construction relates a vector bun-
dle on Q56 to a supergauge field on supersymmetric
Minkowski spaceéVly12. It is an interesting open prob-
sV =&y, Sy =V lem whetherN = 3 SYM can be reformulated as the

ble

R R _ zbJ
SxR =xRebg,, 861 = 6? i — €7 0p16ar,
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holomorphic Chern—Simons theory corresponding to a
B-model topological string o@s;s. The quadria?se

is a Calabi-Yau supermanifold, thus the B-model in
principle can be constructed on it, and as mentioned
before, the existence of the B-model on the quadric
is also supported by a conjectured duality chain. The
main problem in formulating the holomorphic Chern—
Simons theory appears to be the definition of the ap-
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The first component of this equation gives

XTVy+ Xaa Ve =0. (3.6)

By using the scale invariance to defing = X5/ X+,
one recognizes the twistor equati¢2.1). The sec-
ond component gives an additional equation, which
is equivalent to the twistor equation provided

propriate measure. This question will not be addressed — XX~ + X, X" = 0.

in this Letter. Our main concern is the reformulation of
the twistor equations in a manifestly superconformal
fashion, and in this way clarify the role of the quadric
in super-Yang—Mills.

3. Thetwistor equationsin six-dimensional
notation

The 4d Minkowski spac®l can be identified with
the set of all lightlike directions in a 6d flat space—time
My 2 with signature——++++ and metric
ds?=—dX*dX~ +dX,dX", u=1,...,4

(3.1)
Specifically, a lightlike direction iM4 2 can be para-
metrized as

(XT, X7, X)) ~ (1, %% x,), (3.2)

wherex,, are the coordinates for a point i andx?

its length.The 6d isometry grougD(4, 2) acts as the
conformal group oM. Twistors are naturally formu-
lated in this six-dimensional language. In this way, a
twistor corresponds to a chiral spinor

()

transforming in the4 of SU(2, 2). For every point in
the 6d space—time we canfole the anti-symmetric

matrix
Xte.;

X(xﬁ = ( ab ) s
_XaB

where we used the spinor notation introduced before,
s0X,; = GZ}X“' The twistor equation then takes the
simple form

Va'

- (3.3)

Xpa

4
CX-ey (3-4)

X VP =0. (3.5)

This is the lightcone condition on the six-dimensional
embedding space. We thus recover the standard twistor
equation describing the anti-self-dual alpha-plane in
M. In the six-dimensional spadéls > where rescal-
ings are not modded out, the twistor equation defines
an anti-self-dual null 3-plane through the origin. We
will also call this alpha-plane. Similarly there are beta-
planes that are self-dual and that can be described via
a similar twistor equation but with the dotted and un-
dotted indices interchanged. Specifically, we can raise
indices as

X = %e“ﬂyf‘x,,a, (3.7)
whereePib — ¢abeab (other entries follow by permu-
tation). The twistor equation for beta-planes then takes
the form

X*PUg=0. (3.8)

Imposing both type of twistor equations amounts to
intersecting the alpha- and beta-planes. Generically
these only intersect in the origin of the 6d space. In
Minkowski space this means there is no intersection at
all. To get a non-zero intersection one should impose
that

Uy V¥ =0, (3.9)

This can be seen most easily in components:
XtU,V* = -UbX,;V® = —X*UV;. The intersec-
tion of an alpha- and beta-plane yields in this case
a null two-plane through the origin in 6d, and corre-
sponds to a lightray in 4d.

3.1. Superconformal invariance
We now proceed with the supersymmetric exten-

sion of the alpha- and beta-planes on the quadric. The
starting point is that the set of supertwistor equations
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has to be invariant under the superconformal group We only consider the equations for the alpha-planes.

in six dimensionSU (4/3). The superconformal group
acts linearly on(Uy, n;) and on (V¥ !), which
transform in the conjugate representatigds3) and
(4/3). Since the R-symmetry groupis(3), then; and
y! arein different representations. Taking the product
of the (4]3) with itself we look for the anti-symmetric
combinations. The anti-symmetric 6 is identified with
the X4, While the anti-symmetric odd 12 are ttg .
The representation is completed by taking the sym-
metric combination 6 of3 x 3), let us call this®; .
The symmetric fieldp; ; can be thought of as a metric,
which can be used to raise and lower the3) indices.
The superconformal generators satisfy

{Qé, Q/f;} = Maﬂ(sﬁ +8aﬁMIJ

whereM,” are the Lorentz generators, here written as
a matrix in the fundamental representationsuf(4),
and theM;’ the SU(3) R-symmetry generators. The

superconformal generators contain both the supersym-

metry and additional conformal generators, which in

the four-dimensional notation appeared separately. For
the invariance of the twistor equations under the super-

To reducg3.10)and(3.11)to the 4d twistor equations
(2.6) one first converts the four component indices
andg to two-component notaih. In addition, one has
to identify the 4d coordinateﬁf(j andg, in terms of
the 6d ones. This turns out to be trickier than one might
have expected at firstfd andg, are non-linearly de-
fined in terms of the 6d coordinates. With hindsight
this is not surprising because the 4d superconformal
symmetries act non-linearly on the coordinates, while
the action on the 6d coordinates is linear. After a bit of
straightforward but tedious algebra one finds that the
correct identifications are

1 .
X = (Xaa — @a’@M)/(X+ - E@a’@%),

0l =0, —xR o (3.13)

The coordinatep!’ was used to raise and lower in-
dices, and disappears in the 4d picture. The reduction
of the beta-plane equatiof.12)to four-dimensional
notation proceeds analogously.

conformal group, we put the equations in the smallest 4. Combining alpha- and beta-planes: connection

possible representatiof#|3) of the superconformal
groupSU(4]3). We obtain the four even and three odd
equations

XapV? + 6479, =0,
O, Ve + @y, =0.

(3.10)
(3.11)

This set of equations describes the super aIpha—pIanesxw — 42
and are invariant under the action of the superconfor-

with AdSs

The twistor equations for the alpha- and beta-planes
are scale invariant in 6 dimensions. One can add a
point at infinity by introducing another coordinate
chart obtained by the inversion map

Xaop

2 _
X2’ X=

1
Ee“ﬁV‘SXa/;X,,a, (4.2)

mal generators. Indeed, examining the action of the Wheregzis an arbitrar){ SC&'?. I_n\_/ersion sgnds the |Ight-
generators on the set of twistor equations, we find that coneX“ = 0 to the point at infinity. We will argue that

(3.10)is annihilated byQ!., and is mapped int(8.11)
underQ/;. The odd equation@.11)are mapped to the
even equation$3.10)under Q! , and are annihilated
by the Q‘?. The beta-plane equations can be derived

by analogous reasoning and read
Uy X% + 9P ; =0,

Uy®% +n’ @7 =0. (3.12)

The relation between the alpha- and beta-plane equa-

tions will be further clarified in the following section.
We end this section by explaining how to get the
supertwistor equations in the 4d notation of Secfion

it also exchanges the alpha- and beta-planes. We first
consider the bosonic twistor equations. We use the pa-
rameters to modify the bosonic twistor equation as

follows

Xop VP = U, 4.2)

Further, instead of the lightcone we consider the five-
dimensional submanifold

X2 =42, (4.3)

This equation describes a complexified (anti-)de Sitter
space. What we have achieved by introducing the para-
meter¢ is that on the submanifol@.3) the modified
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alpha-plane equatiof#.2) is equivalent to the analo- and beta-plane equations can be written in matrix form

gous equation for the beta-plane by combining the coordinates as follows
XPUg =¢V,. (4.4) (X e
. . . ¢ . (4.8)
This follows from the identity e o
XXy, 2523%, The only difference between the alpha- and beta-

planes is that in one case the indices are up and in the
other case down, and more importantly tt¥&t n) and
(V,¢) are interchanged. It is now easy to see that the
two sets of equations are consistent o O if and

where we made use ¢4.3). Whene # 0 we have the
freedom to rescal& and put; = 1. In this case the
submanifold(4.3) is the fixed locus of the inversion

map. Furthermore, in the limit — O one recoversthe o it the matrix (4.8) is invertible, and its inverse

“old” equatiorls(3.5)an<_j(3.8), and the AdS-manifold ;g simply obtained by replacing upper with lower in-
_reduces again to the Ilgh.tcone.. The above proce_duredices_ This leads to the relations
is analogous to the way in which the massive Dirac
equation redu'ces to two decoupled Weyl equa'uon for X4 X5+ @0{,@51 _ 4.25055,
the left- and right-handed components of a spinor. In ; P -
this analogy the parameteiis as a “mass”, an#f and O% Oy + P @ =
U the left-handed and right-handed Wey! spinors.
: . . and

This construction can be generalized to the super-
tW|stpr equations. The m9d|f|ed form of the supersym- xob @,sl L0, =0,
metric alpha-plane equations read 5 ,
OF 1 Xgy + P10, =0.
Xap VP + O s = (U, - ‘
Ol Ve !y, =y, (4.5) With th_ese r_elatlons$4.5) is equivalent to(4.7), and

hence it suffices to keep only one or the other set of

where we added the supertwistors for the beta-plane equations.
equations on the right-hand side, mU|t|p||Ed with an To show the equiva|ence we assumed mat 0.
auxiliary parametes . Note that the modification with Byt now we can take the limi — 0 and obtain both

¢ # 0 is consistent with th&U (4/3) superconformal  the alpha- and the beta-plane equations. In this limit
symmetries. All of the variables appearing here are

projective coordinates: one has the freedom to rescalexaﬁxaﬁ —0%,0,' =0. (4.9)
(U, n) and(V, ¢) by arbitrary and independent com- . _ _ .
plex variables. We can alsescale the coordinates This describes the superlightcone in 6d. But whea

(X, ®, ®) simultaneously witft . In principle this al- 0 we find
lows us to put the parameterto an arbitrary value. » Y ; 5

Egs.(4.5)directly imply the quadric relation XTXap —O% 1Oy = -4 (4.10)
Uy Ve + 9yl =0 (4.6) Here we recognize a complexified supersymmetric

version of AdSs. The appearance &#dSs is not en-
tirely surprising in view of the symmetries of the equa-
tions and the use of a 6d notation. What aboutsP®
Could this be described by the coordinates? In our
UsXP¥ 4 0% =¢ve, description thesU (4) R-symmetry ofA/ = 4 has been

broken to (complexifie (3). This suggest that one
Ua® 1+ ®ron’ =y 4.7) should not(expepct to findc?;UaS’i3 because igtJigs not consis-
We now require that these equations are consistenttent with the symmetries. But it is interesting to note
with (4.5). This leads to a number of relations between that® can be identified with the (complexified) space
the X, ® and® coordinates with upper and lower in-  of symmetricSU(3) matrices, which is isomorphic to
dices. Let us first take # 0. Note that both the alpha-  SU(3)/S0(3) and is indeed 5-dimensional.

as can be seen by replacitig and,’ by the expres-
sions on the I.h.s. We can modify the supersymmetric
beta-plane equations in a similar way
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5. Commentson the application to Yang-Mills coordinates(y, z) € My x My introduced in[9] and
theory described in SectioR. There we wrote the Minkowski
coordinate as = %(y + z). By applying the same line

In this note we studied the twistor construction of thoughtto our AdS description we write
of classical V' = 3 super-Yang—Mills theory on the
quadric submanifoldss of_(C}P’3|3 X (CIP’_3|3. Wegave  x,, — }(yaﬁ + Zap) With Yo VP =0, UyZ% =0
a reformulation of the twistor equations in six di- 2
mension, anq descriped the (anti—)self-duql alpha— and ith Y2 = 72 — 0. Hence up to rescaling we have=
beta-planes in a manifest superconformalinvariantno- (1 2 vy andz = (1, 2, z) with (v, z) € My x My.
tation. _T_he _superconforn_‘nal symmeFry natura_lly allows The modified twistor equations fof,s imply
a modification of the twistor equations leading to an
intergsting co.nnectior) witihdSs and ifcs supersym- - yufrr, — 20y, ZagVP =2 U,. (5.4)
metric extension. An important question is what this
implies for the Yang—Mills theory, and whether our These equations are consistent provided that
construction can be applied to the AdS/CFT corre- Y*#Z,5 = —8¢2. In terms of z and y this gives
spondence. In this concluding section we will present (z — y)2 = 42, In other words, the parametercan
some comments regarding this questions for the purely be interpreted as the distaneé = (z — y)? between
bosonic twistor equations. A more complete investiga- the two pointsy andz. This observation suggests that
tion is left for future work. the gauge field on the AdS submanifold can be ob-

Our six-dimensional view on the twistor equations tained from the connectiong, and V; in a point
can be used to extend a 4d gauge field to a 6d gauge(y. z) € M4 x M4. However, a slightly confusing point
field as follows. First one uses the fact that any 4d is the following. In Sectior? it was noted that an ex-
gauge field can be represented as a vector bundle oveitension away from the diagonal s x My requires
Os. Then by applying a generalization of Ward’s con- the Yang—Mills equations to be satisfied. But here we
struction to our 6d bosonic twistor equations one ob- just argued that we can extend any gauge field to 6
tains a Yang—Mills field in six dimensions. Indeed, dimensions. We believe the resolution is that for the
according to Siege]16], a 4d Yang—Mills field, not ~ construction of the 6d gauge field it is not necessary
obeying any equations, can be mapped on to a 6dthatV, andV, mutually commute.

gauge field satisfying We end with some final comments. All these equa-
tions have presumably a supersymmetric extension.
XAFapc =0 (5.1) In that case one does also obtain the super-Yang—
with Mills equations: integrability along the superalpha-
and beta-planes gives the familiar constraint&yet 3
Fapc = X[aFBc, (5.2) supersymmetry which imply the equations of motion.

) o It would be interesting to work this out in detail in our
where A =1,...,6 are the 6d space-time indices. formalism. We leave this for future work. Our work
Here we followed the notation dfl6]. This equa- 4y pe helpful in making a connection to the topolog-
tion expresses the integrability of the gauge field along 41 B-model on the quadric, and represent the Yang—

alpha- and beta-planes. Thus a vector bundi@ers Mills theory as a holomorphic Chern—Simons theory
related through a generalized twistor constructionto a 5, the quadric.

solution of(5.1). The Yang—Mills field equations are Finally, it would be interesting to examine if the

in this notation N = 4 gauge theory amplitudes can be formulated in
(5.3) terms of the twistor spac@s;s. Although the ampli-

tudes are in the weak coupling region, it is possible
To get a solution equatiofb.3) one has again to lo-  that one can find a sign of the quadric by performing
cally extend the vector bundle t6P% x CP3. An a kind of Fourier transformation. Such a formulation
interesting observation in this context is that the anti- would have the advantage of being symmetric in both
de Sitter space that we found can be related to the helicities.

VAFapc =0.
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