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Objectives: The duration of untreated Plasmodium falciparum infections in naturally exposed human
populations is of interest for rational planning of malaria control interventions as it is related to the duration of
infectivity. The extent of variability in duration is relevantwhere transmission is seasonal, and for the planning of
elimination efforts. Methods for measuring these quantities from genotyping data have been restricted to
exponential models of infection survival, as implied by constant clearance rates. Such models have greatly
improved the understanding of infection dynamics on a population level but likelymisrepresent thewithin-host
dynamics ofmany pathogens. Conversely, the statistical properties of the distribution of infection durations, and
how these are affected by exposure, should contain information on within-host dynamics.

Methods and results: We extended existing methods for the analysis of longitudinal genotyping data on P.
falciparum infections. Our method simultaneously estimates force of infection, detectability, and the distribution
of infection durations. Infection durations are modeled using parametric survival distributions. The method is
validated using simulated data, and applied to data from a cohort study in Navrongo, Northern Ghana.

Distribution estimates from exponential, Weibull, lognormal, and gamma models are compared with the
distribution of durations in malariatherapy data.

Conclusions:TheWeibullmodelfitted thedata best. It estimateda shortermeanduration than theexponential
model,which gave theworstfit. The distribution estimates appeared positively skewedwhen comparedwith the
distribution of durations in malariatherapy data, suggesting that a significant proportion of infections is cleared
shortly after inoculation. We conclude that malariatherapy data, the most important source of information on P.
falciparumwithin-host dynamics, may not be representative of the actual processes in natural populations, and
should beusedwith care. Further, conclusions from transmissionmodels assuming exponential infection survival
may be biased.

© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

The duration of Plasmodium falciparum infections is related to the
duration of potential infectivity of the host. It affects the magnitude of
transmission from humans to the mosquito population and gains
special significance in settings where malaria transmission is
seasonal: the fraction of infections surviving a transmission-free dry
season constitutes the founder population for the new transmission
season. Rational planning of a malaria control or elimination therefore
profits from accurate measurements of infection duration. Howmuch
variation there is in the duration of natural infections is largely
unknown, but important for similar reasons. A case study suggests
that single infections may in extreme cases last up to 8 years (Szmitko
and Tropical Medicine, London,

. Bretscher).

-NC-ND license.
et al., 2009). Current knowledge about within-host dynamics and the
distribution of P. falciparum infection durations comes mostly from
malariatherapy data (Sama et al., 2006a): before the arrival of suitable
antibiotics, infection with malaria was a common method to treat
neurosyphilis.

Analysis of such data is facilitated by the fact that the start- and
end-points of every infection are approximately known, and that
therefore standard methods of statistical survival analysis can be
applied. A comparison of various parametric survival distributions
suggested that the Gompertz andWeibull distributions gave the best fit
to these data, followed by the gamma, lognormal, and exponential
distributions (Samaet al., 2006a). An average durationof approximately
200 dayswas found. Infectiondurationsmuchshorteror longer than the
mean were rare.

However, malariatherapy data may not accurately mirror the
situation in naturally exposed populations: the patients were
immunologically naïve, infected with syphilis, and did not have
multiple concurrent infections. Moreover, the P. falciparum strains
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used for therapy were selected by physicians for optimal curative
properties as well as for low clinical virulence (McKenzie et al., 2008).
Thus it is not clear whether the distribution of infection durations
would be the same in human hosts who have experienced high
malaria transmission throughout their lives, and possibly have
multiple concurrent infections caused by wild-type parasite strains.

A valuable source of information about infection dynamics in
natural populations is cohort data onmalaria infection, obtained using
DNA-based diagnostic methods. These have the advantage that
infecting clones can be distinguished on the basis of highly polymorphic
genetic markers, such asMerozoite Surface Protein 2 (msp2). However,
analysis of such data is not straightforward using standard techniques
because detection of P. falciparum clones is imperfect, even when using
polymerase chain reaction (PCR). Several dedicated statistical methods,
allowing for imperfect detection, have been developed (Nagelkerke
et al., 1990; Smith et al., 1999; Smith and Vounatsou, 2003; Sama et al.,
2005, 2006b). The assumption of a constant clearance rate of infections
is common to all these approaches. This has a long tradition and there
are practical reasons for doing this: a constant clearance ratemeans that
the rate at which infections are cleared is independent of the age of an
infection, which implies an exponential distribution of infection
durations. This simplifies the required mathematics enormously since
it is not necessary to keep track of the age structure of the infection
population. From a biological point of view, however, exponential
survival of infections seems not very plausible. The study of how
durations of infection are distributed is the quest for a statistical
description of one important aspect of within-host dynamics. Such
analyses may yield information which can be used to validate process-
based within-host models.

In continuation of Smith et al. (1999), Smith andVounatsou (2003),
and Sama et al. (2005, 2006b)we have developed amethod to analyze
molecular cohort data andmeasure parameters of infection dynamics.
Weuse amore complete dataset from the study analyzedby Samaet al.
(2006b). Themain findings of Sama et al. (2006b) are therefore briefly
explained: using the statistical model described earlier in Sama et al.
(2005), Sama et al. studied seasonality and age dependence of the
following parameters of infection dynamics: λ (the force of infection,
FOI), μ (the clearance rate, which is the inverse duration of infection
and implies an exponential distribution of durations) and q (the
detectability parameter, denoting the probability of detecting a
specific clone in a blood sample, given it is present). In total, Sama
et al. compared twelve differentmodel parameterizationswith respect
to goodness of fit, using a longitudinal, age-stratified dataset from
Navrongo, Northern Ghana. One of the main findings was that the
detectability of infections declines with host age in a very pronounced
way, suggesting an effect of cumulative exposure, a proxy for acquired
immunity, on parasite densities. Contrary to expectation, the duration
of infection was hardly affected by host age. The present analyses
consider the sensitivity of these results with respect to the assumption
of constant clearance rates, and provide estimates of the distribution
of infection durations.

Methods

Study design and sample collection

A one year longitudinal study of malaria infection was conducted in
the Kassena-Nankana district, in the upper East region of Ghana
(Owusu-Agyei et al., 2002; Falk et al., 2006; Sama et al., 2005, 2006b).
The malariological situation in this area is characterized by very high
prevalence and multiplicity of infection (Owusu-Agyei et al., 2002;
Binka et al., 1994), and year-round transmissionwith seasonal variation
in transmission intensity (Sama et al., 2006b). A total of 349 individuals
of all ages were followed up over one year in 2-monthly intervals. New
births were recruited during the follow-up so as to ensure that the
age distribution remained the same throughout the study. Blood
was collected on ISOCodeStix™ PCR template preparation dipsticks
(Schleicher & Schuell, Dassel, Germany).

Genotyping

DNA was eluted from ISOCodeStix™ and screened for presence of
P. falciparum by PCR. Processing of stix and PCR conditions have been
described in detail before (Felger et al., 1999). In brief, samples that
tested positive for presence of P. falciparum were subjected to PCR
using primers specific for the msp2 locus. Different alleles were
distinguished on the basis of length polymorphisms, by means of
automated capillary electrophoresis technology. The obtained data
files were further processed using the GeneMapper® software and an
in-house generated software, which facilitates identification of known
alleles from the raw output of GeneMapper® and transforms the data
into different formats suitable for data management and statistical
analysis.

Data preparation

Only data of those participants who were present at all survey
rounds were included in the analysis. This reduced the number of
individuals in the dataset to 216. Failure or success to detect a strain
was denoted by 0 or 1, respectively. The resulting 63 possible sequence
types containing at least one positive test result were numbered from
1 to 63, using their binary value (e.g., 000010 is sequence 2). This
yielded a frequency distribution of binary patterns for every host, to
which statistical models could be fitted. The possibility of re-infection
of a host with the same genotype was ignored for all modeling
analyses. This assumption was justified by the high diversity of msp2
alleles in the population.

Models of infection dynamics

A selection of process-based statistical models, similar to the ones
presented in Sama et al. (2006b), were devised and compared to the
data. In the models, three main processes are assumed to determine
frequencies of the different binary patterns in each human host:
acquisition, clearance, and detection of infections. Givenmathematical
models for each of the three, a likelihood canbe calculated as explained
in the following section. The simplest possible model represents each
process by a single parameter: the force of infection λ (no. of infections
acquired per person year), the duration of a clonal infection (in the
simplest case modeled as an exponentially distributed random
variable, with scale parameter equal to the inverse clearance rate,
1/μ), and the detectability q (the probability of detecting any present
falciparum clone in a blood sample by PCR). Such a simplemodel is not
able to capture several important characteristics of real data, such as
seasonality in transmission or changes in detectability with increasing
immunity of the host. These have been shownby Samaet al. (2006b) to
be present in the Navrongo dataset and need to be incorporated into a
model in order to yield unbiased parameter estimates.

As a starting point for our analysis, we use the best fitting
exponential model from Sama et al. (2006b), which was fitted to a
partial dataset from the same study: the FOI parameter λ(t) was
modeled as a function of season alone, meaning that for every two-
month season a separate parameter λi was estimated. The resulting
pattern of seasonal transmission was assumed to have repeated since
the birth of every host.We extended thework of Sama et al. (2006b) to
allow the use of four parametric survival distributions for modeling of
the clearance of infections: these are the exponential, Weibull, gamma
and lognormal distributions (Table 1). Except for the exponential
distribution, which is characterized by a single (scale) parameter,
these distributions require two parameters. In the following we
will refer to these as “scale” and “shape” parameters, ignoring possible
distribution-specific names. Because the best-fitting model of Sama



Table 1
Survival distributions. Selected properties of the different survival models used in this analysis are given. The exponential is the only single-parameter distribution, and its properties
depend entirely on the mean duration of an infection. All other distributions make use of two parameters. We refer to them as scale and shape, respectively, instead of using
distribution-specific names. For each survival model, a restricted range of possible “shapes” exists, with restrictions being different among the distributions. Abbreviations: for the
gamma function Γ(z)=∫

0

∞
t z−1e− tdt, for the lower incomplete gamma function γ(s, x)=∫

0

x
t s−1e− tdt, and for the error function erf xð Þ = 2ffiffiffi

π
p ∫

x

0
e−t2dt.

Survival distribution Scale Shape Mean Variance PDF CDF

Exponential 1/μN0 1/μ 1/μ2 μe− μx 1−e− μx

Weibull λN0 kN0 λΓ 1 + 1
k

� �
λ2Γ 1 + 2

k

� �
−μ2 k

λ
x
λ

� �k−1
e− x=λð Þk 1−e− (x/λ)k

Lognormal μ σN0 eμ+σ 2/2 (eσ
2−1)e2μ+σ 2 1

xσ
ffiffiffiffiffiffi
2π

p e
−

ln x−μð Þ2
2σ2 1

2
+

1
2

erf
ln x−μ
σ

ffiffiffi
2

p
	 


Gamma θN0 kN0 kθ kθ2 xk−1 exp −x = θð Þ
Γ kð Þθk

γ k; x = θð Þ
Γ kð Þ
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et al. (2006b) showed no age-dependence of the duration of infection,
and because the present analysis is intended to be a proof of concept,
we chose to parameterize the survival models with simple constant
values, rather than e.g.modeling themas functions of host age. The age
dependence of detectability was modeled as a logit-linear function,

l að Þ = ln
q að Þ

1−q að Þ
� �

= q0 + q1 a−að Þ;

where a is the age of a host (in 2-month units), and ā is the average
age in the dataset.1 The detectability of infections in a host of age a can
then be obtained by using the inverse logit function:

q að Þ = 1
e−l að Þ + 1

: ð1Þ

Model equations

Let (nk 1,nk, 2,..,nk, 63) denote the realizations of 63 Poisson random
variables with means (ωk, 1,ωk, 2,..,ωk, 63), where ωk, i is the expected
frequencyof observed pattern i in individual k. In order to derive theωk, i,
we firstly derive the expected frequencies of the 21 (hypothetical) true
patterns, τk, i representing true infection status. True patterns are also
indexed using the binary number they encode, but only patterns
comprisinga singleuninterrupted subsequenceof “ones” are considered.

Individual k is of age bk at the time of the baseline survey, tb,
implying that it was born at time tb−bk. As some parameters of
infection dynamics can be functions of time (seasonality), and others
functions of the age of the host, we will use t as variable of integration,
and refer to the age of an individual at time t as ak(t)= t− tb+bk. We
denote the length of inter-survey intervals with ε, and assume equally
spaced surveys.

Consider for the acquisition of infections a Poisson process with
intensity λ(t), the force of infection. Since true patterns consist of
uninterrupted sequences of “ones”, every true pattern can be defined
by the times of the first and the last survey where the infection is
present, t1, i and t2,i, respectively. These imply, given the study design, a
time interval where its causative infectionmay be acquired and a time
interval where it must be cleared. Those intervals can be obtained
for each true pattern from the age of the individual at baseline, bk, and
the number of surveys, s, in the study.

To illustrate this, we use examples of true patterns representative
of the different possibilities. Our aim is to obtain the interval of
possible infection time points, [α, β], and the interval within which an
infection must be cleared if pattern i is generated, [γ, δ]. Consider, for
example, true pattern 110000. An infection generating this sequence
can be acquired between birth of the host and the first survey. Thus,
α= tb−bk and β= tb. The situation is different if the time of first
1 For the sake of comparing our results with those from Sama et al. (2006b), ā was
set to 120.72 (in units of 2 months, corresponding to the survey interval). This is the
average age in the partial dataset used by Sama et al. (2006b).
presence of the infection, t1, i, is after baseline, as in pattern 001111.
An infection which leads to this true pattern can only be acquired
between the 2nd and the 3rd survey, therefore α= t1,i−� and β=t1,i.
To summarize this, we write

αk;i =
tb−bk; if t1;i = tb

t1;i−�; otherwise

(

and

βi = t1;i:

An infection acquired at time t will, given α≤ t≤β, generate true
pattern i with a nonzero probability. We call this probability pk, i(t). If
given pk, i(t), we can obtain τk, i, the expected frequency of true pattern
i in host k, as

τk;i = ∫βi

αk;i
λ tð Þpk;i tð Þdt: ð2Þ

This probability depends on the distance to the surveys in time,
and the properties of the survival distribution used for modeling
clearance of infections. The properties of the survival distributionmay
in turn depend on the age of the host at time t, when the infection is
acquired.

The probability that an infection acquired at time t generates
pattern i, pk, i(t), is equal to the probability that the infection is cleared
in the interval [γi, δi]. Therefore

pk;i tð Þ = ∫δi
γi

f u−tð Þdu
= S γi−tð Þ−S δi−tð Þ;

where f and S are the probability density function and survivor
function, respectively, of the survival distribution used to model
clearance of infections.

To obtain γi, the start of the clearance interval, we consider again
patterns 001111 and 110000 as examples, and conclude, trivially, that
an infection cannot be cleared before t2, i, the time of the last survey it
is present conditional on producing pattern i.

γi = t2;i:

The time point until an infection must be cleared in order to
generate true pattern i depends on whether the last survey the
infection is present coincides with the last survey of the study, or not.
If so, it can be cleared anytime after the last survey, if not, the infection
has to be cleared before the survey which follows the one at t2 i, so

δi =
∞; if t2;i = tb + s�

t2;i + �; otherwise
:

(



112 M.T. Bretscher et al. / Epidemics 3 (2011) 109–118
The complete expression for the number τi of true patterns of type
i to be expected in host k is then

τk;i = ∫βi

αk;i
λ tð Þ∫δi

γi
f u−tð Þdu dt;

or, in terms of the survivor function S,

τk;i = ∫βi

αk;i
λ tð Þ S γi−tð Þ−S δi−tð Þ½ �dt: ð3Þ

A more formal but equivalent approach, explaining the presented
heuristics, is outlined in Appendix A.

The expected frequencies ωk, i of observed patterns in individual k
can be obtained using the probability Pi, j that true pattern i gives rise
to observed pattern j, as follows:

ωk; j = ∑
i
Pi; j qkð Þτk;i;

where qk is the detectability of infections within host k at the time of
the study. To calculate Pi, j we denote the individual digits of either
binary sequence by dn, i∈{0,1}, and dn, j∈ {0,1}. Then the probability
that true pattern i gives rise to observed pattern j is calculated as

Pi;j = ∏
s

n=1
o dn; i; dn; j
� �

;

where s is the number of surveys, and o(dn, i,dn, j) is the probability
that true presence or absence of a particular genotype at position
n results in a positive or negative outcome of detection, assuming
perfect specificity:

o dn;i; dn; j
� �

=

1; if dn;i = 0 and dn; j = 0
0; if dn;i = 0 and dn; j = 1

1−q; if dn;i = 1 and dn; j = 0
q; if dn;i = 1 and dn; j = 1

;

8>><
>>:

where q is the host-specific detectability, possibly modeled as a
function of the age of the host. Considering all observed patterns j and
all hosts k, and assuming a Poisson distribution of the actual data nk, j
with expectations ωk, j we obtain the overall likelihood

LData = ∏
k
∏
j

e−ωk; jωnk; j
k; j

nk; j!
:

Since the terms involving nk, j are independent of the statistical
model fitted, they can be omitted from the likelihood computations
without altering the ranking of models. The statistical models can
then be compared using Akaike's information criterion (AIC).2

Model implementation and parameter estimation

All models were implemented using the Java™ programming
language. Maximum-likelihood estimates of parameters were obtained
byminimizationofAICvalues using the “UncMin” algorithmby Schnabel
et al. (1985). A Java version of this algorithm was obtained from
http://www1.fpl.fs.fed.us/optimization.html. Numerical integration
was performed using a Romberg integration algorithm with modified
stopping criterion,3 from the Apache Commons Math Library (The
Apache Software Foundation, 2010).
2 AIC was calculated as 2n−2l, with the number of parameters n and the log-
likelihood l.

3 Absolute instead of relative precision was used as stopping criterion. This
substantially reduced the computation time needed, presumably because the relative
change in integral values per iteration may become smaller than machine precision for
true patterns with very low expected frequency.
Amajor challengewas to reduce the required computation timesuch
thatmodels could befittedwithin acceptable time by a single-processor
computer. Apart from choosing a gradient-based optimization algo-
rithm, this could be achieved by making some of the numerical
integrations redundant through discretization of host ages. To this end
the following assumption was introduced: the expected frequencies of
any true pattern i in two different hosts are assumed to be equal, if t1, i
is not at baseline and if the two hosts are in the same age group
throughout the time interval where pattern i can be acquired. The
reason for not pooling thepatternswhere t1, i coincideswith thebaseline
survey, is the following: since host age has two distinct meanings in the
context of ourmodel, namely age of the host as ameasure for immunity,
and age of the host as time of exposure, one could not simply group
hosts by age without altering the results. As an example, it may seem
reasonable to have an age group ranging from 3 to 5 years, as immunity
would – by hypothesis – not change very much within this age range.
But, a host of age 5will have had 2 yearsmore time to acquire infections
and may – depending on the shape of the survival distribution of
infections – have a higher multiplicity of infection (MOI), and different
pattern frequencies. However, if only one of the two collinear time
variables is discretized, namely host age as measure of immunity, said
error is not introduced, while some integrals become redundant and
only need to be calculated once.

Results

Simulated data

For the purpose of validating our method, simulated datasets were
produced using Monte-Carlo simulation. Number and ages of the hosts
in the simulated datasets were identical to the Ghanaian dataset, and a
constant, homogeneous FOI of 18 infections per person and year was
assumed, asapproximatelymeasuredonaveragebySamaet al. (2006b).
The number of infections a person experienced between birth and the
last survey round was sampled from a Poisson distribution with mean
λa, whereλ is the force of infection, and a is the age of the humanhost at
the last survey round. Actual infection time-points were then sampled
from a uniform distribution within said interval.

Subsequently, a duration was assigned to each infection, using one
of four survival distributions with parameter values as measured from
malariatherapy data (Sama et al., 2006a). A Bernoulli random variable
with mean q=0.5 was then used to determine for each survey round
and clone whether detection was successful or not. All parameters of
infection dynamics could be recovered well from the simulated data,
as shown in Table 2 and Fig. 1.

Estimates from the Ghanaian dataset

All of the 216 study participants included in the statistical analysis
tested positive for P. falciparum on at least one survey. Parasite
prevalence in the dataset was 48% by microscopy, 75% by PCR, and the
mean MOI was 4.5 per person (these measures are not corrected for
imperfect detection). A total of 103 different msp2 genotypes were
found, with the most frequent genotype representing 10.2% of all
fragments detected.

The fourdifferentmodels for infection survival showed the following
order of goodness of fit, as measured by AIC: the Weibull model fits
the data best (AIC: 8029.1), followed by the gamma (AIC: 8029.4),
lognormal (AIC: 8045.1), and exponential model (AIC: 8127.4).
Parameter estimates are given in Table 3, and the correlation matrix
of theWeibull model in Table 4. All non-exponential distributions show
an increased clearance in the early stages of an infection, i.e. they are
positively skewed (to the left). The estimated mean durations, which
can be calculated from the scale and shape parameters (Table 3) and
the distribution-specific expressions for the mean (Table 1), are as
follows (in days): 139.9 (Weibull), 54.9 (gamma), 205.3 (lognormal),

http://www1.fpl.fs.fed.us/optimization.html


Table 2
Parameter estimates from simulated datasets. The data were produced by stochastic simulation using survival models and parameter values from Sama et al. (2006a), with constant
values of FOI and detectability. Every row corresponds to a survival model tested on a simulated dataset. Columns correspond to the different parameters of infection dynamics, with
estimated parameter values shown to the left of the true values. The FOI is given in infections acquired per year, otherwise the time unit is per 2 months (corresponding to the survey
interval).

FOI Scale Shape Detectability

λ̂ λ ŝ1 s1 ŝ2 s2 q̂ q

Exponential 19.05 18 3.22 3.53 0.48 0.5
Weibull 17.95 18 3.93 3.94 2.38 2.2 0.49 0.5
Lognormal 17.90 18 1.18 1.11 0.53 0.53 0.49 0.5
Gamma 17.25 18 0.72 1.19 5.23 3 0.49 0.5
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and 219.7 (exponential). There is a substantial difference between the
FOI estimates of the gamma andWeibullmodels, which are very similar
in terms of goodness of fit (Fig. 3). Measurements of detectability are in
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Fig. 1. Validation using simulated data. Exponential, Weibull, lognormal and gamma models
duration of those infections which were present at some point during the simulated study
from — the estimates from malariatherapy data given by Sama et al. (2006b). The dashed l
goodquantitative agreement (Fig. 4). Allmodelsmeasure a detectability
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were fitted to simulated datasets. The histograms indicate the actual distribution of the
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Table 3
Parameter estimates from Ghanaian dataset. The results of fitting four statistical models to the Ghanaian dataset are shown. These models use different survival distributions for
modeling of the clearance of infections. Goodness of fit is indicated by AIC, and parameter values are given plus/minus the corresponding standard error. The Weibull fits the data
best, as indicated by its lowest value of AIC, but is closely followed by the gammamodel. Seasonality in the force of infectionwas accounted for by estimating a separate parameter for
every two-month season, assuming the same seasonality pattern had repeated in the past. Scale and shape parameters are specific to each distribution, as explained in Table 1. The
detectability can be calculated for a host of given age using Eq. (1).

Survival
model

Force of infection (by season) Survival Detectability AIC

λ1 λ2 λ3 λ4 λ5 λ6 s1 s2 q1 q2

Weibull 62.4±0.04 35.9±0.04 32.0±0.09 10.6±0.10 21.1±0.10 49.1±0.10 1.51±7E−3 0.59±6E−3 −0.86±0.03 −0.00533±2E−4 8029.1
Gamma 160.2±0.02 95.8±0.02 91.0±0.02 8.5±0.02 58.4±0.02 123.2±0.02 8.63±0.02 0.11±0.02 −0.87±0.03 −0.00530±3E−4 8029.4
Lognormal 40.4±0.12 25.7±0.13 21.4±0.13 7.5±0.11 15.0±0.14 38.6±0.12 1.66±0.02 1.20±0.02 −0.89±0.03 −0.00541±3E−4 8045.1
Exponential 43.9±0.1 20.0±0.1 18.9±0.1 4.5±0.1 14.9±0.1 40.7±0.1 3.66±0.02 −0.98±0.03 −0.00507±2E−4 8127.4
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Discussion

By extending the method of Sama et al. (2005, 2006b), such that
parametric survival distributions can be used formodeling of infection
survival, it has become possible to obtain more detailed information
on clearance of P. falciparum infections in naturally exposed popula-
tions. A validation with simulated datasets suggests that parameters
are identifiable using our approach and the present study design.
Distribution estimates

All estimated distributions are positively skewed (Fig. 2), with
exception of the exponential distribution, which does not have the
freedom to measure more than the mean duration. Positive skewness
means that most infections are cleared rather soon after inoculation.
This is very different from the estimates of Sama et al. (2006a) who
find that most infections in malariatherapy data last for an amount of
time similar to the mean duration, and that very short or very long
infections are rare. It also becomes apparent that in the Weibull and
gammamodels, which fit the data best, this effect is more pronounced
than in the lognormal model. We attribute this to the fact that the PDF
of a lognormal distribution is constrained to beunimodal and therefore
does not have the freedom to estimate such extreme early clearance of
infections, as would be required in order to attain a better fit to the
data. Thus, a consistent picture emerges, where the finding of early
clearance of infections is independent of the clearance model. This
positive skew of distributions is consistently associated with a lower
estimated mean duration, which suggests that assuming an exponen-
tial distribution may lead to an overestimation of the mean infection
duration. Across the models, shorter estimates of the mean duration
are in turn associated with higher estimates of FOI. This presumably
reflects the simple notion that a given number of detected infections
canbe explainedby either higher FOI and shorter duration, or the other
Table 4
Correlation matrix. Correlation matrix for the parameters of the best-fitting Weibull
model. An expected overall negative correlation between the average FOI and the mean
duration of infection may be obscured, as these are functions of several parameters.
However, a clear positive correlation between the shape parameter s2 and the
detectability of an individual of average age, q1, indicates that different interpretations
of the data are possible concerning clearance of infections and detectability.

λ1 λ2 λ3 λ4 λ5 λ6 s1 s2 q1 q2

1 −0.04 0.12 0.18 0.11 0.17 0.01 0.01 −0.01 0.00 λ1

1 0.11 −0.06 0.10 −0.06 0.03 0.02 0.00 0.00 λ2

1 0.30 0.89 0.33 −0.15 0.01 0.00 −0.01 λ3

1 0.32 0.90 0.07 0.06 −0.02 −0.01 λ4

1 0.36 −0.14 0.01 0.00 −0.01 λ5

1 0.06 0.06 −0.02 −0.01 λ6

1 0.05 −0.14 −0.02 s1
1 0.48 0.09 s2

1 0.12 q1
1 q2
way round. Detectability estimates seem to largely agree across the
different survival models, with only the exponential model estimating
a slightly lower overall detectability (Fig. 4).

Validation

The successful recovery of parameters from the simulated datasets
suggests that our statistical approach in conjunction with the study
design inprinciple allows for correct identification of thedistributions of
infection duration. As a caveat, the simulated data is certainly idealized
compared to a real dataset: there is no seasonal or spatial heterogeneity
in the FOI, and no inter-individual variation in parameters concerning
clearance and detection of infections.

Simulated datasets can also be used to establish optimal study
designs for measuring a certain quantity of interest. In this case, we
could confirm that the study design is suitable for identification of the
distribution of infection durations — given it is similar to the published
measurements frommalariatherapy data (Sama et al., 2006a). The high
discrepancy of the two best fitting models (Weibull and gamma)
concerning duration — and FOI estimates from the Ghanaian dataset
may be connected to the study design: the differences between the two
models fall largely into an interval of infection durations which is
shorter than the survey interval of 60 days. The bulk of infections can
therefore not be observed very well with the current study design, and
shorter survey intervals seem necessary to obtain more accurate
measurements. According to Bretscher et al. (2010), there is a lower
limit of one week for survey intervals. This has to do with the fact that
our method assumes statistical independence of detections at
different survey rounds. Due to the complicated temporal behavior of
P. falciparum detectability at short time scales, we suggest a survey
interval of 2 weeks or more for future, similar studies.

The difference to malariatherapy data

Estimates from the Ghanaian dataset suggested the presence of a
large proportion of short infections, which is in disagreement with
previous measurements from malariatherapy data. Hypotheses on the
cause of this difference can broadly be divided into two groups:
hypotheses attributing the differences to the distinct immune status of
the malariatherapy and Ghanaian study populations, respectively,
and other hypotheses. Here, we will shortly line out a range of possible
explanations.

Acquired immunity could make it harder for the parasite to
permanently colonize a host which was exposed before. Since the FOI
in the Ghanaian dataset is very high, the population can be considered
immune on average, while the malariatherapy patients are immuno-
logically naïve. This hypothesis requires the effects of immunity to last
and thus to accumulate over time. Because the age of a human host can
be used as a proxy for exposure, an increase of such long-lasting
immunity effects with age is expected, which should lead tomore short
infections in older individuals. Whether this is indeed the case could be
tested by comparing host age groups using the present analysismethod.
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Fig. 2. Comparison of results with malariatherapy data. The PDFs of the distributions of infection duration as measured from the Ghanaian dataset (solid lines) are shown together
with the estimates frommalariatherapy data by Sama et al. (2006a) (dashed red lines), in order of decreasing goodness of fit. Circles on the abscissa indicate the correspondingmean
durations. The Weibull survival model fitted the data best, followed by the gamma, lognormal, and exponential models. With the exception of the gamma model, estimated mean
durations differ only slightly between malariatherapy data and the data from the naturally exposed population. All non-exponential distributions estimated from the Ghanaian
dataset are positively skewed.
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Short-lived effects of immunity, on the other hand, may include the
interaction of concurrent infections within one host: the host popula-
tions from the twodatasets also differwith respect to theirMOI, as there
are only single infections in the malariatherapy patients. An effect of
interactions between concurrent infections, mediated by short-term
effects of immunity, might be confirmed by observing a change of the
distribution of infection durations with MOI.

Various factors not related to immunity also have the potential to
explain the observed distribution of infection durations. Among these
are the following: heterogeneous (unreported) treatment in the
population could clear all infections early in some individuals, who
mostly treat their infections, and let infections persist in another
subpopulation, which rarely treats their infections. Averaged over the
study population, this should convey a picturewhich is consistentwith
the results of this analysis. This explanation appears, however, unlikely
when comparing the number of treatments sold by local health centers
to estimates of the expected number of episodes in the area. An
alternative explanation attributes the difference of distribution
estimates to genetic differences between malariatherapy strains and
wild type strains in the Navrongo area. It seems plausible that doctors
treating syphilis patients with P. falciparum would not favor strains
which are cleared after a very short time, requiring a re-infection of the
patient. Yet, natural selectionmaywell be doing the same, as a shorter
infection duration reduces the R0 of a strain. Other possibilities include
genetic differences between the Ghanaian population and the
malariatherapy patients, perhapswith respect tomutations protective
against malaria, or an interaction of syphilis with malaria in the
patients. In addition, differences in the infective dose or the route of
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Fig. 3. Estimates of the force of infection. Different seasonal patterns of FOI were
measured by the four models. Each group of bars compares the estimates of all the
statistical models for a given season, and differences represent the uncertainty in
measurements of the FOI with respect to assumptions about clearance of infection.
Within one season, estimates are arranged from left to right in order of decreasing
goodness of fit of the corresponding survival model. The gamma model estimated the
highest FOI, which is consistent with it also estimating the shortest average duration of
infection (see Fig. 2). The overall pattern of seasonality in transmission is consistent
across the models.
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infectionmay play a role, as some of themalariatherapy patients were
infected using sporozoites, either through mosquito bites or via
subcutaneous injection, and others through infected blood (Sama
et al., 2006a; Collins and Jeffery, 1999).
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Fig. 4. Estimates of detectability. The obtained estimates of detectability differ only
slightly across different models of infection clearance. A detectability below 50% is
estimated consistently, and all models agree on a decrease of detectability with host
age. The logit-linear relationship of q with age, which is assumed here, does not allow
for e.g. a peak in the youngest children. This may lead to inaccurate estimates for these
age groups, but since the proportion of infants in the dataset is small, this is unlikely to
influence estimates of other parameters.
Limitations of the method

The application of our statistical method to data requires, for now,
the assumption that re-infectionwith the samegeneticmarker is a rare
event. This assumption has been discussed before (Gatton and Cheng,
2008). However, it gains special significance in cohort studies of long
duration: if an immigration-death model is used, what matters is not
only the probability tofind in a hostmore thanone infecting clonewith
identicalmarker genotype at any one time, as considered inGatton and
Cheng (2008), but rather the probability that an individual experi-
ences more than one infection with the same genotype within the
study period. The latter must depend on marker diversity, the force of
infection as well as on the study duration. For practical purposes, the
validity of the assumption can be tested for a given dataset by
successively removing the most frequent marker allele from the
analysis and observing a possible change in parameter estimates.

Conclusions

The estimated distribution of P. falciparum infection durations in
exposed individuals in Northern Ghana is different from the
distribution in malariatherapy infections (Sama et al., 2006a). This
difference is mainly in the shape of the distributions: in the Ghanaian
population, many infections are cleared at an early stage and others
remain for a long time, while in the malariatherapy data infections are
most often cleared close to their expected age at clearance (the mean
duration of infection). The measured mean duration is shorter for the
more flexible survival models compared to the exponential distribu-
tion. At this point it is not possible to decide among a multitude of
possible hypotheses as to what causes the different distributions of
infection durations in the two datasets. We have demonstrated that it
is possible to gain information about the distribution of durations from
longitudinal genotyping data, together with other parameters of
infection dynamics. Our method represents – for the part concerning
clearance of infections – an extension of existing methods of survival
analysis, with the additional complication that the actual time-points
of truncation and censoring are different for every infection, unknown
and stochastic. This uncertainty is overcomeby inferring simultaneous
estimates of FOI and detectability. The software used to carry out the
analyses can be obtained as a platform-independent Java™ executable
on http://www.swisstph.ch/resources/software.html. There might be
situations where assuming an exponential decay of infections can be a
good assumption in order to reduce the number of parameters in the
statistical model. Such a situation may occur if the total duration of a
study is too short to contain sufficient information on the higher
moments of the distribution of infection durations.
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4 Density not in the sense of a probability density. Rather, in analogy to the density of
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Appendix A. Relationship to existing methods

The relationship between the method described above and
previously published methods, most exhaustively explained in Sama
et al. (2005), is not immediately apparent. We illustrate the
mathematical relationship of the presented heuristics with standard
approaches of modeling immigration-death processes briefly, and
show that the two approaches lead to equivalent expressions.

Rather than calculating the expected frequencies of true pattern
types, we consider for the purpose of this illustration the simpler
problem of calculating the number of infections present at any time
point x, using t as variable of integration. Acquisition of infections at a
rate λ(t) is assumed to occur within the time interval [0,x]. Survival of
infections is modeled using parametric survival distributions. These
appear in form of the hazard h(a), which for every infection depends
on its current age a. The hazard is defined as

h að Þ = − S′ að Þ
S að Þ ; ð:1Þ

where the survivor function S(a) is the fraction of infections surviving
at least until age a. Its negative derivative is the PDF of the
corresponding parametric survival distribution. The hazard is there-
fore the rate at which surviving infections of age a are being cleared.

A.1. Exponential survival of infections

We consider first the special case of exponential survival, where
the age-independent hazard is often called clearance rate and denoted
by μ. In analogy to Eq. (2) we write the number of infections n(x) at
time x as

n xð Þ = ∫x

0
λ tð Þpx tð Þdt:

The probability px(t) that an infection acquired at time twill still be
present at time x is simply equal to S(x− t). The survivor function of
the exponential distribution has the form S(a)=e− μa, which,
assuming a constant force of infection λ, leads to

n xð Þ = λ∫x

0
e−μ x−tð Þdt;

for the number of infections n(x) present at time x. The value of this
integral is

n xð Þ = λ
μ
e−μ x−tð Þ

	 
x
0
=

λ
μ

1−e−μ x� �
:

This is a familiar result and the solution of the differential equation

dn xð Þ
dt

= λ−μn xð Þ; ð:2Þ

with n(0)=0, which constitutes a simple model for superinfection
and is explained in Dietz (1988). In fact, it was this model of
superinfection in connection with the CDF of the exponential
distribution which allowed Sama et al. (2005) to work out all
expected true pattern frequencies. Our approach to calculating these
frequencies is therefore equivalent in the case of exponential survival
of infections.

A.2. Non-exponential survival of infections

In the general case, a model for the age structure of the parasite
population within a host is required. Such a model is given by the
McKendrick–von Foerster equation (Hethcote, 2000), a partial
differential equation (PDE) of the form

∂u a; xð Þ
∂x +

∂u a; xð Þ
∂a = −h að Þu a; xð Þ; ð:3Þ

with boundary conditions u(0,x)=λ(x) and u(a,0)=0. The function
u(a, x) denotes the age-density4 of infections with a certain age a after
time x, and λ(x) is the force of infection, the rate at which infections
enter the population with an age of 0. Given u(a,x), the total number
of infections present after time x is

n xð Þ = ∫x

0
u a; xð Þda; ð:4Þ

the integral of u(a,x) over all existing ages. Eq. (.3) can be solved using
the “method of lines”, which yields

u a; xð Þ = λ x−að ÞS að Þ: ð:5Þ

By inserting the solution for u into Eq. (.4) we obtain the
cumulative number of infections of all ages present at a time point x as

n xð Þ = ∫x

0
λ x−að ÞS að Þda: ð:6Þ

By substitution of the integration variable as t=x−a and reversing
integration we obtain

n xð Þ = ∫x

0
λ tð ÞS x−tð Þdt: ð:7Þ

This expression can also be obtained from Eq. (3), as the special
case when α=0, β=γ=x and δ→∞5:

n xð Þ = ∫
x

0
λ tð ÞS x−tð Þdt = ∫

β

α
λ tð Þ S γ−tð Þ− lim

δ→∞
S δ−tð Þ|{z}
0

2
664

3
775dt:

The approach described in this paper therefore represents an
extension of the approach by Sama et al. (2005), making it possible to
use non-exponential survival distributions in models of superinfection.
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