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jective resolutions of simple modules of symmetric algebras with

radical cube zero that are of finite and tame representation type.
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1. Introduction

Chebyshev polynomials are a sequence of recursively defined polynomials. They appear in many

areas of mathematics such as numerical analysis, differential equations, number theory and algebra

[10]. Although they have been known and studied for a long time, they continue to play an important

role in recent advances in many subjects, for example in numerical integration, polynomial approx-

imation, or spectral methods (e.g. [8]). It is interesting to note that they also play an important part

in the representation theory of algebras (e.g. [4,6,7,11]). There are several closely related Chebyshev

polynomials. Amongst these, the polynomials usually referred to as Chebyshev polynomials of the
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first kind, and Chebyshev polynomials of the second kind are the ones that often naturally appear;

for example, they arise as solutions of special cases of the Sturm–Liouville differential equation or in

dimension counting in representation theory (e.g. [1,5,9]).

For Chebyshev polynomials of the first and the second kind, the recursive definition is equivalent

to a definition by a determinant formula. Symmetric integer matrices are a key to this definition.

Focusing on the polynomials of the second kind, we exhibit some surprising properties of Chebyshev

polynomials in relation to these symmetric matrices. In fact the symmetric matrices we consider are

adjacency matrices of Dynkin diagrams and extended Dynkin diagrams. Dynkin diagrams play an

import role in Lie theory, where they give a classification of root systems. However, they also appear

in areas that have no obvious connection to Lie theory as for example in singularity theory where they

are linked to Kleinian singularities, or, for example, in representation theory of algebras where they

classify symmetric algebras of radical cube zero of finite and tame representation type [2].

The motivation for the study of the Chebyshev polynomials evaluated on matrices comes from the

representation theory of the algebras classified in [2].We beginwith a detailed study of the Chebyshev

polynomials evaluated on adjacency matrices of Dynkin diagrams, where we show that in the case of

Dynkin diagrams, the families of polynomials are periodic and in the case of the extended Dynkin dia-

grams the families grow linearly.We then showas an application how the general resultswe obtain can

be applied to the representation theory of the symmetric algebras of radical cube zero.Wewill see that

the Chebyshev polynomials govern theminimal projective resolutions for these algebras and that they

give rise to amethod to calculate the constituents ofminimal projective resolutions of simplemodules.

Wewill now outline the content of this paper. In the next section we recall the definition of Cheby-

shev polynomials of the second kind, we define the polynomials we will be working with and we

introduce the Dynkin diagrams together with a labeling of these diagramswhich wewill use through-

out the paper. In Section 3 we evaluate Chebyshev polynomials on the adjacency matrices of Dynkin

diagrams andextendedDynkindiagrams. In Section4 a linkwith the representation theory of symmet-

ric algebras of radical cube zero of finite and tame representation type is described. In particular, we

showhow the results of Section 3 can be used to calculateminimal projective resolutions of the simple

modules. Finally in Section 5 we show a more general result on Chebyshev polynomials evaluated on

positive symmetric matrices.

2. Definitions

2.1. Chebyshev polynomials

We briefly recall the definition of Chebyshev polynomials of the second kind; good references

are [10,12].

The Chebyshev polynomial of the second kind Un(x) of degree n is defined by

Un(x) = sin(n + 1)θ/sinθ where x = cosθ.

From this definition the following recurrence relations with initial conditions can be deduced

Un(x) = 2xUn−1(x)− Un−2(x) with U0(x) = 1 and U1(x) = 2x.

Furthermore an easy calculation shows (see also [12] page 26) that Un(x) = det(2xIn − An)where An

is an n × n matrix that has zeros everywhere except directly above and directly below the diagonal

where all the entries are equal to one.

We will work with the version of the Chebyshev polynomial defined by

fn(x) = det(xI − An)

where An is defined as above, and I is the identity matrix. These polynomials are also sometimes

called Dickson polynomials of the second kind. An easy calculation shows that fn(x) is defined by

the recurrence relation fn(x) = xfn−1(x) − fn−2(x) with initial conditions f0(x) = 1 and f1(x) = x.

Furthermore, we set f−1(x) = 0. All matrices have entries in Q.
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2.2. Dynkin diagrams and adjacency matrices

The Dynkin diagrams and extended Dynkin diagrams we are going to consider are the ones of type

A,D, E and Ã, D̃, Ẽ as well as the diagrams of type L, L̃, and D̃L (see Appendix).

Let G be an undirected graph with n vertices labeled by the set {1, 2, . . . , n}. The adjacency matrix

of G is a n × n matrix where the entry in position (i, j) is given by the number of edges between the

vertices i and j. Modulo conjugation by a permutation matrix, the adjacency matrix is independent of

the choice of labeling.

However, inwhat followsweworkwith particular adjacencymatrices corresponding to a particular

labeling of the graphs. We refer the reader to the Appendix for the labeling of the diagrams we have

chosen. In the case of the Dynkin diagrams this labeling corresponds to the Dynkin labeling. It follows

fromLemma3.1 in the next section that our results are, up to permutation, independent of the labeling.

Our goal is to evaluate the Chebyshev polynomials of the second kind on the adjacency matrices of

the Dynkin diagrams and the extended Dynkin diagrams as well as the diagrams of type L, L̃, and D̃L.

3. Evaluating Chebyshev polynomials

3.1. Evaluating Chebyshev polynomials on matrices – general results

In this section we list some useful facts about evaluating the Chebyshev polynomials on matrices.

We begin with a lemma collecting some straightforward facts.

Lemma 3.1. For any square matrix M, we have Mfk(M) = fk(M)M and for any symmetric matrix S, the

matrix fk(S) is symmetric for all k � 0. If T is an invertible n × n matrix then for all n × n matrices M we

have fk(TMT−1) = Tfk(M)T
−1.

Definition 3.2. Let X be a square matrix, we say that the sequence of matrices (fk(X))k�0 is periodic

of period � p, if p > 1 and if p satisfies fp−1(X) = 0 and fp(X) = I.

Remark. Suppose that (fk(X))k�0 is periodic of period � p. Then for any integer k, we can write

k = qp + r with 0 � r < p, and fk(X) = fr(X).

Lemma 3.3. Assume X is a square matrix such that fd(X) = 0 for some d > 1. Then for 0 � k � d + 1,

we have

(∗) fd+k(X)+ fd−k(X) = 0.

Moreover, f2d+1(X) = 0, f2d+2(X) = I and hence f2d+3(X) = X. Therefore the sequence (fk(X))k�0 is

periodic, of period � 2d + 2.

Proof. The recursion for the Chebyshev polynomials can be rewritten as

xfm(x) = fm+1(x)+ fm−1(x), for m � 0.

Consider now xkfd(x) for 0 � k � d + 1 and substitute x = X . Since fd(X) = 0, induction on k will

show that Xkfd(X) = fd+k(X)+ fd−k(X) = 0, for 0 � k � d + 1.

The case k = 0 is clear. Assume now that the statement is true for all j where j � k and suppose

k < d + 1. Then

0 = Xk+1fd(X) = X[Xkfd(X)]
= X[fd+k(X)+ fd−k(X)]
= fd+k+1(X)+ fd+k−1(X)+ fd−k+1(X)+ fd−k−1(X)
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= fd+k+1(X)+ Xk−1fd(X)+ fd−k−1(X)

= fd+k+1(X)+ 0 + fd−k−1(X)

as required.

For the last part, let k = d + 1 and recall that f−1(X) = 0, hence f2d+1(X) = 0. Then let k = d,

and recall that f0(X) = I which implies f2d(X) = −I. Since f2d+1(X) = 0 we can apply (∗) with

2d + 1 instead of d. We then obtain f2d+2(X) + f2d(X) = 0 and hence f2d+2(X) = I and finally

f2d+3(X) = X · I − 0 = X . �

If for some d � 1 the matrices fd(X) and fd+1(X) are equal, then periodicity follows by Lemma 3.3.

Lemma 3.4. Assume X is a square matrix such that fd(X) = fd+1(X) for some integer d � 1. Then for

1 � k � d + 1, we have

fd+1+k(X) = fd−k(X).

In particular, f2d+2(X) = 0.

Proof. Assume fd(X) = fd+1(X). Then we have

fd−1(X) = Xfd(X)− fd+1(X) and fd+2(X) = Xfd+1(X)− fd(X)

and hence fd−1(X) = fd+2(X). For the inductive step, assume the statement is true for 1 � m � k.

Then

fd−k(X) = Xfd−k+1(X)− fd−k+2(X)

= Xfd+k(X)− fd+k−1(X)

= fd+k+1(X). �

Some matrices allow a reduction, based on the following lemma, which gives a criterion to deter-

mine when a sequence of matrices has linear growth.

Lemma 3.5. Assume X is a square matrix such that for some matrix Z and for some q � 2 we have

fq(X) = fq−2(X)+ Z, and where ZX = XZ = 2X. Then

(a) for 1 � t � q − 1, we have

fq+t(X) =
⎧⎨
⎩

fq−2−t(X)+ 2ft(X) t odd

fq−2−t(X)+ 2ft(X)+ (−1)
t
2
+1(2I − Z) t even,

(b) if Z = 2I , for t � −1, we have f2q+t(X) = 2fq+t(X)− ft(X),
(c) if Z = 2I and m = rq + u where −1 � u � q − 2 and r � 2, we have

frq+u(X) = rfq+u(X)− (r − 1)fu(X).

Corollary 3.6. Assume X is a square matrix such that for some matrix Z we have fq(X) = fq−2(X) + Z,

for q � 2 and where ZX = XZ = 2X and where Z �= 2I. Then

f2q(X)− f2q−2(X) =
⎧⎨
⎩

2Z − 2I q odd

2Z − 2I + (−1)
q−2
2

+1(4I − 2Z) q even.
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Proof. By the Chebyshev recursion formula we have f2q(X) = Xf2q−1(X) − f2q−2(X) and 2q − 1 =
q+ (q−1) and 2q−2 = q+ (q−2). Therefore we can apply Lemma 3.5(a) and the result follows. �

Remark. (I) Later, thematrix Zwill oftenbeequal to2I. In this case (a) is equal to fq+t(X) = fq−2−t(X)+
2ft(X). Furthermore, an easy calculation shows that (c) becomes frq+u(X) = rfq−2−u(X)+(r+1)fu(X).

(II) Observe that part (a) describes fk(X) for q < k � 2q−1. Since every natural numberm � 2q−1

can bewritten in the form given in part (c), this gives a description of fk(X) for all k � q. It thus follows

from the formula in part (c) that a sequence (fk(X))k that satisfies the hypotheses of Lemma 3.5 with

Z = 2I has linear growth.

Proof of Lemma 3.5. (a) We use induction on t. For t = 1, we have

fq+1(X) = Xfq(X)− fq−1(X)

= Xfq−2(X)+ XZ − fq−1(X)

= Xfq−2(X)+ 2X − fq−1(X)

= fq−3(X)+ 2f1(X)

if we recall that f1(X) = X .

For t = 2, we have

fq+2(X) = Xfq+1(X)− fq(X) = X(fq−3(X)+ 2f1(X))− fq(X)

= Xfq−3(X)+ 2Xf1(X)− (fq−2(X)+ Z)

= fq−4(X)+ 2f2(X)+ 2I − Z.

For the inductive step suppose first that t is odd. Then we have

fq+t+1(X) = Xfq+t(X)− fq+t−1(X)

= X[fq−2−t(X)+ 2ft(X)] − [fq−2−(t−1)(X)+ 2ft−1(X)+ (−1)
t−1
2

+1(2I − Z)]
= fq−2−(t+1)(X)+ 2ft+1(X)+ (−1)

t+1
2

+1(2I − Z).

Now suppose that t is even. Then we have

fq+t+1(X) = Xfq+t(X)− fq+t−1(X)

= X[fq−2−t(X)+ 2ft(X)+ (−1)
t
2
+1(2I − Z)] − [fq−2−(t−1)(X)+ 2ft−1(X)]

= fq−2−(t+1)(X)+ 2ft+1(X)+ (−1)
t
2
+1(2X − ZX)

= fq−2−(t+1)(X)+ 2ft+1(X)

since ZX = 2X .

(b) The case t = −1 follows from part (a). Let t = 0, then

f2q(X) = Xf2q−1(X)− f2q−2(X)

= X[2fq−1(X)] − [2fq−2(X)+ f0(X)]
= 2fq(X)− I

where the equality f2q−2(X) = f0(X) + 2fq−2(X) follows from part (a). Let t � 1, and assume the

equation holds for t − 1 and t − 2, then

f2q+t(X) = Xf2q+(t−1)(X)− f2q+(t−2)(X)

= X[2fq+t−1(X)− ft−1(X)] − [2fq+t−2(X)− ft−2(X)]
= 2fq+t(X)− ft(X).
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(c) The case r = 2 follows from part (b). Assume now r � 3 and write rq + u = 2q + t where

t = (r − 2)q + u. Then by part (b) we have

(∗) frq+u(X) = f2q+t(X) = 2fq+t(X)− ft(X).

If r = 3 then 2q + u = q + t and using part (b) again we have fq+t(X) = 2fq+u(X) − fu(X).
Substituting this into equation (∗) gives

f3q+u(X) = 2[2fq+u(X)− fu(X)] − fq+u(X) = 3fq+u(X)− 2fu(X)

as required.

Now let r > 3. We write (r − 1)q + u = q + t and (r − 2)q + u = t. Then equation (∗) gives
frq+u(X) = 2fq+t(X)− ft(X)

= 2[f(r−1)q+u(X)] − f(r−2)q+u(X)

= 2[(r − 1)fq+u(X)− (r − 2)fu(X)] − [(r − 2)fq+u(X)− (r − 3)fu(X)]
= rfq+u(X)− (r − 1)fu(X)

and this completes the proof. �

Definition 3.7. Given some n×nmatrix X , we define X0 to be thematrix obtained from X by reversing

the entries in each row. In particular, in I0 the i, n − i + 1-th entries are equal to 1 for all 1 � i � n

and all other entries equal to zero.

Note that (X0)0 = X , and that X0 = X · I0. Furthermore, we write I0n if we need to specify the size

of the matrix.

With thiswe have the following variation of Lemma3.5. The proof is a straightforwardmodification

of that of Lemma 3.5 and we leave the details to the reader.

Lemma 3.8. Assume X is a square matrix such that for some matrix Z and for some q � 2 we have

fq(X) = fq−2(X)+ Z, and where XZ = 2X0. Then

(a) for 1 � t � q − 1, we have

fq+t(X) = fq−2−t(X)+ 2ft(X)
0.

In particular, f2q−2(X) = 2fq−2(X)
0 + I and f2q−1(X) = 2fq−1(X)

0,

(b) for t � −1 we have f2q+t(X) = 2fq+t(X)
0 − ft(X),

(c) if m = rq + u where −1 � u � q − 2 and r � 2, we have

frq+u(X) =
⎧⎪⎨
⎪⎩

rfq+u(X)
0 − (r − 1)fu(X) r even

rfq+u(X)− (r − 1)fu(X)
0 r odd.

Remark. Note if Z is equal to 2I0 then (c) can be rewritten as

frq+u(X) =
⎧⎪⎨
⎪⎩

rfq−u−2(X)
0 + (r + 1)fu(X) r even

rfq−u−2(X)+ (r + 1)fu(X)
0 r odd.
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3.2. Substituting type A

In this paragraph we evaluate the Chebyshev polynomials on the adjacency matrix of a Dynkin

diagram of type A. This will be the basis for the calculation of almost all the other finite types as well

as all the extended types.

Assume A is the adjacency matrix of a Dynkin diagram of An, n � 2. Then by the Cayley–Hamilton

Theorem we know that fn(A) = 0 and by Lemma 3.3 the sequence (fk(A))k�0 is periodic of period

� 2n + 2.

Let�k be the subset of� = {(i, j) : 1 � i � n, 1 � j � n} given by

�k = {(i, j) : k + 2 � i + j � 2n − k, i + j ≡ k(mod 2),−k � j − i � k}.
We think of this as a subset of N × N. Note that �k consists of the points in � of parity i + j ≡

k(mod 2)which lie in the rectangle given by the lines

x + y = k + 2, x + y = 2n − k, y − x = k, y − x = −k. (1)

This rectangle has corners (1, k + 1), (k + 1, 1) and (n − k, n), (n, n − k). In particular,�n = ∅
and�−1 = ∅.

Write Eij for the usual matrix unit.

Proposition 3.9. For −1 � k � n,

fk(A) = ∑
(i,j)∈�k

Eij. (2)

In particular, fn(A) = 0.

Corollary 3.10. The family (fk(A))k, k � −1 is periodic of period � 2n + 2.

Proof. It follows from Lemma 3.3 that for 0 � k � n + 1, fn+k(A) + fn−k(A) = 0. and that the

sequence (fk(A))k�0 is periodic of period at most 2n + 2. �

Furthermore, fk(A) = 0 if and only if k = mn + m − 1 = m(n + 1)− 1 form � 0 and the entries

of fk(A) are known, for all k � 0.

Proof of Proposition 3.9. Let −1 � k � n and letWk be the expression on the right hand side of (2).

To prove (2) it is enough to show that

AWk = Wk+1 + Wk−1.

We have (
∑n−1

l=1 El,l+1)Eij = Ei−1,j , except in the case i = 1 where (
∑n−1

l=1 El,l+1)E1j = 0. Note,

however, that thisonlyoccurs for (1, k+1), that is in the ‘topcorner’ of�k. Similarly, (
∑n−1

l=1 El+1,l)Eij =
Ei+1,j except in the case i = nwhere (

∑n−1
l=1 El+1,l)Enj = 0. This occurs only for (n, n − k), that is the

‘bottom corner’ of �k . Therefore AEij = Ei−1,j + Ei+1,j for all (i, j) ∈ �k , with the two exceptions as

described above.

If we visualize the Eij occurring inWk as grid points in the rectangle defined by�k then the terms of

AWk are obtained by replacing each (i, j) in this rectangle by the two points below and above, namely

(i − 1, j) and (i + 1, j) (with the exceptions of the top corner where (i + 1, j) is missing, and the

bottom corner where (i − 1, j) is missing).

Following this process we obtain only the points (r, s)with r + s ≡ k − 1(mod 2) and each point

(r, s) inside the rectangle defined by (1) is obtained twice. Additionally we get all points (r, s) lying
on the lines

x + y = k + 1, x + y = 2n − k + 1, and y − x = k + 1, y − x = −k − 1

exactly once.
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Thus we obtain precisely the points corresponding to Wk+1 and to Wk−1, while the points in the

intersection appear twice. �

3.3. Substituting type L

In this paragraph we evaluate the Chebyshev polynomials on the adjacency matrix of a diagram of

type L. Let L be the adjacency matrix of a diagram of type Ln. Then we can express L in terms of A such

that L = A + E11 where A is the matrix of type An as in the previous section. We will now express the

matrices fk(L) in terms of the matrices fk(A). For k = 1, 2, . . . , n − 1 we define

Tk := ∑
1�i,j,i+j�k+1

Eij.

That is, each entry in the upper left corner, up to the line i + j = k + 1, is equal to 1 and all other

entries are zero.

Proposition 3.11. (a) For k = 1, 2, . . . , n − 1 we have fk(L) = fk(A)+ Tk.

(b) fn(L) = fn−1(L).
(c) For 1 � k � n + 1 we have fn−1+k(L) = fn−1−k(L). In particular f2n−1(L) = I and f2n(L) = 0.

(d) We have f4n+1(L) = 0 and f4n+2(L) = I.

Corollary 3.12. The sequence (fk(L))k is periodic of period � 4n + 2.

Proof. (a) The proof is by induction. Clearly, f1(L) = f1(A) + T1. Suppose that k < n − 1 and that

fk(L) = fk(A)+ Tk holds. Then

fk+1(L) = Lfk(L)− fk−1(L)

= (A + E11)(fk(A)+
k∑

i=1

k+1−i∑
j=1

Eij)− fk−1(L)

= Afk(A)+
k∑

i=1

k+1−i∑
j=1

(Ei+1j + Ei−1j)+ E11fk(A)+ E11

k∑
i=1

k+1−i∑
j=1

Eij − fk−1(L)

= Afk(A)+
k−1∑
i=1

k−i∑
j=1

Eij +
k+1∑
i=2

k+2−i∑
j=1

Eij +
k+1∑
j=1

E1j − fk−1(L)

= Afk(A)− fk−1(A)+
k−1∑
i=1

k−i∑
j=1

Eij +
k+1∑
i=1

k+2−i∑
j=1

Eij −
k−1∑
i=1

k−i∑
j=1

Eij

= fk+1(A)+
k+1∑
i=1

k+2−i∑
j=1

Eij.

(b) The calculation in part (a) also holds when k = n − 1 and therefore

fn(L) = Lfn−1(L)− fn−2(L)

= fn(A)+
n∑

i=1

k+1−i∑
j=1

Eij

= 0 + fn−1(Ln).

Part (c) and (d) follow from Lemma 3.4. �
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Remark 3.13. (I) We keep the record that the calculation in part (a) shows that for k < n − 1

E11Tk + ATk − Tk−1 = Tk+1.

(II) Later we have to use the matrices of type L but where the labeling is reversed. Then we have

the description as in the above proposition, where the only change is that Tk is replaced by Bk := I0Tk .

This matrix is obtained from Bk by reflecting in the line i + j = n + 1. For this, the calculation in part

(a) shows that for k < n − 1

EnnBk + ABk − Bk−1 = Bk+1.

3.4. Substituting extended type L

Fix n � 2 and let L̃ = L̃n be the adjacencymatrix of a diagram of type L̃n as described in Section 2.2.

In this paragraph we evaluated the Chebyshev polynomial on L̃ and show that the family fk (̃L) is of

linear growth.

Wenote that L̃ can be expressed in terms of the adjacencymatrix A of An. Namely, L̃ = A+E11+Enn.

The next proposition shows that the terms of fk (̃Ln) are a sum of fk(A) and an upper and a lower

triangular matrix whose entries are all equal to 1. Recall the definition of Tk and Bk from Section 3.3.

Proposition 3.14. For 1 � k � n − 1, we have

fk (̃L) = fk(A)+ Tk + Bk.

Proof. We proof the result by induction. The result holds for k = 1 and a direct calculation shows

that it also holds for k = 2. Suppose it holds for all l � k. Then by definition we have fk+1(̃L) =
Xfk (̃L)− fk−1(̃L) and by induction hypothesis this is equal to

(A + E11 + Enn)(fk(A)+ Tk + Bk)− fk−1(A)− Tk−1 − Bk−1.

To prove the stated formula we need

(E11 + Enn)(fk(A)+ Tk + Bk)+ A(Tk + Bk)− Tk−1 − Bk−1 = Tk+1 + Bk+1.

This is true by the record kept in Remark 3.13. �

Let U be the n × n matrix all of whose entries are equal to 1. Recall also the definition of I0 and

X0, and note that 2XI0 = 2X0. As special cases of the previous, and by applying Lemma 3.8, we have

therefore

Corollary 3.15. We have that fn−2(̃L) = U − I0, and fn−1(̃L) = U, and fn(̃L) = U + I0. Hence

fn(̃L) = fn−2(̃L)+ 2I0

and the sequence (fk (̃L))k�0 has linear growth.

3.5. General setup for the remaining infinite families

All remaining infinite families of Dynkin and extended Dynkin types are based on the above calcu-

lations andfit into amore general set-up described in this section. Namely, in this sectionwe substitute

a symmetric block matrix X of the form

X =
⎛
⎝0 S

St W

⎞
⎠ ,

where we assume that SStS = 2S, and hence that StS and SSt are projections. Assume further that S

has rank one. Then for any matrix M of the appropriate size, SMSt is a scalar multiple of SSt .
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The following lemma is a straightforward calculation.

Lemma 3.16. Write fk(X) as block matrix, fk(X) =
(

Hk Sk
(Sk)

t Wk

)
. Then we have

Hk+1 = SStk − Hk−1

Sk+1 = SWk − Sk−1

Wk+1 = StSk + WWk − Wk−1.

We can express the adjacency matrices of the remaining infinite families in question in terms of S

andW and we will apply Lemma 3.16 as follows. Let ε1 be the row vector of length nwhose first entry

is equal to 1 and whose other entries are all equal to 0.

(1) For type Dm, m � 3, of size m, the adjacency matrix of type Dm is given by choosing W to be of

type An with n = m − 2, and S to be the matrix with two rows, each row equal to ε1.
(2) For type D̃m+1,m � 4, of sizem+ 2, we take S as in (1), and forW we take the matrix D of type

Dm but with the labeling reversed, we will call this matrix V , that is V = I0DI0.

(3) For type Ãn, n � 3, of size n + 1, we takeW = An and S to be the matrix with one row equal to

ε1.
(4) For type D̃Lm, m � 3, of size m, we take W = I0LnI

0 with n = m − 2, that is W is Ln but with

reversed order, and we take S as in (1) so that S is a two-rowmatrix with both rows equal to ε1.

Take X as above, and Sk,Wk and Hk as in the recursion in Lemma 3.16. We will now calculate the

first few terms explicitly.

Definition 3.17. We define invariants c and λc of X , to be the first integer c > 1, and the scalar λc ,
such that Sfc(W)S

t = λcSS
t is non-zero.

Proposition 3.18. Let c be as above and let 1 � k � c + 2. Then

(a) Sk = S

⎛
⎝∑

i�0

fk−1−2i(W)

⎞
⎠ , Wk = fk(W)+ ∑

i�0

ψk−2−2i

whereψx = ∑
0�r�x fr(W)S

tSfx−r(W).
(b) For k < c + 2

Hk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 k odd

I k ≡ 0mod 4

SSt − I k ≡ 2mod 4.

(c) Hc+2 =
⎧⎨
⎩
(1 + λc)SS

t − Hc c even

λcSS
t c odd.

Wemake the convention thatψx = 0 and fx(W) = 0 if x < 0.

Proof. (a) Induction on k. The cases k = 1 and k = 2 are clear. So assume true for all jwith 1 � j � k,

and suppose k < c + 2, then

Sk+1 = SWk − Sk−1 = S

⎛
⎝fk(W)+ ∑

i�0

ψk−2−2i

⎞
⎠ − S

⎛
⎝∑

j�0

fk−2−2j(W)

⎞
⎠ .



K. Erdmann, S. Schroll / Linear Algebra and its Applications 434 (2011) 2475–2496 2485

Let x � k−2, since k < c+2we have x < c, and therefore Sfx−y(W)S
t = 0 for all y � 0. This implies

that almost all terms of Sψx are zero, and

Sψx = SStSfx(W) = 2Sfx(W).

Substituting this gives

Sk+1 = Sfk(W)+ 2S

⎛
⎝∑

i�0

fk−2−2i(W)

⎞
⎠ − S

⎛
⎝∑

j�0

fk−2−2j(W)

⎞
⎠

which proves the claim.

Next, consider Wk+1, substituting the terms using the induction hypothesis we get

Wk+1 = StS

⎡
⎣∑
i�0

fk−1−2i(W)

⎤
⎦ + Wfk(W)+ ∑

i�0

Wψk−2−2i − fk−1(W)− ∑
i�0

ψk−3−2i.

By the recursion,Wfk(W)− fk−1(W) = fk+1(W). Moreover, it also follows from the recursion that,

for x � 0,

Wψx − ψx−1 = ψx+1 − StSfx+1(W).

Substituting these, and noting that the terms −StSfx+1(W) cancel for all x = k − 2 − 2i gives the

claim.

(b) and (c) The cases k = 1 and k = 2 are clear. For the inductive step, we have if k < c + 2 that

Hk+1 = S(Stk)− Hk−1 = S

⎛
⎝∑

i�0

fk−1−2i(W)

⎞
⎠ St − Hk−1.

With the assumption, k−1−2i � c for all i � 0, and the onlyway to get this equal to c is for k = c+1

and i = 0. Hence

S
∑
i�0

fk−1−2i(W)S
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sfc(W)S
t k − 1 = c odd

Sfc(W)S
t + 2SSt k − 1 = c even

SSt k − 1 < c, k − 1 even

0 else

and recalling that Sfc(W)S
t = λcSS

t , this gives the claim. �

3.6. Substituting type D

In this paragraph we evaluate the Chebyshev polynomials on the adjacency matrices of Dynkin

diagrams of type D. Let X be the matrix associated to type Dm, such that S andW = An form = n + 2

are as described in Section 3.5. According to Proposition 3.9 and the remark on �k preceding it, the

parameters defined in Definition 3.17 are c = 2n and λc = 1. Therefore we obtain the expressions of

fk(Dm) for k � 2n + 2 from Proposition 3.18.

Lemma 3.19. For 1 � k < 2n + 1, fk(Dm) �= 0 and f2n+1(Dm) = 0.

Proof. First, we observe that∑
i�0

f2n−2i(W) = 0,
∑
i�0

f2n−1−2i(W) = 0. (3)

Namely, each of these is a sum of terms of the form fn+t(W)+ fn−t(W) for some 0 � t � n + 1,

and by Lemma 3.3 this sum is equal to zero. Furthermore, if 1 � r < 2n − 1 then the first row of∑
i�0 fr−2i(W) is non-zero: for example, the entries of the first row of f0(W) (or f1(W)) do not cancel.
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We start by showing that for 1 � k < 2n + 1, fk(Dm) �= 0. Suppose 1 � k < 2n + 1. Then by

Proposition 3.18 we have

Sk = S

⎡
⎣∑
i�0

fk−1−2i(W)

⎤
⎦ .

This is the two-row matrix where both rows are equal to the first row of
∑

i�0 fk−1−2i(W). By the

above this is non-zero except when k = 2n.

Thus for k < 2n we have Sk �= 0 and therefore fk(Dm) �= 0. If k = 2n, then k is even and by

Proposition 3.18 Hk �= 0, and so f2n(D2m) �= 0.

Finally consider f2n+1(Dm). It follows from(3) that S2n+1 = 0, andProposition3.18 impliesH2n+1 =
0. Recall that f2n+1(W) = 0, and thus

W2n+1 = ∑
i�0

ψ2n−1−2i = ∑
fr(W)SS

t fs(W) (4)

where the sum is over all r, s � 0 with r + s � 2n − 1 and r + s odd.

Given such r, s, define r′ and s′ by r + r′ = 2n and s′ + s = 2n. Then for 0 � k � n+ 1, r = n− k

implies r′ = n + k and similarly s = n − k implies s′ = n + k or vice versa. This implies that

fr(W)+ fr′(W) = 0 and fs(W)+ fs′(W) = 0.

It is clear that both r + s′ and s + r′ are odd. We now claim that precisely one of r + s′ and r′ + s

is strictly less than 2n.

Assume for a contradiction that r′ + s � 2n and r + s′ � 2n. Then because both expressions are

odd, they are both strictly larger than 2n and we have r′ + s > 2n = r′ + r and thus s > r. But

r + s′ > 2n = s + s′ implies r > s, a contradiction.

We get a similar contradiction if we assume r′ + s < 2n and r + s′ < 2n and therefore exactly one

of r + s′ and r′ + s is strictly less than 2n.

Suppose now that r′ + s < 2n. Then the terms in (3) where labels of the form r, r′, s, s′ occur are
precisely

fr(W)S
tSfs(W)+ fr′(W)S

tSfs(W).

But this expression is zero since fr(W)+ fr′(W) = 0. �

The following two lemmas give more precise information about particular entries of fk(Dm).

Lemma 3.20. We have

f2n(Dm) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I n even⎛
⎝I02 0

0 In

⎞
⎠ n odd.

Proof. Consider W2n = f2n(W) + ∑
i ψ2n−2−2i. We know f2n(W) = I and so we must show that∑

ψ2n−2−2i = 0. However this follows directly from an argument similar to the one in the previous

Lemma. Similarly one shows that S2n = 0. The result then follows from Proposition 3.18. �

Lemma 3.21. Assume 1 � k � 2n. Then the last row of fk(Dm) is equal to(
0 0 εn−k

)
1 � k < n(

1 1 0 ... 0
)

k = n(
0 0 εk−n

)
n < k � 2n.
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Hence the last row of fk(Dm) reversed is(
εk+1 0 0

)
1 � k < n(

0 ... 0 1 1
)

k = n(
εn−(k−n)+1 0 0

)
n < k � 2n.

Proof. (1) We need the last column of Sk , the transpose of this gives the first two entries for the

required last row.

Recall Sk = S[∑i fk−1−2i(W)]. This is the 2-row matrix where each row is equal to the first row of∑
i fk−1−2i(W). We need only the 1n entry of this sum.

The 1n entry of fx(W) is 1 for x = n − 1 and −1 for x = n + 1 and is zero for any other x � 2n.

Case 1. Assume n is odd. Then fx(W)1n = 0 for all odd x � 2n. Set x = k − 1 − 2i, so for k even,

the last column of Sk is zero.

Now let k be odd, and consider the x = k − 1 − 2i. We have fx(W)1n = 1 for x = n − 1 and = −1

for x = n + 1 and is zero otherwise. It follows that the 1n entry of
∑

i fk−1−2i(W) in this case is equal

to 1 if k − 1 = n − 1 and is zero otherwise, by cancelation.

This shows that the last column of Sk is zero unless k = n and then it is of the form
(
1

1

)
.

Case 2. Assume n is even. Then for k odd (all x even), as before the last column of Sk is zero.

Assume k is even, consider x = k − 1 − 2i. We have fx(W)1n as before. It follows that the 1n entry of∑
i fk−1−2i(W) is equal to 1 if k − 1 = n − 1 and zero otherwise. Again, the last column of Sk is zero

unless k = n and then it is of the form
(
1

1

)
.

(2) Now we determine the last row of Wk , recall from Proposition 3.18 that Wk = fk(W) +∑
i�0 ψk−2−2i.

Assume first that 1 � k � n. We claim that then the last row of
∑

i ψk−2−2i is zero, hence the last

row of Wk is equal to εn−k for k < n, and is zero for k = n.

Consider (Sfa(W))
t(Sfb(W)). If this has last row non-zero then we must have that the first row of

fa(W) has non-zero 1n entry. This occurs only for a = n − 1 or a = n + 1 but here we have only

a + b � k − 2 � n − 2. So this has last row equal to zero. This implies the claim.

Now consider k = n+ r where 1 � r � n. Then fn+r(W) = −fn−r(W) and this has last row equal

to −εr . We claim that
∑

i ψn+r−2−2i = 2εr . (This will imply the statement.)

We use induction on r. Assume first that r = 1.

Then
∑

i ψn−1−2i = ψn−1+∑
i>0 ψn−1−2i. In the sum, the last row is zero (by the argument in the

previous case). The last row ofψn−1 has non-zero contribution only from fn−1(W)S
t and this is 2ε1.

For the inductive step, write

∑
i

ψn+r−2−2i = ψn+r−2 + ∑
i�0

ψn+r−4−2i.

By the inductive hypothesis the sum is equal to 2εr−2. Now considerψn+r−2. This has only two terms

with non-zero last row, and the last row ofψn+r−2 is equal to the last row of

(Sfn−1(W))
tSfr−1 + (Sfn+1(W))

tSfr−3.

This is equal to 2εr − 2εr−2. In total we get the stated answer. �

Using 4.3 with d = 2n + 1, the previous three Lemmas imply that f2m−3−k(Dm) = f2m−3+k(Dm)
for 0 � k � 2m − 3; and the periodicity of (fk(Dm))k�0 follows.

Corollary 3.22. The family (fk(Dm)) is periodic of period � 2(2m − 2).
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3.7. Substituting type D̃

Let X be of type D̃m+1 of sizem + 2 = n + 4. That is, X =
⎛
⎝0 S

St V

⎞
⎠, where V is equal to Dn+2 with

reversed order (explicitly V = I0Dn+2I
0), and where S =

⎛
⎝1 0 . . . 0

1 0 . . . 0

⎞
⎠ of size 2×m. Recall from 3.17

the definition of the invariants c and λc .

Lemma 3.23. For X as described above, we have c = 2n and λc = 1.

Proof. The parameter λc is the 11 entry of fc(V), which is equal to the nn entry of fc(Dm) when this

is non-zero the first time. The nn entry of fk(Dm) is the nn entry of the matrix Wk occurring in the

recursion for type Dm, with the notation of Section 3.6.

Let k � 2n. We know from Proposition 3.18 that Wk = fk(W) + ∑
i�0 ψk−2−2i. We notice that

(fk(W))nn �= 0 only if fk(W) = ±I and this occurs for the first time when k = 2n.

Now consider the nn entry ofψx for x � 2n− 2. For this we need the nn entry of (Sfr(W))
t(Sfs(W)

for r + s = x � 2n − 2. This is equal to

(∗) 2(fr(W))1n · fs(W)1n.
The 1n entry of any ft(W) for t � 2n − 2 is only non-zero for t = n − 1 or n + 1. So the number (∗)
is zero for r + s < 2n − 2. If r + s = 2n − 2 then it is only non-zero for r = s = n − 1 and then it is

equal to 1. �

By Proposition 3.18 we now obtain the expressions for the matrices constituting fk(X) for 1 � k �
2n + 2, and this is enough to prove linear growth. Recall from Definition 3.7 the definition of I02 .

Proposition 3.24. We have

f2n+2(X)− f2n(X) =
⎧⎨
⎩

2I n odd

2̃I n even

where

Ĩ =

⎛
⎜⎜⎜⎝
I02 0 0

0 In 0

0 0 I02

⎞
⎟⎟⎟⎠ .

Hence the sequence (fk(X))k has linear growth.

Proof. By 3.18, using c = 2n and λc = 1, we have H2n+2 − H2n = 2SSt − 2H2n = 2I2 for n odd, and

H2n+2 − H2n = 2(SSt − I2) if n is even.

Now consider S2n+2 − S2n. Here most of terms of the sum cancel and we obtain

S2n+2 − S2n = Sf2n+1(V) = S · 0 = 0.

Finally, forV2n+2−V2nmostof the termsof the sumcancel aswell andweare leftwithV2n+2−V2n =
f2n+2(V)− f2n(V)+ ψ2n. Furthermore, we have

f2n+2(V)− f2n(V) = −2f2n(V) =
⎧⎨
⎩

−2In+2 n even

−2U n odd

where U is the matrix f2n(Dm) reversed.
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It remains to calculateψ2n. For that we note that

(Sf0(V))
t(Sf2n(V)) = 2E11 = (Sf2n(V))

t(Sf0(V))

(Sf1(V))
t(Sf2n−1(V)) = 2E22 = (Sf2n−1(V))

t(Sf1(V))

. . . . . .

(Sfn−1(V))
t(Sfn+1(V)) = 2Enn = (Sfn+1(V))

t(Sfn−1(V))

(Sfn(V))
t(Sfn(V)) = 2(En+1,n+1 + En+1,n+2 + En+2,n+1 + En+2,n+2).

Thusψ2n =
⎛
⎝4In 0

0 2SSt

⎞
⎠, and

V2n+2 − V2n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2In+2 n odd⎛
⎝2In 0

0 2(SSt − I2)

⎞
⎠ n even

The conclusion follows from Lemma 3.5 with Z = 2I for n odd. Assume n is even, then applying

Corollary 3.6 twice gives f8n+8(X)− f8n+6(X) = 2I, and linear growth follows from Lemma 3.5. �

3.8. Substituting extended type Ã

Let now X be the matrix of type Ãn, that is X is an n + 1 × n + 1 matrix of the form X =
⎛
⎝0 S

St W

⎞
⎠,

with

W = An and S =
(
1 0 . . . 0 1

)
.

where S is a 1×nmatrix. One checks that the invariants c and λc of X as defined in 3.17 are as follows.

Lemma 3.25. Let 1 � c be minimal such that Sfc(W)S
t = λcSS

t �= 0. Then c = n − 1, and λc = 1.

Therefore, by Proposition 3.18 we get the matrices fk(X) for 1 � k � n + 1.

Proposition 3.26. We have

fn+1(X)− fn−1(X) = 2I.

Hence the sequence (fk(X))k has linear growth.

Proof. WehaveHn+1−Hn−1 = 2. Furthermore, Sn+1−Sn−1 = Sfn(W) = 0. ConsiderWn+1−Wn−1,

this is equal to

fn+1(W)− fn−1(W)+ ψn−1

(since most of the terms of the sums cancel).

We know from type A that fn+1(W)− fn−1(W) = −2I0. A straightforward calculation shows that

ψn−1 = 2(I + I0).

Combining these gives the first statement. We get linear growth from Lemma 3.5. �

3.9. Substituting type D̃L

Let X be the adjacency matrix of type D̃Lm with m vertices, and m = n + 2. With the notation of

Section 3.5 X has the following blocks: S = (
1 0 0 ... 0
1 0 0 ... 0

)
, and W = V where V = I0LI0 is the adjacency

matrix of type Ln reversed.
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Recall that f2n(V) = 0 and fk(V) �= 0 for 1 � k < 2n. Furthermore f2n−1(V) = I. The invariants c

and λc of X , given by λcSS
t = Sfc(V)S

t �= 0, and Sfk(V)S
t = 0 for 1 < k < c are as follows.

Lemma 3.27. We have c = 2n − 1 and λc = 1.

Proof. The parameter Sfk(V)S
t is the (1, 1) entry of fk(V)which is equal to the (n, n) entry of fk(Ln). It

follows fromSection3.3 that this entry is equal to 1 for c = 2n−1andequal to 0 for 1 < k < 2n−1. �

We can now apply Proposition 3.18:

Proposition 3.28. We have

f2n+1(X)− f2n−1(X) = Z

where

Z =
⎛
⎝SSt 0

0 2In

⎞
⎠

and XZ = ZX = 2X. Hence the sequence (fk(X))k has linear growth.

Proof. Using the formulae from Proposition 3.18 with c = 2n − 1, we have H2n+1 − H2n−1 =
Sf2n−1(V)S

t = SSt . Next, consider S2n+1−S2n−1. Heremost of the sumcancels and the only expression

remaining is

Sf2n(V) = S · 0 = 0.

Consider now V2n+1 − V2n−1. This is equal to

f2n+1(V)− f2n−1(V)+ ψ2n−1.

By Proposition 3.11(c) combined with Lemma 3.3, we have f2n+1(V) − f2n−1(V) = −2I. We now

calculateψ2n−1, this is equal to

ψ2n−1 = 2

⎡
⎣n−1∑

r=0

(Sfr)
t · (Sf2n−1−r)

⎤
⎦ .

Similarly to the proof of Proposition 9.2we find that (Sfr)
t ·(Sf2n−1−r) = 2Er+1,r+1, for 0 � r � n−1.

HenceV2n+1−V2n−1 = −2I+4I = 2I, as required. This proves that thedifference f2n+1(X)−f2n−1(X)
is as stated, and one checks that XZ = 2X . Now by applying Corollary 3.6 first with q′ = 2qwe obtain

fq′(X)− fq′−2(X) = Z′ where Z′ =
⎛
⎝I02 0

0 2In

⎞
⎠ and where Z′X = XZ′ = 2X . Then we set q′′ = 2q′ = 4q

andbyCorollary 3.6weobtain fq′′(X)−fq′′−2(X) = 2I and thenby Lemma3.5 linear growth follows. �

3.10. Substituting type E

Similar results can be shown for type E. However, all we need for the application to representation

theory that we have in mind, are some simple facts that an easy calculation by hand can provide.

Namely, we need to know when fk(Ei) is equal to zero for the first time when i = 6, 7 or 8 where Ei
for i = 6, 7, 8 is the adjacency matrix of the Dynkin diagram of type E as given in Section 2.2. This

happens exactly for f11(E6), f17(E7) and f29(E8).
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Furthermorewe need the explicit expressions of thematrices preceding this first zeromatrix. They

are given by

f10(E6) = (ε6, ε5, ε3, ε4, ε2, ε1)
T ,

f16(E7) = I7,

f10(E8) = I8,

where εi is as before, that is, it is the row vector that has a one in place i and zero elsewhere.

3.11. Summary

In the preceding sections we have calculated explicitly the Chebyshev polynomials evaluated on

the adjacencymatrices of the Dynkin diagrams of types A,D, E, of the extendedDynkin diagrams Ã, D̃,
as well as on the diagrams of type L, L̃ and D̃L. In particular we have shown that the Dynkin diagrams

and the type L diagram give rise to periodic families and that the extended Dynkin diagrams and the

diagrams of types L̃ and D̃L, give rise to families that have linear growth.

Theorem 3.29. Let D be the adjacency matrix of a Dynkin diagram of type A,D, E or a diagrams of type

L. Then for r � 1, we have fk(D) = 0 if and only if k = rh − 1where h denotes the Coxeter number of the

associated diagram.

Theorem 3.30. LetD be the adjacency matrix of an extended Dynkin diagram or of a diagram of type L̃ or

D̃L. Then for m = rq + u where −1 � u � q − 2 and 2 � r we have the recurrence relation

frq+u(D) = rfq+u(D)− (r − 1)fu(D)

(a) if D = Ãn then q = n + 1;

(b) if D = D̃n then q = 2n − 4 for n even and q = 8n − 16 for n odd;

(c) if D = L̃n then q = n;

(d) if D = D̃Ln then q = 8n − 4;

(e) if D = Ẽ6 then q = 12, if D = Ẽ7 then q = 72, and if D = Ẽ8 then q = 60.

Remark. It is easily checked that for D one of the extended types Ẽ with q given as above we have

fq(D)− fq−2(D) = 2I.

4. Application to representation theory

In this section we show how the previous results can be used to calculate the minimal projective

resolutions of the simple modules of a class of symmetric algebras – namely those that are of radical

cube zero andof tameor of finite representation type.Ourmethodgives the indecomposable projective

components in each degree of the projective resolutions through a description of the radical layers of

the syzygies.

Let K be a field and let � be a finite dimensional K-algebra. Then � is symmetric if there exists a

linearmap ν : � → k such that for all a, b ∈ �, ν(ab) = ν(ba) such that Ker(ν) contains no non-zero

left or right ideal. Recall that the Jacobson radical J(�) of the algebra is the smallest ideal of � such

that the quotient is semisimple.

Let � be a finite dimensional symmetric K-algebra such that J3(�) = 0. We assume that � is

indecomposable, and that J2(�) �= 0. These algebras are classified in [2] according to the minimal

projective resolution of non-projective finitely generated�-modules. Namely, if S1, S2, . . . , Sn are the
simple�-modules, let En = (eij)i,j=1,...,n where eij = dim Ext1�(Si, Sj), which is a symmetric matrix.

Then if the largest eigenvalueλ of En is> 2, the dimensions in theminimal projective resolutions of the

non-projectivefinite-dimensional�-modulesareunbounded, and thealgebra isofwild representation

type. Ifλ = 2, the algebra is of tame representation type and theminimal projective resolutions either
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are bounded or grow linearly, and if λ < 2 they are bounded. In the latter two cases the algebras

are classified by Dynkin diagrams A,D, E or the graph L for the finite representation type, and by the

extended Dynkin diagrams Ã, D̃, Ẽ or the graphs L̃ and D̃L for the tame representation type.

To each of these diagrams D we associate the quiver Q(D), which is obtained by replacing each

edge of the diagram by a pair of arrows pointing in opposite directions. Let K be an algebraically closed

field and let KQ(D) be the path algebra of Q(D). Then one has an ideal I of KQ(D) such that the

corresponding quotient algebra� = KQ(D)/I is a symmetric algebra such that J3(�) = 0.

We recall some properties of indecomposable �-modules as stated in [2]. The Loewy length of

a �-module is at most 3. If P is a projective indecomposable �-module, then rad2(P) = soc(P) ∼=
hd(P). If M is indecomposable but not simple or projective, then the Loewy length of M is equal to

2 and we denote by d(M) the column vector

⎛
⎝ α(M)
β(M)

⎞
⎠ where α(M) = dim hd(M) and β(M) =

dim rad(M)where dimV denotes the dimension vector of the finite dimensional�-module V . This is

the column vector of length n whose ith entry corresponds to the multiplicity of the simple module

Si as a composition factor in V . If S is a simple �-module then α(S) = dim S and β(S) = 0. And if

P(S) is a projective cover of S then the dimension vector of its three radical layers are described by the

vector

⎛
⎜⎜⎜⎝
α(S)

Enα(S)
α(S)

⎞
⎟⎟⎟⎠. More generally, the projective cover P(M) of a non-projective indecomposable�-

moduleM has in its radical layers the dimension vectorsα(M), Enα(M) andα(M). Therefore if�(M) is
non-simple it has in its radical layers the dimension vectors Enα(M)− β(M) and α(M). Furthermore,

d(�(M)) = Bd(M) with B =
⎛
⎝ En −In

In 0

⎞
⎠ where In is the identity n × n matrix. Therefore for M an

indecomposable non-projective�-module we get the recurrence relation

d(�k(M)) = Bkd(M)

if none of the�j(M) for j = 0, . . . , k are simple�-modules. Furthermore, we observe that the entries

of the matrix Bk can be given in terms of Chebyshev polynomials.

Lemma 4.1. Let M be an n × n matrix and let B =
⎛
⎝ M −In

In 0

⎞
⎠. Then for i � 0,

Bi =
⎛
⎝ fi(M) −fi−1(M)

fi−1(M) −fi−2(M)

⎞
⎠

where fi(x) is the Chebyshev polynomial of the second kind defined by the recurrence relation fi(x) =
xfi−1(x)− fi−2(x) and with initial conditions f0(x) = 1 and f1(x) = x.

Proof. By definition of Bwe have f0(M) = In and f1(M) = M and we pose f−1(M) = 0. Suppose now

the result holds for i. Then

BiB =
⎛
⎝ fi(M) −fi−1(M)

fi−1(M) −fi−2(M)

⎞
⎠

⎛
⎝ M In

−In 0

⎞
⎠ =

⎛
⎝ fi+1(M) −fi(M)

fi(M) −fi−1(M)

⎞
⎠ . �

If �(M) is simple then �(M) = soc(P(M)) and d(�(M)) = (α(M), 0)T , however Bd(M) =
(0, α(M))T . Thus we know that�k(M) is simple if the first n entries of the vector Bkd(M) are zero and

if there is only one non-zero entry in the n + 1 to 2n components of Bkd(M).
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Let � be one of the algebras defined above. We say that � is of type A,D, E, L, Ã, D̃ etc. (or

An,Dn, E6, E7, E8, Ln, Ãn, D̃n etc. if we need to specify the number of vertices of the diagram) if the

underlying diagram of the quiver of� is of that type.

The following two theorems are an application of the results of Section 3 . In the case of Theorem4.2

this gives a proof of a result that can be deduced from Theorem 2.1 in [3].

Theorem 4.2. The minimal projective resolutions of the simple�-modules are periodic

(a) of period 2n if� is of type An,

(b) of period 2n if� is of type Ln,

(c) of period 2n − 3 if� is of type Dn for n even and of period 2(2n − 3) for n odd,

(d) of period 22 if� is of type E6, of period 17 if� is of type E7 and of period 29 if� is of type E8.

Definition 4.3. We call a projective resolution R• of a�-moduleM of linear growth of factor p if given

the first p terms

Rp−1 → · · · → R1 → R0 → M → 0

of R•, all other terms of R• have the form

Rkp+l = N
⊕k
l ⊕ Rl for 0 � l � p − 1

where Nl is a direct sum of components Ri for 0 � i � p.

Let q be as given in Theorem 3.30.

Theorem 4.4. Let� be of extended Dynkin type or of type D̃L. Then the minimal projective resolutions of

the simple�-modules are of linear growth of factor q.

Theorem 4.2 follows directly from the calculation of the syzygies in the next proposition.

Proposition 4.5. (a) Let� be of type An. Then for all simple�-modules Si we have �j(Si) is not simple

for j < n and�n(Si) = Sn−i+1.

(b) Let � be of type Ln. Then for all simple �-modules Si, we have �j(Si) is not simple for j < 2n and

�2n(Si) = Si.

(c) Let� be of type Dn. Then for all simple�-modules Si, we have �j(Si) is not simple for j < 2n − 3

and

�2n−3(Si) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S2 if i = 1 and n is odd

S1 if i = 2 and n is odd

Si otherwise.

(d) Let� be of type E6 , E7 or E8. Then for all simple�-modules Si, we have

�j(Si) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Si if n = 6 and j = 11 and for i = 3, 4

Sn−i+1 if n = 6 and j = 11 and for i = 1, 2, 5, 6

Si if n = 7 and j = 17 and for all i

Si if n = 8 and j = 29 and for all i.

Proof. The Proposition follows directly from Lemma 4.1 and the results of Section 3. �

Proof of Theorem 4.4. It is enough to establish the recurrence formula for the Chebyshev polyno-

mials evaluated on the adjacency matrices in question, since by Lemma 4.1 it is then straightforward

to determine the projective resolutions. Namely, if the algebra has n simple modules, then the inde-
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composable projectives constituting the rth term in a projective resolution of the simple Si are exactly

given by the first n entries of the ith row of the matrix Br .

Let D be the adjacency matrix of the graph underlying � (recall that D is not of type L̃). Then it

follows from Theorem 3.30 in combination with Lemma 3.5 that given f0(D), . . . , fq(D) we have for

q + 1 � n � 2q − 1, where n = q + l for 1 � l � q − 1, that fq+l(D) = (fq−2−l(D)+ fl(D))+ fl(D)
since in this case Z = 2I. So if we calculate a minimal projective resolution of the simple Si, then

the components of q + lth term, for 1 � l � q − 1, are Rq+l = Nl ⊕ Rl where Rl is determined by

the ith row of fl(D) and Nl = Rq−2−l ⊕ Rl is determined by the ith row of fq−2−l(D) + fl(D). For
n � 2q − 1 we have the following: Write n = rq + l with −1 � l � q − 2. Furthermore, note that

here Z = 2I = 2f0(D). Then by Lemma 3.5 and the remark that follows we have, for −1 � l � q − 2,

that Rrq+l = N
⊕r
l ⊕ Rl where Nl = Rq−2−l ⊕ Rl . �

Remark. Suppose� is of type L̃. Then the projective resolution of the simple�-modules is almost of

linear growth. More precisely in that case we have by Corollary 3.15 that fq(X)− fq−2(X) = Z where

Z = 2I0 = 2f0(D)0. Given the first q terms in a projective resolution of a simple�-module S we then

obtain by Lemma 3.8 and the remark that follows the nth term in the projective resolution of S, for

n � 2q − 1, in the following way: if we write n = rq + l with −1 � l � q − 2, then

Nrq+l =
⎧⎨
⎩
(N0

l )
⊕r + Rl r even

N
⊕r
l + R0l r odd

where Nl is as defined in the proof above and the components in N0
l are given by the ith row of

I0(fq−2−l(D)+ fl(D))I0 and R0l is given by the ith row of I0fl(D)I0.

5. Evaluating Chebyshev polynomials on positive symmetric matrices

We conclude by a general statement on evaluating the Chebyshev polynomials (fk(x))k on positive

symmetric matrices.

Theorem 5.1. Assume X is a symmetricmatrix, with entries inZ�0 and assume X is indecomposable. Then

(a) fd(X) = 0 for some d � 1 if and only if X is the adjacency matrix of a diagram of type A, D, E or L.

(b) The family (fk(X))k grows linearly if and only if X is the adjacency matrix of a diagram of type

Ã, D̃, Ẽ, L̃ or D̃L.

Proof. (a) IfX is the adjacencymatrix of aDynkindiagramorof a graphof type L, then the result follows

from Section 3. Suppose that fd(X) = 0 for some n, then by Lemma 3.3 X annihilates the sequence of

polynomials fk(x) periodically. Since X is a symmetric integer matrix with entries in Z�0, then it is

the adjacency matrix of a finite connected graph. To this graph we can associate a unique symmetric

algebra � with radical cube zero, such that the sequence of polynomials (fk(X))k�0 describes the

growth of a minimal projective resolution of the simple modules, as explained at the beginning of

Section 4. To construct this algebra, we replace each edge by a pair of arrows pointing in opposite

directions. Then the algebra is the path algebra modulo the ideal generated by quadratic relations in

the arrows, and there is a unique choice of such relations making the algebra symmetric with radical

cube zero.

Then it follows from Section 4 that for such an algebra the minimal projective resolutions of the

simple modules are periodic and thus following [2, 1.1]� is of type A,D, E or L.

(b) If X is of extended Dynkin type or of types L̃ or D̃L then by Section 3, (fk(X))k grows linearly.

Conversely, suppose that (fk(X))k grows linearly. As in (a), X gives rise to a symmetric algebra �

of radical cube zero. By Section 4 this implies that the minimal projective resolutions of the simple

�-modules grow linearly. Following [2, 1.1]� is of type Ã, D̃, Ẽ, L̃, or D̃L. �
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A. Appendix

Dynkin diagrams with labels:

Extended Dynkin diagrams with labels:
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