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1. Introduction

Chebyshev polynomials are a sequence of recursively defined polynomials. They appear in many
areas of mathematics such as numerical analysis, differential equations, number theory and algebra
[10]. Although they have been known and studied for a long time, they continue to play an important
role in recent advances in many subjects, for example in numerical integration, polynomial approx-
imation, or spectral methods (e.g. [8]). It is interesting to note that they also play an important part
in the representation theory of algebras (e.g. [4,6,7,11]). There are several closely related Chebyshev
polynomials. Amongst these, the polynomials usually referred to as Chebyshev polynomials of the
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first kind, and Chebyshev polynomials of the second kind are the ones that often naturally appear;
for example, they arise as solutions of special cases of the Sturm-Liouville differential equation or in
dimension counting in representation theory (e.g. [1,5,9]).

For Chebyshev polynomials of the first and the second kind, the recursive definition is equivalent
to a definition by a determinant formula. Symmetric integer matrices are a key to this definition.
Focusing on the polynomials of the second kind, we exhibit some surprising properties of Chebyshev
polynomials in relation to these symmetric matrices. In fact the symmetric matrices we consider are
adjacency matrices of Dynkin diagrams and extended Dynkin diagrams. Dynkin diagrams play an
import role in Lie theory, where they give a classification of root systems. However, they also appear
in areas that have no obvious connection to Lie theory as for example in singularity theory where they
are linked to Kleinian singularities, or, for example, in representation theory of algebras where they
classify symmetric algebras of radical cube zero of finite and tame representation type [2].

The motivation for the study of the Chebyshev polynomials evaluated on matrices comes from the
representation theory of the algebras classified in [2]. We begin with a detailed study of the Chebyshev
polynomials evaluated on adjacency matrices of Dynkin diagrams, where we show that in the case of
Dynkin diagrams, the families of polynomials are periodic and in the case of the extended Dynkin dia-
grams the families grow linearly. We then show as an application how the general results we obtain can
be applied to the representation theory of the symmetric algebras of radical cube zero. We will see that
the Chebyshev polynomials govern the minimal projective resolutions for these algebras and that they
give rise to a method to calculate the constituents of minimal projective resolutions of simple modules.

We will now outline the content of this paper. In the next section we recall the definition of Cheby-
shev polynomials of the second kind, we define the polynomials we will be working with and we
introduce the Dynkin diagrams together with a labeling of these diagrams which we will use through-
out the paper. In Section 3 we evaluate Chebyshev polynomials on the adjacency matrices of Dynkin
diagrams and extended Dynkin diagrams. In Section 4 a link with the representation theory of symmet-
ric algebras of radical cube zero of finite and tame representation type is described. In particular, we
show how the results of Section 3 can be used to calculate minimal projective resolutions of the simple
modules. Finally in Section 5 we show a more general result on Chebyshev polynomials evaluated on
positive symmetric matrices.

2. Definitions
2.1. Chebyshev polynomials

We briefly recall the definition of Chebyshev polynomials of the second kind; good references
are [10,12].
The Chebyshev polynomial of the second kind U, (x) of degree n is defined by

Up(x) = sin(n + 1)8/sinf  where x = cos6.
From this definition the following recurrence relations with initial conditions can be deduced
Up(x) = 2xUp—1(X) — Up—2(x) with Up(x) = 1 and Uy (x) = 2x.

Furthermore an easy calculation shows (see also [12] page 26) that U, (x) = det(2xI, — A;,) where A,
is an n x n matrix that has zeros everywhere except directly above and directly below the diagonal
where all the entries are equal to one.

We will work with the version of the Chebyshev polynomial defined by

fo() = det(xI — Ap)

where A, is defined as above, and I is the identity matrix. These polynomials are also sometimes
called Dickson polynomials of the second kind. An easy calculation shows that f;,(x) is defined by
the recurrence relation f,(x) = xf,—1(x) — fu—2(x) with initial conditions fo(x) = 1 and f;(x) = x.
Furthermore, we set f_1(x) = 0. All matrices have entries in Q.
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2.2. Dynkin diagrams and adjacency matrices

The Dynkin diagrams and extended Dynkin diagrams we are going to consider are the ones of type
A, D, Eand A, D, E as well as the diagrams of type L, L, and DL (see Appendix).

Let G be an undirected graph with n vertices labeled by the set {1, 2, , n}. The adjacency matrix
of G is a n x n matrix where the entry in position (i, j) is given by the number of edges between the
vertices i and j. Modulo conjugation by a permutation matrix, the adjacency matrix is independent of
the choice of labeling.

However, in what follows we work with particular adjacency matrices corresponding to a particular
labeling of the graphs. We refer the reader to the Appendix for the labeling of the diagrams we have
chosen. In the case of the Dynkin diagrams this labeling corresponds to the Dynkin labeling. It follows
from Lemma 3.1 in the next section that our results are, up to permutation, independent of the labeling.

Our goal is to evaluate the Chebyshev polynomials of the second kind on the adjacency matrices of
the Dynkin diagrams and the extended Dynkin diagrams as well as the diagrams of type L, L, and DL.

3. Evaluating Chebyshev polynomials
3.1. Evaluating Chebyshev polynomials on matrices — general results

In this section we list some useful facts about evaluating the Chebyshev polynomials on matrices.
We begin with a lemma collecting some straightforward facts.

Lemma 3.1. For any square matrix M, we have Mfi,(M) = f,(M)M and for any symmetric matrix S, the
matrix fi (S) is symmetric for all k > 0. If T is an invertible n x n matrix then for all n x n matrices M we
have fi (TMT™1) = Tfi, (M)T ™.

Definition 3.2. Let X be a square matrix, we say that the sequence of matrices (f (X))o is periodic
of period < p, if p > 1 and if p satisfies f,_1(X) = 0and f,(X) = I.

Remark. Suppose that (fi(X))r>o is periodic of period < p. Then for any integer k, we can write
k =gqp+ rwith0 < r < p,and fy(X) = f;(X).

Lemma 3.3. Assume X is a square matrix such that f3(X) = 0 for somed > 1. Thenfor0 < k < d + 1,
we have

(%) JarkX) + fa—k(X) = 0.

Moreover, fq4+1(X) = 0, fog4+2(X) = I and hence fo443(X) = X. Therefore the sequence (fi (X))o is
periodic, of period < 2d + 2.

Proof. The recursion for the Chebyshev polynomials can be rewritten as
Xfm () = fin+1() + frn—1(x), for m > 0.

Consider now x*f4(x) for 0 < k < d + 1 and substitute x = X. Since f;(X) = 0, induction on k will
show that X¥f;(X) = farkX) + fa—kX) =0,for0 < k < d+ 1.

The case k = 0 is clear. Assume now that the statement is true for all j where j < k and suppose
k < d+ 1.Then

0 =X"Tf(%) = XX ()]
= X[fa+£X) + fa—r(X)]
= fatkr1X) + fagk—1) + fa—k1 X)) + fa—k—1(X)
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= farkr1 ) + XX + fak—1 (X)
= fark+1(X) + 0+ fa—k—1(X)

as required.

For the last part, let k = d + 1 and recall that f_1(X) = 0, hence foq+1(X) = 0. Then let k = d,
and recall that fo(X) = I which implies f,4(X) = —I. Since fo4+1(X) = 0 we can apply (*) with
2d + 1 instead of d. We then obtain fo442(X) + f24(X) = 0 and hence fog4+2(X) = I and finally
fa3X) =X-1-0=X. O

If for some d > 1 the matrices f3(X) and f34+1 (X) are equal, then periodicity follows by Lemma 3.3.

Lemma 3.4. Assume X is a square matrix such that f;(X) = fa+1(X) for some integer d > 1. Then for
1 <k <d+1,wehave

fd+1+k(x) = fa—k(X).
In particular, f¢12(X) = 0.

Proof. Assume f3(X) = fy+1(X). Then we have
fam1X) = Xfa(X) — fa1(X) and far2(X) = Xfg11(X) — fa(X)

and hence fy—1(X) = fy4+2(X). For the inductive step, assume the statement is true for 1 < m < k.
Then

Ja—kX) = Xfa—k11(X) — fa—kr2(X)
= Xfa1kX) = fark—1(X)
= farkr1(X). O

Some matrices allow a reduction, based on the following lemma, which gives a criterion to deter-
mine when a sequence of matrices has linear growth.

Lemma 3.5. Assume X is a square matrix such that for some matrix Z and for some q > 2 we have
fqX) = fq—2(X) + Z, and where ZX = XZ = 2X. Then

(a) for1 <t < q—1, we have

fg—2—t(X) + 2fe(X) t odd

X) = f
le-f( ) fq_2—t(X)+2ff(X)+(_1)§+1(21_Z) t even,

(b) ifZ =2I, fort > —1, we have foq1¢(X) = 2fg1e(X) — fr(X),
(c) ifZ=2landm =rq+ uwhere —1 < u < q—2andr > 2, we have
frq+u(x) = rquru(X) — (r = Dfu(X).

Corollary 3.6. Assume X is a square matrix such that for some matrix Z we have f3(X) = fq—2(X) + Z,
for q > 2 and where ZX = XZ = 2X and where Z # 2I. Then
27 — 21 q odd

X) = fag—2(X) = =
f2q(X) = fag—2(X) 22_21+(_1)q7+1(41—2z) q even.
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Proof. By the Chebyshev recursion formula we have f;(X) = Xfog—1(X) — foag—2(X) and 2q — 1 =
q+ (q—1)and 2q — 2 = g+ (q — 2). Therefore we can apply Lemma 3.5(a) and the result follows. [J

Remark. (I) Later, the matrix Z will often be equal to 21. In this case (a) is equal to fg 1+ (X) = fg—2—¢(X)+
2f¢(X). Furthermore, an easy calculation shows that (c) becomes frq+,(X) = 1fg—2—u (X) +(r+1)fu(X).

(IT) Observe that part (a) describes fi (X) forq < k < 2q—1.Since every natural numberm > 2q—1
can be written in the form given in part (c), this gives a description of fi (X) for all k > q. It thus follows
from the formula in part (c) that a sequence (fi (X)) that satisfies the hypotheses of Lemma 3.5 with
Z = 2I has linear growth.

Proof of Lemma 3.5. (a) We use induction on t. For t = 1, we have

fq+1 (X) = qu(X) _fq71 (X)
=Xfg—2(X) +XZ — fy_1(X)
= Xfg—2(X) +2X — fo—1(X)
= fg—3X) + 2f1(X)

if we recall that f; (X) = X.

For t = 2, we have

Ja2(X) = Xfar1 (X) — fo(X) = X(fg—3(X) + 2f1(X)) — fg(X)
= Xfg—3(X) + 2Xfi(X) — (fy—2(X) +2)
= fq—a(X) +2f(X) + 21 - Z.

For the inductive step suppose first that t is odd. Then we have

Sort+1X) = Xfg e ) — fgre—1(X)
= X[fg—2—tX) + 2 (X)] — [fg—2— =1y X) + 2f—1(X) + -1)7 @I -2)]

+1

= foma-1y () + 265100 + (=1) T @21 - 2).

Now suppose that t is even. Then we have

Fare1 ) = Xfgs e X) = fype1 (0
= X[fy_2+(X) 4 2600 + (=177 @ = 2)] — [fy—2— 1) (X) + 21 (0]
= fya— 1)) + 21 (X) + (1) 312X — 2X)
= fo—2— e+ X) + 2fr11(X)

since ZX = 2X.
(b) The case t = —1 follows from part (a). Let t = 0, then

J2qX) = Xfrg—1(X) — fag—2(X)
= X[2f4-1X)] = [2fg—2(X) + fo(X)]
= 2,X) — 1

where the equality foq_2(X) = fo(X) + 2f;—2(X) follows from part (a). Let ¢ > 1, and assume the
equation holds fort — 1 and t — 2, then

Faq+t(X) = Xfagtt—1) X) — fagt(—2) (X)
= X[2fg1t-1(X) — fim1(X)] = [2fget—2X) — fr2(X)]
= 2fg1t(X) — f: (X).
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(c) The case r = 2 follows from part (b). Assume now r > 3 and write rq + u = 2q + t where
t = (r — 2)q + u. Then by part (b) we have

(%) SrgruX) = foqt(X) = 2fge(X) — fr(X).

If r = 3 then 2q + u = q + t and using part (b) again we have f;(X) = 2fg1u(X) — fu(X).
Substituting this into equation () gives

f3q+u(x) = Z[qu+u(x) _fu(X)] _fq+u(x) = 3fq+u(x) - qu(X)

as required.
Now let r > 3. We write (r — 1)q + u = q 4 t and (r — 2)q + u = t. Then equation (*) gives

frq+u(x) = 2fq+t(X) _ft(x)
= 2[fr—1)g+uX)] = fr—2)g+uX)
=2[(r = DfgruX) — (r = Dfu(X)] = [(r = 2)fgu(X) — (r — 3)fu(X)]
= fgruX) — (r — Dfu(X)

and this completes the proof. []

Definition 3.7. Given some n x n matrix X, we define X to be the matrix obtained from X by reversing
the entries in each row. In particular, in 10 the i,n — i+ 1-th entries are equal to 1 forall1 <i < n
and all other entries equal to zero.

Note that (X°)° = X, and that X° = X - I°. Furthermore, we write I? if we need to specify the size
of the matrix.

With this we have the following variation of Lemma 3.5. The proofis a straightforward modification
of that of Lemma 3.5 and we leave the details to the reader.

Lemma 3.8. Assume X is a square matrix such that for some matrix Z and for some q > 2 we have
fqX) = fq—2(X) + Z, and where XZ = 2XO. Then

(a) for1 <t < q— 1, we have
FareX) = fma—e(X) + 2, (X)°.

In particular, fq—2(X) = 2f3—2(X)® + I and fog—1(X) = 2f3—1(X)°,

(b) fort = —1 we have fog+(X) = 2f4:(X)° — fr(X),
(c) ifm=rq+uwhere —1 < u< q—2andr > 2, we have

Faru(X)° — (r — Dfu(X) reven
frq+u(x) =
faruX) — (r — Df,(X)° 1 odd.

Remark. Note if Z is equal to 21° then (c) can be rewritten as

Mfa—u—2(X)° 4 (r + 1)fy(X) reven
frq+u(X) =
Mfg—u—2(X) + (r + 1, (X)° r odd.
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3.2. Substituting type A

In this paragraph we evaluate the Chebyshev polynomials on the adjacency matrix of a Dynkin
diagram of type A. This will be the basis for the calculation of almost all the other finite types as well
as all the extended types.

Assume A is the adjacency matrix of a Dynkin diagram of A,;, n > 2. Then by the Cayley-Hamilton
Theorem we know that f,(A) = 0 and by Lemma 3.3 the sequence (fx(A))k>o is periodic of period
< 2n+ 2.

Let O be the subset of ® = {(i,j) : 1 <i < n, 1 <j < n}given by

O ={(i,j) :k+2<i+j<2n—k i+j=k(mod2), —k <j— i<k
We think of this as a subset of N x N. Note that ® consists of the points in ® of parity i + j =
k(mod 2) which lie in the rectangle given by the lines
x+y=k+2, x+y=2n—k,y—x=k, y—x=—k. (1)

This rectangle has corners (1, k + 1), (k + 1, 1) and (n — k, n), (n, n — k). In particular, ®, = ¢
and ®_; = @.
Write Ej; for the usual matrix unit.

Proposition 3.9. For —1 < k < n,

@ = > E (2)

(i,j) €Ok

In particular, f,(A) = 0.
Corollary 3.10. The family (fi(A))x, k = —1 is periodic of period < 2n + 2.

Proof. It follows from Lemma 3.3 that for 0 < k < n + 1, fy4k(A) + fa—k(A) = 0. and that the
sequence (fx(A))k>o is periodic of period at most 2n 4 2. O

Furthermore, fy(A) = Oifand only if k = mn+m — 1 = m(n+ 1) — 1 for m > 0 and the entries
of f,(A) are known, for all k > 0.

Proof of Proposition 3.9. Let —1 < k < n and let Wy, be the expression on the right hand side of (2).
To prove (2) it is enough to show that

AWy = Wipq + Wi,

We have (27:_1] Ei141)Ej = Ei_1j, except in the case i = 1 where (272_1] Ei141)Eij = 0. Note,
however, that this only occurs for (1, k4-1), thatisin the ‘top corner’ of ®. Similarly, (Z?;] Eipq,D)Ej =
Ei11,j except in the case i = n where (Z?;f Ei11,1)Eyj = 0. This occurs only for (n, n — k), that is the
‘bottom corner’ of ©y. Therefore AE; = Ei_1j + Ej11 j for all (i, j) € ®y, with the two exceptions as
described above.

If we visualize the Ej; occurring in Wy, as grid points in the rectangle defined by ® then the terms of
AW}, are obtained by replacing each (i, ) in this rectangle by the two points below and above, namely
(i—1,j)and (i + 1,j) (with the exceptions of the top corner where (i + 1, j) is missing, and the
bottom corner where (i — 1, j) is missing).

Following this process we obtain only the points (r, s) withr 4+ s = k — 1(mod 2) and each point
(r, s) inside the rectangle defined by (1) is obtained twice. Additionally we get all points (r, s) lying
on the lines

x+y=k+1,x+y=2n—k+1, andy —x=k+1, y —x=—-k—1

exactly once.
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Thus we obtain precisely the points corresponding to Wy and to Wj_1, while the points in the
intersection appear twice. [J

3.3. Substituting type L

In this paragraph we evaluate the Chebyshev polynomials on the adjacency matrix of a diagram of
type L. Let L be the adjacency matrix of a diagram of type L,. Then we can express L in terms of A such
that L = A + Eq; where A is the matrix of type A, as in the previous section. We will now express the
matrices fi (L) in terms of the matrices fi(A). Fork =1, 2, ..., n — 1 we define

Tv:= >, E
1< j,iH<k+1
That is, each entry in the upper left corner, up to the linei 4+ j = k + 1, is equal to 1 and all other
entries are zero.

Proposition 3.11. (a) Fork =1,2,...,n — 1 we have fy (L) = fx(A) + Tk.

(b) fa(L) = fa—1(L).

(c) For1 < k < n+ 1wehave fy—14(L) = fa—1—k(L). In particular fon_1 (L) = I and f5,(L) = 0.
(d) We have fany1(L) = 0 and fan42(L) = 1.

Corollary 3.12. The sequence (fy(L))y is periodic of period < 4n + 2.

Proof. (a) The proof is by induction. Clearly, fi (L) = fi(A) + Ty. Suppose that k < n — 1 and that
fi(L) = fr(A) + Ty holds. Then

fer1 (D) = Lfie(L) — fi—1 (L)

k k+1—i
= A+EDG@ +2 > Ey) —fier (D)
i=1 j=1
k k+1—i k k+1—i

= Af(A) + D D (Eiy1j + Eim1p) + Enfk(A) + En > > Ej — fi—1(D)

i=1 j=1 i=1 j=1

k—1k—i k+1 k+2—i k+1
=AW+ D D Ei+ >, > Ej+ ZEU fi—1(L)
i=1j=1 i=2 j=1
k—1 k—i k+1 k+2—i k—1 k—i
= Af(A) = firr (W) + 2D B+ >0 2 Ej— 2 D
i=1j=1 i=1 j=1 i=1j=1
k+1 k+2—i
=fir100) + D > Ej.
i=1 j=1

(b) The calculation in part (a) also holds when k = n — 1 and therefore

fn(L) = Lfn—l(L) _fn—Z(L)

n k4+1—i
= fa(A) + Z Z Eij

i=1 j=1
=0+ fa1 (Ln)-

Part (c¢) and (d) follow from Lemma 3.4. O



K. Erdmann, S. Schroll / Linear Algebra and its Applications 434 (2011) 2475-2496 2483

Remark 3.13. (I) We keep the record that the calculation in part (a) shows that fork < n — 1
EnTy + ATy — Te—1 = Tk+1-

(I) Later we have to use the matrices of type L but where the labeling is reversed. Then we have
the description as in the above proposition, where the only change is that Ty, is replaced by By := I°Ty.
This matrix is obtained from By, by reflecting in the line i 4+ j = n + 1. For this, the calculation in part
(a) shows thatfork <n — 1

EnnBr + ABy — By—1 = Bk+1 .
3.4. Substituting extended type L

Fixn > 2 and letL = L, be the adjacency matrix of a diagram of type L, as described in Section 2.2.
In this paragraph we evaluated the Chebyshev polynomial on L and show that the family f; (L) is of
linear growth. N

We note that L can be expressed in terms of the adjacency matrix A of Ap. Namely, L = A+Eq1 + Enp.
The next proposition shows that the terms of fi(L,) are a sum of fi;(A) and an upper and a lower
triangular matrix whose entries are all equal to 1. Recall the definition of Ty and By from Section 3.3.

Proposition 3.14. For 1 < k < n — 1, we have
fi(@) = fi(A) + Ty + By.

Proof. We proof the result by induction. The result holds for k = 1 and a direct calculation shows
that it also holds for k = 2. Suppose it holds for all I < k. Then by definition we have fy11(L) =
Xfi(L) — fr—1(L) and by induction hypothesis this is equal to

(A~ En + Enn) (fie(A) + Tk + Bk) — fu—1(A) — Tg—1 — Bk—1.
To prove the stated formula we need

(E1 + Enn) (fic(A) + Tie + By) + A(Ty + Bi) — Tg—1 — Bk—1 = Te-1 + Byt1.
This is true by the record kept in Remark 3.13. O

Let U be the n x n matrix all of whose entries are equal to 1. Recall also the definition of I° and
X0, and note that 2XI° = 2X°. As special cases of the previous, and by applying Lemma 3.8, we have
therefore

Corollary 3.15. We have that f,_»(L) = U — I°, and f,_1 (L) = U, and f,(L) = U + I°. Hence
fn(z) =fn72(z) + 210
and the sequence (fi(L)) k>0 has linear growth.

3.5. General setup for the remaining infinite families

All remaining infinite families of Dynkin and extended Dynkin types are based on the above calcu-
lations and fit into a more general set-up described in this section. Namely, in this section we substitute
a symmetric block matrix X of the form

0S
X = ,
stw

where we assume that SS'S = 25, and hence that S'S and SS are projections. Assume further that S
has rank one. Then for any matrix M of the appropriate size, SMS® is a scalar multiple of SS*.
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The following lemma is a straightforward calculation.

Hi Sk

Lemma 3.16. Write fi(X) as block matrix, f(X) = ((sk)‘ Wi

) . Then we have

Hit1 =SS — Hi
Sk+1 = SWg — Sk—1
W1 = S'Sk + WWj, — Wie_1.

We can express the adjacency matrices of the remaining infinite families in question in terms of S
and W and we will apply Lemma 3.16 as follows. Let &1 be the row vector of length n whose first entry
is equal to 1 and whose other entries are all equal to 0.

(1) For type D, m > 3, of size m, the adjacency matrix of type Dy, is given by choosing W to be of
type Ay withn = m — 2, and S to be the matrix with two rows, each row equal to &1.

(2) Fortype Dyy41, m > 4, of size m + 2, we take S asin (1), and for W we take the matrix D of type
Dy but with the labeling reversed, we will call this matrix V, thatis V = [°DI°.

(3) For type Ap,n > 3, of size n 4+ 1, we take W = A, and S to be the matrix with one row equal to
1.

(4) For type DL, m > 3, of size m, we take W = I°L,I° with n = m — 2, that is W is L, but with
reversed order, and we take S as in (1) so that S is a two-row matrix with both rows equal to &1.

Take X as above, and Sy, W}, and Hy as in the recursion in Lemma 3.16. We will now calculate the
first few terms explicitly.

Definition 3.17. We define invariants ¢ and A. of X, to be the first integer ¢ > 1, and the scalar A,
such that Sf,(W)St = A.SS* is non-zero.

Proposition 3.18. Let c be as above and let 1 < k < ¢ + 2. Then

(@) S =S (ka1zi(W)) , Wi =f(W) 4+ D Yz

i>0 i>0
where Yy = Yo<r<x fy (W)S'Sf—r (W).
(b) Fork < c+ 2
0 k odd
Hy =11 k= 0mod4
SSt — 1 k = 2mod 4.

(1 + Ac)SSt — Hc ceven

(€) He =
‘ AcSSt c odd.

We make the convention that ¥, = 0 and f,(W) = 0ifx < 0.

Proof. (a) Induction on k. The cases k = 1 and k = 2 are clear. So assume true for all j with 1 < j < k,
and suppose k < ¢ + 2, then

Sk+1 = SWi — S—1 =S (fk(W) +> 1/fk22i) ) (/kasz(W)) .

i=0 >0
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Letx < k—2,sincek < ¢+ 2 we havex < c, and therefore Sfx_y(W)St = Oforally > 0.This implies
that almost all terms of Sy, are zero, and

Sk = SS'Sf(W) = 25f(W).
Substituting this gives

Sk+1 = Sfk(W) + 25 <ka22i(W)) =5 (/kazzj(w)>

i=0 =0

which proves the claim.
Next, consider Wy 1, substituting the terms using the induction hypothesis we get

Wi =S'S [ka12i(W):| + Wi (W) + D Wi—a-ai — fie1 (W) — D Yi—3—2i.

i>0 i>0 i=0
By the recursion, Wfy (W) — fyr—1 (W) = fi+1(W). Moreover, it also follows from the recursion that,
forx > 0,
Wiy — Yxe1 = Vg1 — S'Sha1(W).

Substituting these, and noting that the terms —S'Sf, 11 (W) cancel for all x = k — 2 — 2i gives the
claim.
(b) and (c) The cases k = 1 and k = 2 are clear. For the inductive step, we have if k < ¢ 4 2 that

Hiy1 =S(S) —Hie1 =S <ka_1_zf(W)> S' — Hi1.

i=0

With the assumption, k —1—2i < cforalli > 0, and the only way to get this equal tocisfork = c+1
and i = 0. Hence

Sf.(W)St k—1=rcodd
Sf(W)St 4258t k — 1 = c even
S fem1—2i(W)S" = Ct
i>0 SS k—1<c,k—1even
0 else

and recalling that Sf-(W)St = A.SS¢, this gives the claim. O

3.6. Substituting type D

In this paragraph we evaluate the Chebyshev polynomials on the adjacency matrices of Dynkin
diagrams of type D. Let X be the matrix associated to type Dy, such thatSand W = A, form =n+2
are as described in Section 3.5. According to Proposition 3.9 and the remark on ® preceding it, the
parameters defined in Definition 3.17 are ¢ = 2n and A. = 1. Therefore we obtain the expressions of
fi(Dpy) for k < 2n + 2 from Proposition 3.18.

Lemma 3.19. For1 < k < 2n+ 1, fy(Dyy) # 0 and fon4+1 (D) = 0.

Proof. First, we observe that
D fon—2i(W) =0, > forn-1-2i(W) = 0. (3)
i>0 i>0
Namely, each of these is a sum of terms of the form f;, 4 (W) + f—¢ (W) for some 0 < t < n+ 1,
and by Lemma 3.3 this sum is equal to zero. Furthermore, if 1 < r < 2n — 1 then the first row of
> i>0fr—2i(W) is non-zero: for example, the entries of the first row of fo (W) (or f; (W)) do not cancel.
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We start by showing that for 1 < k < 2n + 1, fy(Dp,) # 0. Suppose 1 < k < 2n + 1. Then by
Proposition 3.18 we have

Sk=S5 {Zﬁcq—z:'(w)} :
i>0

This is the two-row matrix where both rows are equal to the first row of > ;> fx—1-2i(W). By the
above this is non-zero except when k = 2n.

Thus for k < 2n we have Sy # 0 and therefore fy(Dy;) # 0. If k = 2n, then k is even and by
Proposition 3.18 Hy # 0, and so f5;,(D2mm) # O.

Finally consider fo;, 1 (Dp). It follows from (3) that So,+1 = 0,and Proposition 3.18 implies Hyp+1 =
0. Recall that fop, 1 (W) = 0, and thus

Wont1 = D Yoan—1-2i = D fr(W)SS'f(W) (4)

i=0

where the sum isoverallr,s > Owithr +s < 2n—1andr + s odd.

Givensuchr,s,definer’ ands’ byr+1 = 2nands’ +s = 2n.Thenfor0 < k <n-+1,r=n—k
implies ' = n + k and similarly s = n — k implies s’ = n + k or vice versa. This implies that
fr(W) + fr(W) = 0and fs(W) + fg (W) = 0.

It is clear that both r + s’ and s + r’ are odd. We now claim that precisely one of r + s’ and ' + s
is strictly less than 2n.

Assume for a contradiction that ' +s > 2n and r + s’ > 2n. Then because both expressions are
odd, they are both strictly larger than 2n and we have r’ +s > 2n = r’ 4+ r and thus s > r. But
r+s" > 2n=s+ s impliesr > s, a contradiction.

We get a similar contradiction if we assume r’ +s < 2nandr +s’ < 2n and therefore exactly one
of r +s" and ' + s is strictly less than 2n.

Suppose now that r’ + s < 2n. Then the terms in (3) where labels of the form r, ', s, s’ occur are
precisely

FrW)S'SF(W) + firr (W)S'Sfs(W).
But this expression is zero since f,(W) + f» (W) = 0. O
The following two lemmas give more precise information about particular entries of fi(Dy,).

Lemma 3.20. We have

I neven

— 0
f2n(Dm) - (1; 0) nodd.

In

Proof. Consider Wy, = fon(W) + > Yon—2—2i. We know fo,(W) = [ and so we must show that
> Yran—2—2i = 0. However this follows directly from an argument similar to the one in the previous
Lemma. Similarly one shows that S,, = 0. The result then follows from Proposition 3.18. [

Lemma 3.21. Assume 1 < k < 2n. Then the last row of fi,(Dy,) is equal to
(00ens) 1<k<n
(110..0) k=n
(0 0 sk_n) n <k < 2n.
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Hence the last row of fi (D) reversed is
(exs1 00) 1<k<n
(0...0 ]]) k=n
(en_(k_n)+1 0 O) n<k<2n.

Proof. (1) We need the last column of S, the transpose of this gives the first two entries for the
required last row.

Recall Sy = S[>; fk—1—2i(W)]. This is the 2-row matrix where each row is equal to the first row of
> ifk=1—2i(W). We need only the 1n entry of this sum.

The 1n entry of fy(W) is 1 forx = n — 1 and —1 for x = n 4+ 1 and is zero for any other x < 2n.

CaSE 1. Assume n is odd. Then f,(W)1, = 0 for all odd x < 2n.Setx = k — 1 — 2i, so for k even,
the last column of S is zero.

Now let k be odd, and consider the x = k — 1 — 2i. We have fy (W), = 1forx =n—1and = —1
forx = n+ 1 and is zero otherwise. It follows that the 1n entry of >; fx—1—2i(W) in this case is equal
to1lifk —1 = n — 1 and is zero otherwise, by cancelation.

This shows that the last column of S, is zero unless k = n and then it is of the form (})

Case 2. Assume n is even. Then for k odd (all x even), as before the last column of Sy is zero.
Assume k is even, consider x = k — 1 — 2i. We have f,(W)1, as before. It follows that the 1n entry of

>ifk—1—2i(W)isequal to 1if k — 1 = n — 1 and zero otherwise. Again, the last column of Sy is zero

unless k = n and then it is of the form (})

(2) Now we determine the last row of Wj, recall from Proposition 3.18 that Wy, = fi (W) +
20 Vk—2-2i.

Assume first that 1 < k < n. We claim that then the last row of >°; ¥x_»_»; is zero, hence the last
row of Wy is equal to e, for k < n, and is zero for k = n.

Consider (Sf;(W))!(Sfy (W)). If this has last row non-zero then we must have that the first row of
fa(W) has non-zero 1n entry. This occurs only fora = n — 1 or a = n + 1 but here we have only
a+ b < k—2 < n— 2.So this has last row equal to zero. This implies the claim.

Now consider k = n+r where 1 < r < n.Then f4 (W) = —f;—(W) and this has last row equal
to —e&r. We claim that >°; Y¥rp4r—2—2i = 2¢&;. (This will imply the statement.)

We use induction on r. Assume first that r = 1.

Then > ; Yn—1-2i = ¥n—1+ 2 i~0 ¥n—1—2i. In the sum, the last row is zero (by the argument in the
previous case). The last row of ¥,_; has non-zero contribution only from f,_; (W)S' and this is 2&1.

For the inductive step, write

Z 1/fn+r7272i = l[’n+r72 + Z Iprz+r7472i-
i

i=0

By the inductive hypothesis the sum is equal to 2&,_,. Now consider ¥,4,—5. This has only two terms
with non-zero last row, and the last row of 1,7 is equal to the last row of

(Sfa1 (W) Sfr—1 4 (Sfay1 (W) Sfy—3.
This is equal to 2&, — 2¢&,_». In total we get the stated answer. [

Using 4.3 with d = 2n + 1, the previous three Lemmas imply that fo;,—3—k (D) = fom—3+k(Dm)
for 0 < k < 2m — 3; and the periodicity of (fy(Dm))k>0 follows.

Corollary 3.22. The family (fi(Dy,)) is periodic of period < 2(2m — 2).
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3.7. Substituting type D
~ ) . 0s . .
Let X be of type D41 of sizem + 2 = n + 4. Thatis, X = . , where V is equal to D, 1, with
%

1
reversed order (explicitly V = I°D,,;»1°), and where S = (

of size 2 x m. Recall from 3.17
10...0

the definition of the invariants ¢ and A..
Lemma 3.23. For X as described above, we have c = 2nand A, = 1.

Proof. The parameter A. is the 11 entry of f-(V), which is equal to the nn entry of f.(D,) when this
is non-zero the first time. The nn entry of fi (D) is the nn entry of the matrix W), occurring in the
recursion for type Dp,, with the notation of Section 3.6.

Let k < 2n. We know from Proposition 3.18 that Wy = fy(W) + > i>0 ¥k—2—2i- We notice that
(fk(W))nn # 0 only if fy (W) = =I and this occurs for the first time when k = 2n.

Now consider the nn entry of ¥, for x < 2n — 2. For this we need the nn entry of (Sf;, (W))! (Sf;(W)
forr +s = x < 2n — 2. This is equal to

() 2(fr(W))n - s(W)1p.

The 1n entry of any f; (W) for t < 2n — 2 is only non-zero fort = n — 1 or n + 1. So the number ()
is zero forr +s < 2n — 2.1f r +s = 2n — 2 then it is only non-zero for r = s = n — 1 and then it is
equalto1. O

By Proposition 3.18 we now obtain the expressions for the matrices constituting fi (X) for 1 < k <
2n + 2, and this is enough to prove linear growth. Recall from Definition 3.7 the definition of 13 .

Proposition 3.24. We have

21 nodd
Jfon2X) — fon(X) =
21 neven
where
oo
I=|01,0
0019

Hence the sequence (fi (X)) has linear growth.

Proof. By 3.18, using ¢ = 2nand A, = 1, we have Hy, 15 — Hy, = 255" — 2H,, = 2I, for n odd, and
Hanip — Hyp = 2(SSY — I) if nis even.
Now consider Syp4+2 — Sz Here most of terms of the sum cancel and we obtain

Son+2 — Son = SHnp1 (V) =S-0=0.

Finally, for V42 — V>, most of the terms of the sum cancel as well and we are left with Vo4 0 — Vo, =
font2(V) — fon(V) 4 ¥rop. Furthermore, we have

—2Ip42 neven

f2n+2(v) _on(V) = _2f2n(v) =
—2U nodd

where U is the matrix f>,(Dy;) reversed.
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It remains to calculate yy,. For that we note that
(Sfo (V) (Sfn(V)) = 2En = (Sfon(V)) (Sfo (V)
(Sfi (V) (Sfan—1(V)) = 2Ex; = (Sfan—1(V)' (Sf1 (V)

(Sfa—1 (V) (Sfat1 (V) = 2Epn = (Sfu1 (V) (Sfa—1(V))
(an(V))t(an(V)) = 2(En—Q—l,n+1 + En+1,n+2 + En+2,n+1 + En+2,n+2)-

Thus vy, = (41” 0 ),and

0 2sst
2In42 nodd
Vonta — Von = 21, 0 1 even
0 2(Sst —h)

The conclusion follows from Lemma 3.5 with Z = 2[ for n odd. Assume n is even, then applying
Corollary 3.6 twice gives fgp+8(X) — fsn+6(X) = 2I, and linear growth follows from Lemma 3.5. O

3.8. Substituting extended type A

Let now X be the matrix of type An, thatisXisann + 1 x n + 1 matrix of the form X = (Sot VSV)

with
W=4AandS=(10...01).

where Sis a1 x n matrix. One checks that the invariants c and A. of X as defined in 3.17 are as follows.
Lemma 3.25. Let 1 < ¢ be minimal such that Sf.(W)S' = A.SS* # 0. Thenc =n — 1, and A = 1.
Therefore, by Proposition 3.18 we get the matrices fi (X) for 1 < k < n+ 1.

Proposition 3.26. We have
Jar1(X) — fa1(X) = 21

Hence the sequence (fi (X)) has linear growth.

Proof. We have H,11 —Hy—1 = 2.Furthermore, S, 1 —Sp—1 = Sfn (W) = 0. Consider Wp41 —Wp_1,
this is equal to

for1r (W) — faa (W) + rp 4

(since most of the terms of the sums cancel).
We know from type A that fo 1 (W) — fo_1 (W) = —2I°. A straightforward calculation shows that

Yot =20+ 1°).

Combining these gives the first statement. We get linear growth from Lemma 3.5. O
3.9. Substituting type DL
Let X be the adjacency matrix of type DLy, with m vertices, and m = n + 2. With the notation of

Section 3.5 X has the following blocks: S = (1393-9),and W = V where V = I°LI? is the adjacency
matrix of type L, reversed.
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Recall that f,(V) = 0 and fi (V) # 0 for 1 < k < 2n. Furthermore f,,_1(V) = I. The invariants c
and A of X, given by A.SSt = Sf.(V)S' # 0, and Sfy(V)S* = 0for 1 < k < c are as follows.

Lemma 3.27. We havec = 2n — 1and A, = 1.

Proof. The parameter Sfi(V)S is the (1, 1) entry of f (V) which is equal to the (n, n) entry of fi(Ly). It

follows from Section 3.3 that thisentryisequalto 1 forc = 2n—1andequaltoOfor1 < k < 2n—1. O
We can now apply Proposition 3.18:

Proposition 3.28. We have

foant1(X) — fan—1(X) =2

sst o
7 =
0 2I,

and XZ = ZX = 2X. Hence the sequence (fi(X))y has linear growth.

where

Proof. Using the formulae from Proposition 3.18 with ¢ = 2n — 1, we have Hy,41 — Hyp—1 =
Sfan—1(V)St = SS'. Next, consider Sy, 1 —Sn—1. Here most of the sum cancels and the only expression
remaining is

SHhrn(V) =S-0=0.
Consider now V41 — Va,—1. This is equal to

Font1(V) = fon1(V) + ¥on—1.

By Proposition 3.11(c) combined with Lemma 3.3, we have fop4+1(V) — fon—1(V) = —2I. We now
calculate vry,—1, this is equal to

n—1
Yan—1 =2 |:Z(5fr)t : (Sf2n—1—r):| .
r=0

Similarly to the proof of Proposition 9.2 we find that (Sf;) - (Sfan—1—r) = 2Er41.r41,for0 <r < n—1.

Hence Vo1 —Van—1 = —2I44I = 2I,asrequired. This proves that the difference fon4+1(X) —fon—1(X)

is as stated, and one checks that XZ = 2X. Now by applying Corollary 3.6 first with ¢’ = 2q we obtain
0

S X) —fg—2(X) = Z' where Z' = <2 ) and where Z'X = XZ' = 2X.Thenwe set ¢’ = 2q' = 4q
0 2I,

and by Corollary 3.6 we obtain f7 (X) —f;7—2(X) = 2l and then by Lemma 3.5 linear growth follows. [

3.10. Substituting type E

Similar results can be shown for type E. However, all we need for the application to representation
theory that we have in mind, are some simple facts that an easy calculation by hand can provide.
Namely, we need to know when fi (E;) is equal to zero for the first time when i = 6, 7 or 8 where E;
fori = 6, 7, 8 is the adjacency matrix of the Dynkin diagram of type E as given in Section 2.2. This
happens exactly for f11 (Ee), f17(E7) and fog (Eg).



K. Erdmann, S. Schroll / Linear Algebra and its Applications 434 (2011) 2475-2496 2491

Furthermore we need the explicit expressions of the matrices preceding this first zero matrix. They
are given by

T
fio(Es) = (€6, €5, €3, €4, €2, €1)

fie(E7) =17,
fio(Eg) =1Is,
where ¢; is as before, that is, it is the row vector that has a one in place i and zero elsewhere.

3.11. Summary

In the preceding sections we have calculated explicitly the Chebyshev polynomials evaluated on
the adjacency matrices of the Dynkin diagrams of types A, D, E, of the extended Dynkin diagrams A, D,
as well as on the diagrams of type L, L and DL. In particular we have shown that the Dynkin diagrams
and the type L diagram give rise to periodic families and that the extended Dynkin diagrams and the
diagrams of types L and DL, give rise to families that have linear growth.

Theorem 3.29. Let D be the adjacency matrix of a Dynkin diagram of type A, D, E or a diagrams of type
L. Then forr > 1, we have fi,(D) = 0if and only if k = rh — 1 where h denotes the Coxeter number of the
associated diagram.

Theorem 3.30. Let D be the adjacency matrix of an extended Dynkin diagram or of a diagram of type Lor
DL. Then form = rq + u where —1 < u < q — 2 and 2 < r we have the recurrence relation

frq-‘ru(D) = rfq-i—u(D) — (r—=Dfu(D)

(a)ifD=Aptheng=n+1;

(b) if D = Dy, then ¢ = 2n — 4 for n even and q = 8n — 16 for n odd;

(c)if D=L, thenq = n;

(d)ifD:PAZnthenq=8n—4;~ _

(e)if D = Eg then q = 12, if D = E7 then ¢ = 72, and if D = Eg then q = 60.

Remark. It is easily checked that for D one of the extended types E with g given as above we have

fq(D) _fq—Z(D) = 2L

4. Application to representation theory

In this section we show how the previous results can be used to calculate the minimal projective
resolutions of the simple modules of a class of symmetric algebras - namely those that are of radical
cube zero and of tame or of finite representation type. Our method gives the indecomposable projective
components in each degree of the projective resolutions through a description of the radical layers of
the syzygies.

Let K be a field and let A be a finite dimensional K-algebra. Then A is symmetric if there exists a
linearmapv : A — ksuchthatforalla, b € A, v(ab) = v(ba) such that Ker(v) contains no non-zero
left or right ideal. Recall that the Jacobson radical J(A) of the algebra is the smallest ideal of A such
that the quotient is semisimple.

Let A be a finite dimensional symmetric K-algebra such that J>(A) = 0. We assume that A is
indecomposable, and that J>(A) # 0. These algebras are classified in [2] according to the minimal
projective resolution of non-projective finitely generated A-modules. Namely, if S1, S,, ..., Sy are the
simple A-modules, let &, = (ejj); j=1,...,n where e = dim Ext}\ (Si, Sj), which is a symmetric matrix.
Then if the largest eigenvalue A of &, is > 2, the dimensions in the minimal projective resolutions of the
non-projective finite-dimensional A-modules are unbounded, and the algebrais of wild representation
type.If L = 2, the algebra is of tame representation type and the minimal projective resolutions either
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are bounded or grow linearly, and if A < 2 they are bounded. In the latter two cases the algebras
are classified by Dynkin diagrams A, D, E or the graph L for the finite representation type, and by the
extended Dynkin diagrams A, D, E or the graphs L and DL for the tame representation type.

To each of these diagrams D we associate the quiver Q (D), which is obtained by replacing each
edge of the diagram by a pair of arrows pointing in opposite directions. Let K be an algebraically closed
field and let KQ (D) be the path algebra of Q(D). Then one has an ideal I of KQ (D) such that the
corresponding quotient algebra A = KQ(D)/I is a symmetric algebra such that J3(A) = 0.

We recall some properties of indecomposable A-modules as stated in [2]. The Loewy length of
a A-module is at most 3. If P is a projective indecomposable A-module, then rad?(P) = soc(P) =
hd(P). If M is indecomposable but not simple or projective, then the Loewy length of M is equal to

M
2 and we denote by d(M) the column vector (;E ; ) where ¢ (M) = dim hd(M) and B(M) =
M

dim rad(M) where dimV denotes the dimension vector of the finite dimensional A-module V. This is
the column vector of length n whose ith entry corresponds to the multiplicity of the simple module
S; as a composition factor in V. If S is a simple A-module then «(S) = dim S and B(S) = 0. And if
P(S) is a projective cover of S then the dimension vector of its three radical layers are described by the

a(S)
vector | £,a(S) |. More generally, the projective cover P(M) of a non-projective indecomposable A-
o(S)

module M has in its radical layers the dimension vectors a (M), £, (M) and & (M). Therefore if Q(M) is
non-simple it has in its radical layers the dimension vectors &, (M) — 8(M) and o (M). Furthermore,

&n —

n

I
d(2(M)) = Bd(M) with B = ( " ) where I, is the identity n x n matrix. Therefore for M an

indecomposable non-projective A-module we get the recurrence relation
d(Q“(M)) = B*d(M)

if none of the /(M) forj = 0, .. ., k are simple A-modules. Furthermore, we observe that the entries
of the matrix B can be given in terms of Chebyshev polynomials.

M
Lemma 4.1. Let M be ann x n matrix and let B = (
n

_In .
.Then fori > 0
0
g [ O i)
fica(M) —fi—2(M)
where f;(x) is the Chebyshev polynomial of the second kind defined by the recurrence relation fi(x) =
Xfi—1(x) — fi_2(x) and with initial conditions fo(x) = 1 and f;(x) = x.

Proof. By definition of B we have fo(M) = I,, and f{ (M) = M and we pose f_1(M) = 0. Suppose now
the result holds for i. Then

BB — M) —fi1 (M) M I _ fir1 (M)  —fi(M) . -
fier(M) —fiaM) ) \ =In O FM)  —fi (M)

If Q(M) is simple then Q(M) = soc(P(M)) and d(Q(M)) = («a(M), 0)T, however Bd(M) =
(0, «(M))T. Thus we know that ¥ (M) is simple if the first n entries of the vector Bd(M) are zero and
if there is only one non-zero entry in the n + 1 to 2n components of Bd(M).
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Let A be one of the algebras defined above. We say that A is of type A, D, E, L, A, D etc (or
Ay, Dy, Eg, E7, Eg, Ly, Ap, Dy, etc. if we need to specify the number of vertices of the diagram) if the
underlying diagram of the quiver of A is of that type.

The following two theorems are an application of the results of Section 3 . In the case of Theorem 4.2
this gives a proof of a result that can be deduced from Theorem 2.1 in [3].

Theorem 4.2. The minimal projective resolutions of the simple A-modules are periodic
(a) of period 2n if A is of type Ay,
(b) of period 2n if A is of type Ly,

(c) of period 2n — 3 if A is of type D, for n even and of period 2(2n — 3) for n odd,
(d) of period 22 if A is of type Eg, of period 17 if A is of type E; and of period 29 if A is of type Eg.

Definition 4.3. We call a projective resolution R® of a A-module M of linear growth of factor p if given
the first p terms

Rp-1—>++—>R—>R—>M-—0
of R®, all other terms of R® have the form

Ripr1 =N @R for 0<I1<p—1

where N; is a direct sum of components R; for 0 < i < p.
Let g be as given in Theorem 3.30.

Theorem 4.4. Let A be of extended Dynkin type or of type DL. Then the minimal projective resolutions of
the simple A-modules are of linear growth of factor q.

Theorem 4.2 follows directly from the calculation of the syzygies in the next proposition.

Proposition 4.5. (a) Let A be of type Ay. Then for all simple A-modules S; we have QI (S;) is not simple
forj < nand Q"(S;) = Sp—i+1. '
2(b) Let A be of type Ly, Then for all simple A-modules S;, we have & (S;) is not simple for j < 2n and
Q2 (S) = S;. 4
(c) Let A be of type Dy, Then for all simple A-modules S;, we have & (S;) is not simple forj < 2n — 3
and

S, ifi = 1andnis odd
QM 3(S) =15, ifi = 2 and nis odd
S; otherwise.

(d) Let A be of type Eg , E7 or Eg. Then for all simple A-modules S;, we have

S ifn==6andj = 11andfori = 3,4
Sn—i+1 fn=6andj=11andfori=1,2,5,6
Si ifn=7andj = 17 and for all i

Si ifn=8andj = 29 and for all i.

ds) =

Proof. The Proposition follows directly from Lemma 4.1 and the results of Section 3. OJ

Proof of Theorem 4.4. It is enough to establish the recurrence formula for the Chebyshev polyno-
mials evaluated on the adjacency matrices in question, since by Lemma 4.1 it is then straightforward
to determine the projective resolutions. Namely, if the algebra has n simple modules, then the inde-
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composable projectives constituting the rth term in a projective resolution of the simple S; are exactly
given by the first n entries of the ith row of the matrix B'. B

Let D be the adjacency matrix of the graph underlying A (recall that D is not of type L). Then it
follows from Theorem 3.30 in combination with Lemma 3.5 that given fo(D), .. ., f4(D) we have for
q+1<n<2q—1,wheren=q+Iforl <I<q—1,thatfy1 (D) = (fy—2—1(D) + fi(D)) + fi(D)
since in this case Z = 2I. So if we calculate a minimal projective resolution of the simple S;, then
the components of g + Ith term, for 1 < [ < q — 1, are Ry = N; @ R; where R, is determined by
the ith row of fj(D) and N; = Ry ® R is determined by the ith row of f;_»_ (D) + fi(D). For
n > 2q — 1 we have the following: Write n = rq 4+ [ with —1 < | < q — 2. Furthermore, note that
here Z = 21 = 2fy(D). Then by Lemma 3.5 and the remark that follows we have, for —1 < [ < q — 2,
that Ryg+1 = N" @ Ry where Ny = Ry ® R.. O

Remark. Suppose A is of type L. Then the projective resolution of the simple A-modules is almost of
linear growth. More precisely in that case we have by Corollary 3.15 that f3(X) — f;—2(X) = Z where
Z = 21° = 2f,(D)°. Given the first q terms in a projective resolution of a simple A-module S we then
obtain by Lemma 3.8 and the remark that follows the nth term in the projective resolution of S, for
n > 2q — 1, in the following way: if we write n = rq + [ with —1 <[ < g — 2, then

(N)®" + R reven

Nrgy1 =
" P+ R rodd

where Nj is as defined in the proof above and the components in Nl0 are given by the ith row of
I (fg—2-1(D) + fi(d)I° and R? is given by the ith row of I°f;(D)I°.

5. Evaluating Chebyshev polynomials on positive symmetric matrices

We conclude by a general statement on evaluating the Chebyshev polynomials (f;(x)), on positive
symmetric matrices.

Theorem 5.1. Assume X is a symmetric matrix, with entries in Z > and assume X is indecomposable. Then

(a) fa(X) = 0 for some d > 1 if and only if X is the adjacency matrix of a diagram of type A, D, E or L.
(b) The family (fy(X))k grows linearly if and only if X is the adjacency matrix of a diagram of type
A,D,E,LorDL.

Proof. (a)IfXisthe adjacency matrix of a Dynkin diagram or of a graph of type L, then the result follows
from Section 3. Suppose that f;(X) = 0 for some n, then by Lemma 3.3 X annihilates the sequence of
polynomials fi(x) periodically. Since X is a symmetric integer matrix with entries in Zx, then it is
the adjacency matrix of a finite connected graph. To this graph we can associate a unique symmetric
algebra A with radical cube zero, such that the sequence of polynomials (fi(X))k>0 describes the
growth of a minimal projective resolution of the simple modules, as explained at the beginning of
Section 4. To construct this algebra, we replace each edge by a pair of arrows pointing in opposite
directions. Then the algebra is the path algebra modulo the ideal generated by quadratic relations in
the arrows, and there is a unique choice of such relations making the algebra symmetric with radical
cube zero.

Then it follows from Section 4 that for such an algebra the minimal projective resolutions of the
simple modules are periodic and thus following [2, 1.1] A is of type A, D, E or L.

(b) If X is of extended Dynkin type or of types L or DL then by Section 3, (fi(X))) grows linearly.
Conversely, suppose that (fi, (X)), grows linearly. As in (a), X gives rise to a symmetric algebra A
of radical cube zero. By Section 4 this implies that the minimal projective resolutions of the simple

A-modules grow linearly. Following [2, 1.1] A is of type A, D, E, L, or DL. O
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A. Appendix

Dynkin diagrams with labels:

.
Annz2:] 2 . ongd n Ln,nzZ:(l/l 2 onn n
Dp,n=>4: l Eg: §

3 4 n-1 n 1 2 3 4 5
L] L] L] L] L] L] L] L] L]
2
L]
E7: Z Eg §
1 2 3 4 5 6 1 2 3 4 5 6
L] L] L] L] L] L] L] L] L] L] L] L]
Extended Dynkin diagrams with labels:
Ap,n=2: ”tl In,nzzzczl % ”;1 2:)
1 2 n—-1 n
En,n>3:l\ /2 DLp.n=3:]
3 4 n-2 n-1 3 4 n-1 n/)
/ . . 0 0 \ / . . 3 . e
2 n+1 2
: : :
Eg l E !
6 8 1 2 3 4 5
c H . : : H :
1 2 3 4 5
. : : H :
Eg: 8
1 2 3 4 5 6 7 9
. . . . . . . .
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