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ABSTRACT 

The minus partial order was defined by Hartwig [6], weakening the conditions of 
the star partial order of Drazin [5]. Several new properties of the minus partial order 
are established. The minus partial order is used to redefine the shorted matrix [ 15, 171 
and to define the infimum A A B and the supremnm A v B of a pair A, B of matrices 
of the same order. The definition of the shorted matrix given here is similar to the 
Krein-Anderson-Trapp definition of the shorted positive operator. 

1. INTRODUCTION AND PRELIMINARIES 

Matrices are denoted by capital letters, column vectors by lowercase 
letters. For a matrix A, A( A), JV( A), and A’ denote the column span, null 
space, and transpose of A. pmx” represents the vector space of matrices of 
order m X n defined on a field 9. For a complex matrix A, A* denotes its 
complex conjugate transpose. Two subspaces of a vector space are said to be 
virtually disjoint if they have only the null vector in common. B = A@ (B - A) 
means Rank B = Rank A + Rank(B - A) and is read as “A and B - A are 
disjoint.” 

A _ denotes a generalized inverse (g-inverse) of A, that is, a solution G of 
the matrix equation AGA = A. The reflexive g-inverse A; of A is a solution 
G of the pair of equations AGA = A, GAG = G. For a complex matrix A, a 
minimum norm g-inverse A,,, - is a matrix G that satisfies the pair of equations 
AGA = A, (GA)* = GA. A least squares g-inverse Al is similarly defined 
through the equations AGA = A, (AG)* = AG. The Moore-Penrose inverse 

*Part of the work was done while the author was visiting the University of Texas at Dallas, 

during the spring semester 1984. 
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A+ is the unique solution G of the simultaneous matrix equations 

AGA=A, GAG=G, (AG)*=AG, (GA)*=GA. 

{ A } represents the class of all g-inverses of A. { A, } and { A, } are 
similarly interpreted. { A _ + B } represents the class of all matrices which 
can be expressed as the sum of a g-inverse of A and a g-inverse of B. 

Lemma 1.1 is welI known. The “if” part is now folklore. The “only if” 
part was proved for the first time by Mitra [13]. 

LEMMA 1.1. {B-}c {A--} ifandonZyifB=A@(B-A). 

Lemma 1.2, proved in Rao and Mitra [18, Theorem 2.4.21, is in fact a 

simple consequence of Lemma 1.1. 

LEMMA 1.2. The following two statements are equivalent: 

(a) {A- } = {B..}, 

(b) A = B. 

DEFINITION [18]. Matrices A and B of order m X n each are said to be 
parallel summable (p.s.) if A( A + B)- B is invariant under the choice of the 

generalized inverse (A + B)-. If A and B are p.s., A( A + B)- B is called the 
parallel sum of A and B and denoted by the symbol P( A, B). A null matrix is 
clearly p.s. with an arbitrary matrix of the same order. 

The following lemma is proved in Rao and Mitra [lS, p. 1891. 

LEMMA 1.3. Nonnull matrices A and B ure p.s. iff 

&(A)cM(A+ B), _H(A’)c&(A’+ B’), 

or equivalently 

M(B)cM(A+ B), J(B’)c.k(A’+ B’). 

The first part of Lemma 1.4 is easy to establish. The remaining part is 
proved in [l]. 

LEMMA 1.4. Zf A and B are hermitian nonnegative definite of the same 

order, then A and B are p.;. Further, P(A, B) is hermitian nonnegative 

definite, and so are A - P(A, B) and B - P(A, B). 
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Theorem 1.1 lists some known properties of the parallel sum [l, 181. 

THEOREM 1.1. If A and B are p.s. matrices of order m x n each, 

(4 P(A, B) = P(B, A); 
(b) A’ and B’ are p.s., and P( A’, B’) = [ P( A, B)] ’ (for complex matrices, 

A*, B* are also p.s. and P(A*, B*)= [P(A, B)]*); 

(c) for a matrix C of order p X m and rank m, CA and CB are p.s. and 

P(CA, CB) = CP( A, B); 

(4 {[P(A,B)l-}={A-+B-}; 
(e> A[P(A, WI= JW)n JV); 
(f) P[ P( A, B), C] = P[ A, P( B, C)] when all the parallel sum operations 

involved are permissible; 

(g) Zf A and B are compbx matrices and PA and P, are respectively the 

orthogonal projectors onto ./I( A) and JH( B) under the norm induced by the 

inner product (x, y) = y*x, then 2P(P,, PB) is the orthogonal projector onto 

_&I( A)n A(B). 

In Section 2 we discuss some new properties of the star and minus partial 
orders. In particular it is shown that both these partial orders could be 
equivalently defined through the inclusions of classes of g-inverses of the 
matrices concerned. It was shown by Hartwig [6] that when the matrix A is 
star dominated by B, then A+ + (B - A)+ = B+. We prove similar results 
for the minus order. In Section 3 the shorted matrix of Mitra and Puri 
[17] is redefined using the minus order. This definition is similar to the Krein- 
Anderson-Trapp definition [2,11] of the shorted positive operator. It is shown 
that generalized inverses characterize the shorted matrix. When the matrix N 
is invertible, the duality theorem proved in this section shows how certain 
shorted versions of N and N- ’ are connected to one another. In Section 4 the 
minus order is used to define the infimum A A B and the supremum A V B 

of a pair of matrices A and B of the same order. Conditions governing the 
existence of the infimum and the supremum are studied in several theorems 
proved in that section. 

2. PROPERTIES OF THE STAR AND MINUS PARTIAL ORDERS 

In a star semigroup with a proper involution (denoted by *), Drazin [5] 
introduced the concept of a star partial order, which in the context of 
complex matrices of order m X n can be stated as follows: Let A and B be 
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two such matrices. We write A < B if 

A*A = A*B, AA*= BA*. (1) 

It was shown that (1) is equivalent to the following: 

A+A = A+ B, AA+ = RA+. (2) 

Inspired by Drazin’s work, Hartwig [6] introduced the plus partial order 

(later [9] renamed the minus partial order). We write A < B if for some 

g-inverse A- of A, 

A-A= A-B, AA = BA-. (3) 

Note that the minus partial order could be defined for matrices of the same 
order on any field, not necessarily real or complex. 

The equivalence of (a) and (b) in Theorem 2.1 is due to Hartwig [6]. The 
other part is fairly straightforward. See for example the proof of Lemma I.2 
in [16]. 

THEOREM 2.1. The following statements are equivalent: 

A -=c B, (4a) 

B= A@(B- A), (4b) 

A and B - A are p.s. and 

P(A,B-A)=O. (4c) 

Theorem 2.2 is a simple consequence of Theorem 2.1 and Lemma 1.1. We 
shall however give an independent proof. 

THEOREM 2.2. The condition (3) is equivalent to the condition 

{B-}c {A-}. (5) 

proof. (3) =+ A=AAB=BA-A q 

AB-A = AA BB- BA-A = AA BA--A = AA-A = A. 

Conversely (5) =c. A(Z - B-B)= 0 * A= AB-A= AB-B d AB- 
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(B - A) = 0 j B-AB-(B - A) = 0. Note that B-AB- E {A- }, and for 
this choice of A - the first part of (3) holds. The second part of (3) is similarly 
established. n 

Though the conditions (3) and (5) are equivalent, (5) appears to be a more 
natural and transparent representation of the partial ordering concerned. 

REMARK 1. In a regular ring R it was shown by Hartwig and Luh [8, 

Theorem 2.2(xiii)] that a ? b is equivalent to 

a E bRb, (6a) 

{b-}c {u-}. 

For matrices however (6a) is implied by (6b). 

The following theorem on the star order corresponds to Theorem 2.2 for 
the minus order. 

THEOREM 2.3. A<Bifandonlyif 

Proof. “Onlyif’part: ClearlyA; B * A 2 B 3 {BP}C {A-} by 

Theorem 2.2. Further, Equation (1) defining the star order implies that 
_M( A) and A( B - A) are mutually orthogonal under the usual inner product 
(x, y)= y*r, and so are &(A*) and _M[(B - A)*]. Consider now B,;, an 
arbitrary minimum norm g-inverse of B. Then B; B = B+ B is the orthogonal 
projector onto .M( B*), and 

B;B=B,-A+B,-(B-A)=A+A+(B-A)+(B-A). (8) 

Since .M(A*) and A[( B - A)*] are virtually disjoint (that is, have only the 
null vector in common), 

(8) ==, B,-A=A+A=(B,-A)* 

Similarly, if B; is an arbitrary least squares inverse of B, then BB, = BB+ is 
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the orthogonal projector onto d(B) and one concludes in a similar manner 
that B, E {A; }. 

“if” part: To avoid triviality, let us assume that A is nonnull. 
Assume now that { B; } c { A; } and {B, } c {A, }. Clearly B+E 

{B,}c {A,}. Hence 

B++V(Z-BB+)E {B,}c {A,}, 

where V is a complex matrix of appropriate order, otherwise arbitrary. 
A{B++V(Z-BB+)}A=A for arbitrary V j AV(Z-BB+)A=O for 

arbitrary V 2 (I-BB+)A=O. Similarly {B,}c {A[} = B++(Z- 
B+B)UE{B;}C{A,} * A(Z-B+B)=O.HenceforarbitraryCJandV, 

B++(Z-B+B)U+V(Z-BB+)g{A-} =, {B-}c{A } =) A<Bby 

Theorem 2.2. From Theorem 2.1 it is seen that A and B - A are parallel 
summable and the parallel sum P( A, B - A) = 0. Now 

P(A,B-A)=P(B-A,A)=(B-A)B-A 

=(B-A)B,;A=(B-A)A*(B,;)*=O 

3 (B-A)A*(B;)*A*=(B-A)A*=o. 

Similarly 

P(A,B-A)=AB-(B-A)=AB,(B-A)=(B,)*A*(B-A)=0 

3 A*(B,)*A*(B-A)=A*(B-A)=O. 

Thus the matrices A and B are seen to satisfy Equation (l), and we have 

A;B. l 

We refer to the following theorem due to Hartwig [6]. 

THEOREM 2.4. ZfA -? B then 

B+=A++(B-A)+. 

Conversely (9) and (4b) * A q B. 

Similar to Theorem 2.4, we have Theorem 2.5. 

(9) 
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THEOREM 2.5. If A ? B then 

{BP}c {A- +(B-A)-}. (LO) 

Proof. From Theorem 2.1 it is seen that A < B * A and B - A are 

parallel summable and the parallel sum P(A, B - A) = 0. Also, since 
{[P(A,B-A)]P}={AP+(B-A)-} [Theorem l.l(d)]andanyarbitrary 
matrix of order n X m is a g-inverse of the null matrix of order m x n, (10) 
follows as a trivial consequence. W 

The claim made in Theorem 2.6 is more nontrivial. 

THEOREM 2.6. Zf A 7 B then 

{By} c {A; +(B-A),-}. (11) 

Proof. Let G E { Bre }. Then 

G=GBG=GAG+G(B-A)G. 

By Theorem 2.2, A < B a G E {A- }. Hence GAG E {A; }. Similarly 

G(B - A)G E {(B - A), }. n 

REMARK 2. The following counterexample shows (11) alone does not 

imply A < B. Consider 

and check that B, A, and B - A are involutions. 

DEFINITION 1. A pair of matrices A and C are said to satisfy condition (Y 
if A and C are parallel summable and so are at least one of the following 
pairs: (1) A and C, = C- P(A, C), (2) C and A, = A - P(A, C). 
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THEOREM 2.7. Zf A and B - A satisfy condition a and 

B- =A- +(B-A) (12) 

for some choice of the g inverses involved, then 

A < B. 

Proof. Since A and B - A are parallel summable, (12) 3 

Hence by Lemma 1.1, P(A, B - A) and B - P(A, B - A) are disjoint 
matrices. However, if A and (B - A), = B - A - P(A, B - A) are parallel 
summable, then 

JY(A)cJY[B-P(A,B-A)]. 

Since by Theorem 1.1(e) 

JI[P(A,B-A)]=JI(A)nM(B-A), 

this implies 

A[P(A>B-A)]nJ[B-P(A,B-A)]=&P(A,B-A)]= (0) 

3 P(A,B-A)=0 =j A<B. 

The argument is similar for the case where B - A and A - P( A, B - A) are 
parallel summable. n 

From Lemma 1.4 it is clear that a pair of hermitian nonnegative definite 
matrices of the same order satisfy condition (cx). We have thus the following 
corollary to Theorem 2.7. 

COROLLARY 2.1. When A and B - A are hermitian nonnegative definite, 

(11) ==+ A ? B. 
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DEFINITION 2. A pair of matrices A and C satisfy condition p if for 
every reflexive g-inverse (A + C); of A + C there exist reflexive g-inverses 
A; and C?- of A and C respectively such that 

A; 2 (A+C),-, C; 7 (A + C), . (13) 

Since the rank of a reflexive g-inverse is the same as the rank of the original 
matrix. it is seen from Theorem 2.6 that 

A<B j A and B - A satisfy condition p. 04) 

The following example shows that the converse of (14) is not true in general, 
but note that condition /!I does imply parallel summability (Theorem 2.8). 

EXAMPLE. Consider 

and the reflexive g-inverses 

@-A);=[-; ; -1); 

both of which are idempotent matrices and hence dominated by the identity 
matrix under the minus partial order. 

THEOREM 2.8. If A and B - A satisfy condition fi, then A and B - A 
are parallel summuble. 

Proof If A and B - A are not parallel summable, by Lemma 1.3 at least 
one of the inclusion statements 

A(A) c d(B), A( A') c A( B') 

is not true. Suppose J%?(A) ~5 A(B). 
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Then there exists a m-tuple x such that 

XE&Y(A) but x@&(B). 

Let the columns of the matrix B, form a basis of A(B), and (K : y )’ be a left 
inverse of (B,: x). Clearly 

K’B, = I, K4 = 0. (15) 

Choose W = (K’B)- K’ E { B, }. If there exists a reflexive g-inverse A, of A 
such that 

such a g-inverse clearly satisfies the condition 

&(A,-)c.A(W), A([A;]‘)cA’(W’), 

which implies A, = WJW for some matrix J. We have A = AA;AA;A = 
A WJWA WjWA, from which we conclude 

Rank( WA W ) = Rank A. 

(See Theorem 2.1 of Mitra [12] in this connection.) This is impossible on 
account of (15). One arrives at a similar contradiction if A( A’) c 4!( B’). n 

Note that if A < B, it does not follow that for each reflexive g-inverse A; 

of A there exists a reflexive g-inverse (B - A); of B - A such that 

A; +(&A), E {B,}. (16) 

To convince oneself about this one only has to consider the example 

B-A= 0” ; 
i i 

and the choice 
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The following theorem gives necessary and sufficient conditions on the 
reflexive g-inverse of A which ensure that the condition (16) is satisfied. 

THEOREM 2.9. Let A ? B and X be a rejlexive g-inverse of A. For a 

rejkxive g-inverse (B - A); of B - A to exist such that (16) is true, it is 
necessary and sujjkient that 

(B-A)X(B-A)=O, (174 

X( B - A)X = 0. w) 

Proof. The necessity part is straightforward. For the sufficiency part 

note that since A ? B, one can without any loss of generality write 

B = L;L,, A=L;(; ;)Lz, 

where L, and L, are matrices of full row rank. Since X E { A; }, this can be 
expressed as 

X = R,ER;, 

where R, and R, are right inverses of L, and L, respectively and E is a 
reflexive g-inverse of 

E is therefore of the form 

(17a) and (17b) imply respectively WT = 0 and TW = 0. Observe that 

Y=R, _; 
( 

-:),F {(B-A),} (18) 

and X + Y = R,R; E {B; }. 
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3. THE SHORTED MATRIX 

Shorted matrices were introduced by Mitra and Puri [17], extending 
Krein’s [ 111 and Anderson and Trapp’s [2] definition of a shorted positive 
operator. We shall give here a definition based on the minus partial order, 
which resembles the definition of the shorted positive operator. No attempt 
will be made to prove Theorems 3.1-3.4 given below. Their proofs are minor 
modifications of those of similar theorems proved in [14], [15], and [ 171 with 
the condition (20) replaced by an equivalent rank additivity condition. Mitra 
and Pm-i [17] also show how the shorted matrix is related to the concept of 
generalized Schur complement due to Ando [3]. For a recent survey paper on 
the Schur complement and the shorted matrix, the reader is referred to 
Carlson [4]. 

Let NEsnlX”, UE9n’XP, VEggX”. Write .Y=JZ(U), Y= 

JZ( V’), and %? for the class of matrices 

DEFINITION. If %? has a unique maximal element, this maximal element 
is called the shorted matrix N relative to Y and 7 and denoted by the 
symbol S( N JY’, Y). 

Let F denote the matrix 

THEOREM 3.1. If 

then the cLzs V has a unique maximal element under the minus partial 
order. 

THEOREM 3.2. Unless %? consists exclusively of the null matrix, the 
condition (20) is also necessary for the class %? to have a unique maximal 
element. 
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THEOREM 3.3. Let the matrices N, U, V satisfy the condition (20) and 

(21) 

where C, E 9 n xm. Then 

uc,u = u, vc,v = v, (22) 

UC,N = NC,V = UC,V. (23) 

The com77u)n matrix in (23) is invariant under the choice of the g-inverse of F 
and is the shorted matrix S( N 19, S). 

THEOREM 3.4. When S( N 19, .F) is non-null 

(a) JT[S(NI~‘,F)]=A(N)~Y, A([S(NI.Y,7)]‘)=d(N’)nF, 
(b) {[S(NIY, y_)l- } = {N- + X}, 

where X is an arbitrary solution of the matrix equation 

vxu = 0. (24) 

The following theorem reminds one of the duality relationship between 
the minimum norm and least squares g-inverses and has been motivated by 
the same [18, Theorem 3.2.41. 

THEOREM 3.5 (The duality theorem). Let yb stand for N(V), the 
nullspace of V, and Y0 for N( U ‘). Let m = n, N be invertible, and N, U, V 
satisfy (20). Then S(N-‘I&, TO) exists and is given by 

No’-N-‘UC,=N-‘-C,VN-‘. (25) 

Proof. The equality in (25) follows from (23). Check that 

v(N-~_N-‘UC,)=V(N~‘-C,V~T~‘)=W-‘-~-’=O, (26) 

(N-l-- )-- N ‘UC, U-N ‘U- N-‘U=O. (27) 

We now show that .M(N-‘UC,) is virtually disjoint with YO, that is, they 
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have only the null vector in common. If not, let x = N-- ‘UC,y E .M(N- ‘UC,) 
n 9,. Then Vx = WP’UC,y = VC2WP’y = WP’y = 0. Hence x = 
NP’UC3y = C,WP’y = 0. 

That A[(N-‘UC,)‘] = A[(C,WP’)‘] is virtually disjoint with 7” is 
similarly established. Hence 

N-‘=(N~‘-N~‘UC~)~N-‘UC,. (28) 

Let C E .Fnx”, C 2 NP’, M(C)c 9(,, A(C’)c q); then 

N-‘-C=N-‘UC,@(N-‘-No-‘UC,-C). 

However, C -2 NP ’ implies 

N-‘=Ce(N-‘-C) 

=C@[N-‘UC&N-‘-NP’UC:,-C)], 

which in turn implies 

Hence 

C -2 N-‘- N-‘UCS. n 

THEOREM 3.6. Let N E A~“‘~“, U E FmXP ) v E P-qxn, und let there 

exist a matrix CO such that 

{C,-}={N-+X}, (30) 

where N- is an arbitrary g-inverse of N and X an arbitrary solution of the 
matrix equation 

vxu = 0. (31) 

Then the shorted matrix S( N 19, .F) exists, where Sp = .A’( U), 7 = A( V ‘), 
and 

CO = S(NJP’, Y-7). 
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[Note that the crucial part of the proof is to establish the existence of the 
shorted matrix. Because of the one to one correspondence between a matrix 
and its class of generalized inverses (Lemma 1.2) and Theorem 3.4, the rest of 
the theorem then follows as a simple consequence.] 

Proof Let C, be a matrix of full column rank such that 

and 0; a matrix of full column rank such that 

&44(0;) = JT(N’)fL4qV’). 

Let (N- )a be a particular choice of hrp. A typical member of {N- + X} is 
therefore 

(N-),+Y+X=(N-)a+& 

where X, Y, and Z are arbitrary solutions of 

VXU = 0, NYN = 0, D,ZC, = 0, respectively, (32) 

while if (30) holds, a typical member of { Ci } is 

where 2, is an arbitrary solution of 

c&$)c, = 0. 

Then (30), (32), and (33) w 

(33) 

.M(C,) = A(C,) = eM(N)nuM(U), 

.M(Cd)=.M(D;)=&(N’)mM(V’), 

dim[JZ(N)n&(U)] =dim[A(N’)n&(V’)] = r (say). 

Let N be of rank s, and C, and 0; be matrices of s - r columns each such 
that 

A(N) = A(C,: C,), d(N’) = A’(D;: 0;). 
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Then 

where 

F, = 

is an invertible matrix of order s X s. Let 

Then 

*1 ---l ( i D 
F,-yC,:C,),‘E {iv }, 

2 R 

and C$VC,, = CO - 

D 
D, -’ 

i i l *2 R 

F,-‘(Cl: C&k,= (Z:O)F;’ ; 
i 1 

is nonsingular. 
We show that this implies the existence of the shorted matrix. If U” is 

nonsingular, so is Vz - V21(V11)-1V12. Then, noting that 

we have 

u,,~(~11)-1+(~11)-1~12(~22_~21(~11)~1~12)~1~”1(~11)--~, 

u,,= _((i”)~lp(~22-~21(~ll)-l~12)~1, 

u2,= -(~22_~21(p~1~12)-~~21(~11)~1, 

u,,= (u22- U21( Ull) - lv12) - 1. 
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Note that V,, is nonsingular. We now show that N, = C,(U,, - U,,U~‘U,,)D, 
is in fact the shorted matrix S(NJY, S). 

Write Nr = (C,U,, + C,V,,)~~‘( U,,D, + UzzDz), and observe that 

N=N,+N, 

and that since Us, is nonsingular, &(N,) is virtually disjoint with JY(C,) = 

A(N)f and &(Ni’) with &(D;) = &(N’)n Y. Let C E 3”lXn, C 2 N, 

J?(C) C 9, JZ(C’) C F’. Then clearly 

JZ(C)cJi!(N)nS”, ~‘4(C’)c.&(N’)ncT. 

N=C@(N-C) 

=C@[(N,-C)@N,]. 

Hence N, = C@(N, - C) * C -? N,. 

The matrix N, thus satisfies the definition of the shorted matrix 
S(Nly> 7). n 

4. SUPREMUM AND INFIMUM OF A PAIR OF MATRICES 

Let A, B E .Fm ‘“. Consider the classes of matrices in F”lx” defined as 
follows: 

@= C:A<C,B?C (34) 

g= (35) 

If e is nonempty, the supremum of matrices A and B, denoted by A V B, is 
the unique minimal element in @ if one exists. The infimum of A and B is 
similarly the unique maximal element in g if one exists, and is denoted by 
A A B. We note that the null matrix is a member of g. Hence g is always 
nonempty, but @ is not necessarily so. 

Let $, K, Yb, and Fb be defined as follows: 
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We shall prove the following theorem: 

Proof Let C E @. Then 

This establishes the necessity of (36). Conversely if (36) holds, 

REMARK 3. e can be nonempty when S( A(yb, F(,) and/or S(J3\9,,, 9:) 
is not defined. Consider for example 

and note that A < I, B < I, since both A and B are idempotent. III fact for 

c + 0, a, b, c arbitrary otherwise, 

i 0 0 1 0 0 1 u h c 1 
dominates both A and B under the minus partial order. The shorted matrices 
concerned do not exist, since 

dim[&‘(A)n_M(B)] = 2, dim[&(A’)n&(B’)] =l. 

THEOREM 4.2. Zf (36) hoi&, A V B exists iff at least one of the matrices 

A - S( AlSq,, y(1) ancl B - S( BlS$, qz) is a null matrix. 
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Proof Let us write 

19 

We have seen in the proof of Theorem 4.1 that A + B - S = S,, + S, + S E 9’. 
We show that it is in fact a minimal element in e. This follows from the fact 
that if C E @, 

A<C * J@(A) c M(C), 

B?C =a uM(B)cA(C). 

Hence.M(A:B)cd(C) * RankC>dimJ(A)+dimJ(B)-dimM(A) 
~7M(B)=RankS,+RankS,+RankS. 

That S, + S, + S is not the unique minimal element unless at least one of 
S, and S, is a null matrix follows from the fact that if both S, and S, are 
nonnull, S, + S, + S + S&S, for arbitrary K is also a minimal element in @. 
This is seen as follows: 

S, + S and S, + S,KS, are disjoint matrices. 

Clearly &(S, + S) and .M[S,(Z + KS,)] are virtually disjoint. If for some 
vectors u and o, 

u’(Sa + S) = u’(S, + S,KS,), 

then w’s0 + U’S = V’S,, where w’ = u’ - U’S,,, K. This implies 

u’Sb = 0' ==+ u’( S, + S,KS,) = 0', 

since .M(Si) is virtually disjoint with JY(S:: S’). This shows &(S: + S’) and 
_M(Z + KS,)‘Si] are also virtually disjoint. Thus 

A = S, + S ? S, + S, + S + S&S,. 



20 SUJIT KUMAR MITRA 

Similarly B = S, + S 2 S, + S,, + S + S,KS, 3 S, + S, + S + S,,KS,, E 53. 

However, 

Rank(S,+S1,+S+S&S,) <RankS,+Rank[S,(I+ KS,)] +RankS 

< Rank S, + Rank S b + Rank S . 

This shows S, + S, + S + S,KS,, is also a minimal element in (e. Hence A V B 

does not exist. If A - S(A1.Y(l, F[>) = 0, then A = S(A(P’,>, Y,?) = S(SlSq,, q) 

< B. Clearly here A = A A B, B = A V B. Similarly, when B - S(Slq,, qz) 

= 0 we have B = A A B, A = A V B. w 

It was shown in Theorems 4.1 and 4.2 that when both S( A(.Y’(,, &) and 
S( B(Sq,, qI) exist, A V B does not exist unless one of the matrices A and B is 
dominated by the other under the minus partial order. The following theorem 
shows that this is the only instance when A V B exists. 

THEOREM 4.3. Nonexistence of even one of S( AIF,, 7,)) and 

S( B(Sq,, <;I> implies the nonexistence of A V B. 

Proof Assume without any loss of generality that S( AjYlj,, &) does not 

exist, and let C = A V B. Then B < C * C = B@ (C - B). One can there- 

fore write C = L&Z,, and B = L’,DL,, where L, and L, are of full row rank, 
and 

A?C = A = L’,HL,, where 

is idempotent. Let X be a scalar # 0,l such that 

det[l+(h-l)(Z-H,,)]#O. 

If H,, = I, choose 

I - (A - l)H,, 
0 I+(&1)(1-H,,) 
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T= -(X!l)H,, i Z+(h-&Z-H,) =T2 i 

according as H,, or H,, is nonnull. If Hz2 f I, either choice is permissible. 
Clearly det T # 0, which implies Rank L’,TL, = Rank C. We now show CO = 
L’,TL, dominates both A and B under the minus partial order and is in fact a 

minimal element in 5. That B < CO is trivial. We have 

T,-H= 
z - Hll - AH12 

- H2l i W-H,,) ’ 

which has the same column span as I- H. Hence Rank( T, - H) = Rank( I - 
H) and we have 

T,= H@(T,- H). 

Similarly it is seen that T, = H $ (T, - H). In either case A 2 CO, and since C 

and CO have same rank, CO is seen to be another distinct minimal element in 
@. This is in conflict with our assumption that C = A V B. The excluded case, 
namely H,, = I and H,, = 0, Hz1 = 0, is inconsistent with the assumption 
that S( A)Yb, Fb) does not exist, since here 

L’ Hll 0 L ( 1 2. 0 l 

is in fact seen to be the shorted matrix S( A(Y(>, Yb). n 

THEOREM 4.4. If (36) is satisfied, then P(A, B) exists and 

AA B=2P(A, B) (37) 

is the unique muximul element in g. 

Proof. We need Lemma 4.1 which is easily established using Theorems 
1.1(d) and 3.4(b) of this paper and Theorem 2.1 of [16]. 



22 SUJIT KUMAR MITRA 

LEMMA 4.1. If S(A).Yb, Yb) and S(B(q,, q,) are both defined, then 

@(Al.%, Yb)> S(BK, q)] = P(A, B). 

in the sense that, if either side is defined, so is the other, and they are equal. 
Here S(A(Yb, .Fb) = S(B)Ya, 3) = S (say). Hence 

Z~CE~, then C<A, C?B =) C<A, JzZ(C)CY~~, _M(C’)c.Y,, = 

C < S(A]P’/,, Fb) = S. Also S(AlY!>, Y!,) = S(B]Sq,, 8) = S ==, S -? A, 

S < B - SET. Hence 

AA B=S=2P(A,B). n 

REMARK 4. The formula (37) is strikingly similar to the expression for the 
infimum of two orthogonal projections in a finite dimensional complex vector 
space given by Anderson and Duffin [l] and reproduced in Theorem l.](g). 

Let A ; B and A x B represent the star supremum and the star infimum 
of a pair of matrices A and B with the star order replacing the minus order 
in the definitions of G? and g given in (34) and (35) respectively. It was 
shown by Holladay [lo, Lemma 7.341 that 

A;; B<2A(A+B)+B. 

Clearly A A B = B ;f A ; 2B( A + B)‘A, and A(A + B)+ B is not neces- 

sarily equal to B(A + B)‘A, since A and B need not be p.s. It was shown 
further that [lo, Lemma 7.351 when A 6 B exists, 

A;; B=2A(A+B)+B=2B(A+B)‘A. 

REMARK 5. A A B may not always exist. Consider 
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and note that for arbitrary a, b, both 

iz :) and ( b’2 
(z-b)/2 ,“b 

) 

are dominated by A and B under the minus partial order. It was shown by 
Hartwig and Drazin [7] that emx”, the vector space of_complex matrices of 
order m X n, is a lower semilattice under the * order, that is, for a pair of 
arbitrary matrices A, B E emXn, g has a unique maximal element if the 
minus partial order is replaced by * order in the definition of g. The above 
example shows that V m xn loses this property under the minus partial order. 

REMARK 6. A A B may exist even if (36) is not true. Let A be nonnull 
matrix and B = 2A. Clearly A = S(A(Pb, Yb)# B = S(B(ql, q). If C is a 

nonnull matrix and C 2 A, then A = C@(A - C). However, B - C = 2(A - 

C)@C and C are not disjoint. Hence C 2 B. Thus the null matrix is the only 

member of g. 

REMARK 7. The example discussed in Remark 6 may lead one to 
speculate that if A = A,$A, and B = A,@kA, (k # l), then A A B = A,. 
This however need not be true. Consider for example 

Then it is seen that 

1 0 0 

c= 1 0 0 0 

0 0 0 I 
is dominated by both A and B. However, C # A A B, since the matrix 

1 1 -1 

c,= l 1 1 -1 1 1 -1 I 
is also dominated by both A and B under the minus partial order. In case 
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A A B exists, it can be of rank at most 2, has to dominate both C and C,, and 
has to be itself an idempotent matrix, since 

Ar\BqA, C<Ar\B, C,<Ar\B 

==. &(Ar\B)=_M , Jti[(Ar\B)']=cM 

However, no such idempotent matrix can exist to satisfy all the demands that 
have just been made, since (O,l, 1)’ belongs to both the range and the null 
space of A A B. 

THEOREM 4.5. Let S(A]9’r,, Y!>) and S( BJSPn, 7,) both exist und he 
unequal. Then either A A B is a null matrix or A A B does not exist. 

Proof When S( A(Y,,, Y&) and S( B(qz, z) both exist, clearly 

Let S(AJY[,, Yb)= I&L, be a rank factorization of S(A]Yl,, Y!,). Since 
S( AlSq,, F$>) and S( BIL$, q) have the same row and column spans, 

for some nonsingular matrix B,. This shows that without any loss of generality 

one may consider the case A = I and B nonsingular. Let C 2 I, C -? B, and 

C be nonnull. We shall consider two cases separately. 

Cuse 1. BC # CB. Here C, = BCB- ’ # C has the same rank as C, and 

it is easily seen that C, 2 1, C, 2 B. Thus C cannot be the unique maximal 

element in g. 
Case 2. BC = CB. Here choose and fix a matrix X such that (I - 

C)XC#O and det[I+(Z-C)X]+O. Put C,=C+(Z-C)XC and observe 

that C, has the same rank as C. Further, Cl = C, * C, 2 1. Also, C, BP ‘CO 

= CO * CO 2 B (by Theorem 2.2). Thus here also C cannot be the unique 
maximal element in g. Hence A A B does not exist unless the null matrix is 
the only member in g. In the example discussed under Remark 6 we have 
seen that A A B could be a null matrix. n 
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REMARK 8. One may at this stage speculate that for an arbitrary pair of 
matrices A and B of the same order, either A A B = 0 or A A B = 2P( A, B) 
or A A B may not exist. This however is not true. Consider for example 

Here dim[M(A)n A(B)] = 2, dim[M(A’)n &l(B’)] = 1. Hence 
S(A(Yb, Yb), S(B[Y’,, z), and P(A, B) do not exist. 

For a matrix C to be dominated by A under the minus order, C has to be 
a 2 X 2 idempotent matrix bordered by a null row and a null column (as in 
A). To be dominated by B the first row of any such matrix has to be (2,2,0), 
as any other choice would imply Rank( B - C) = 2. This shows that 

is the only nonnull member of C and is thus equal to A A B. 

THEOREM 4.6. Let C~gand be such that (C-A)A(C-B) exists. 
Then 

(1) C,=C-(C-A)r\(C-B)E~, 

(2) C, 2 C, 

(3) (Ca-A)A(C,,-B)=O. 

Proof. (1): C,,-A=(C-A)-(C-A)A(C-B)?C-A. Hence A 

and C, - A are disjoint matrices, and 

C,=Ae(C,-A) a A-X,. 

Similarly B ? C,. Hence C, E @. 

(2): 

C=A@(C-A)=A@[{C-A-(C-A)r\(C-B)}’ 

@{(C-A)A(C-B))l 

=C@{(C-A)A(C-B)} =, C,rC. 

(3): Let E be a nonnull matrix and E < Co - A, E Z C, - B. Then 
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E -? C - A, E -? C - B. Further, E and (C- A)/\(C- B) are disjoint 

matrices, which contradicts the assumption that (C - A)A( C - B ) is the 
unique maximal element in the corresponding g, since 

C-A= {E~B(C,-A-E)}a{(C-A)A(C-B)) 

= {C,-A-E}@[E@{(C-A)r\(C-B)}] 

and 

= {C,- B-E}@[E@{(C-A)r\(C- B)}]. 

The author wishes to thank Dr. Thomas Mathew for his help in going 

through the required computations which ultimately led to the example 

preceding Theorem 2.8. He thanks Dr. V.S. Sunder for his help in proving 

Theorem 4.5. In particular the basic idea behind the construction of a 

competitor C, to C is due to Dr. Sunder. The author thanks Dr. George P. H. 

Styan for drawing his attention to partial orders defined by Drazin and by 

Hartwig. He thanks Dr. Robert E. Hartwig for his comments on this paper, in 

particular, for drawing his attention to Theorem 2.2(xiii) in Hartwig and Iuh 

[8] and to the unpublished Ph.D. dissertation IlO] of Phil Ho&day. He is 

indebted to Dr. George E. Trapp for his detailed comments suggesting a 

reorganization of the material, which has certainly resulted in improved 

readability of this paper. 

Note added in proof. The author is grateful to Dr. David H. Carlson for 
pointing out an error in an earlier version of the statement of Theorem 3.2 
and for motivating the discussions that follow. It is to be noted that the 
present definition of the shorted matrix is not strictly equivalent to the 1982 
definition [ 14, 15 ,171 though they are very nearly so. If a unique shorted 
matrix exists under the 1982 definition, then from Theorem 2.1 in [14] it is 
seen that this is also the unique maximal element in V. On the other hand if 
both 9 and Y are of positive dimensions, if precisely one of the following is 
true 

SPn.M(N)= {O},~n.d(N~)= (0) (38) 

(even is (20) be untrue), then the null matrix is the only member of % and 
thus its maximal element. However Theorem 2.1 [ 141 implies that here the 
unique shorted matrix under the 1982 definition does not exist. The following 
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example constructed on the lines of Remark 7 i&&rates a similar situation 
with both parts of (38) being untrue. Let N = I be a matrix of order 3 X 3, 
9 = A([O, 1, I]‘), 9 = &([O, 1, - 11’). Both these examples also point out 
the necessity of the exclusion clause in Theorem 3.4. 
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