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A b s t r a c t - - T h e  GPG-stability of Runge-Kutta methods for the numerical solutions of the systems 
of delay differential equations is considered. The stability behaviour of implicit Runge-Kutta methods 
(IRK) is analyzed for the solution of the system of linear test equations with multiple delay terms. 
After an establishment of a sufficient condition for asymptotic stability of the solutions of the system, 
a criterion of numerical stability of IRK with the Lagrange interpolation process is given for any 
stepsize of the method. ~) 1999 Elsevier Science Ltd. All rights reserved. 
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I .  I N T R O D U C T I O N  

In 1994, in ' t  Hout [I] considered the stability of 0-methods for systems of differential equations 

with a single delay. For the initial value problem 

y'(t)=Ly(t)+My(t-7), t_>0, y(t)=@(t), t<0, (1.1) 

he presented a necessary and sufficient condition for the asymptotic stability. Here ~ stands 
for a positive constant delay, L and M E C dxd, y(t) = (yl(t),y2(t),... ,yd(t)) T denotes the 
d-dimensional unknown vector, and ¢(t) is a given vector-valued initial function. Furthermore 
he proved that the 8-methods applied to the asymptotically stable system is numerically asymp- 
totically stable if and only if 1/2 _< 8 _< 1. In the same year, Koto [2] gave another sufficient 
condition of the asymptotic stability of IRK for above systems. In 1995, Kuang [3] considered 
the stability of linear multistep methods (LMM) for the system of multiple delay 

r~ 

y ' ( t ) = A y ( t ) + ~ B j y j ( t - r j ) ,  t > 0 ,  y ( t ) = @ ( t ) ,  t_<0,  (1.2) 
y=l 
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where Tj (j = 1 , . . . ,  m) denote positive constant delays, and proved that LMM is GPrn-stable if 
and only if it is A-stable. Here the GPrn-stability means an extended version of the GP-stability 
for the case of multiple delay. In 1997, in 't Hout [4] also investigated the numerical stability of 
Runge-Kutta methods with a certain interpolation process for the systems (1.1), and obtained 
that an A-stable Runge-Kutta method preserves the asymptotic stability properties of analytic 
solutions of the systems (1.1). In particular, when L and M reduce to scalar numbers, stability 
of numerical methods has been widely studied (see [5-9] and references therein). 

On the other hand, in 1991 Lu [10] treated a simple but very interesting system of delay 
differential equations with double delay given by 

U ' ( t )  ---- a l u ( t )  -}- b lv ( t  - • ) ,  

'Vt(t) ----- a2V(t  ) + b2u( t  - "/'2) , (1.3) 

or, in a vector form, by 
y'(t) = Ay(t) + By(t~), (1.4) 

where matrices A and B are given by 

0) ,,) 
a2 b2 0 ' 

and the vectors mean 

y(t) = ( u ( t ) , v ( t ) )  T,  y(tr)  = ( u ( t - • ) , v ( t - v 2 ) )  T 

He showed that the solution of (1.4) satisfies the condition limt-~=y(t) = 0 if 

~(a~) < 0, i = 1,2 and Iblb21 < !R(al)iR(a2), (1.5) 

and the 0-methods are asymptotically stable if and only if 1/2 < 0 < 1. 
In the present paper, we are concerned with the numerical solution and its stability of a more 

generalized initial value problem of Lu's given by 

y'(t)  = Ly(t) + My(t~), t _> 0, y(t) = ¢(t), t _< 0. (1.6) 

Here L and M again denote constant complex matrices, y(t) = (Yl (t), y2(t) , . . . ,  yd( t ) )  T means the 
unknowns, and its multiple delay value is given as y(tr)  = ( y l ( t -  T1), y 2 ( t -  r2) , . . . ,  y d ( t -  vd)) T 
with positive constants Tj (j = 1 ,2 , . . . ,  d). We will devote ourselves to the application of IRK 
methods to (1.6). First, we will give a sufficient condition of asymptotic stability of solutions 
of the system (1.6). Second, under the condition, we will prove that an A-stable Runge-Kutta 
method with the Lagrange interpolation process is GPc-stable when applied to the system. The 
GPa-stability is a stability concept corresponding to GP-stability of scalar DDE. 

2. I M P L I C I T  R U N G E - K U T T A  M E T H O D  

Before dealing with the numerical stability of IRK for systems of DDEs, we consider the 
following initial value problem of ordinary differential equations (ODEs). 

y ' ( t )  = f ( t , y ( t ) ) ,  t > O, y(O) = Yo, (2.1) 

where f is a given function and y( t )  is the unknown for t > 0. 
When an s-stage IRK with the stepsize h is applied to the problem (2.1), it reads 

K i  = h f tn + eih,  y,~ + a i3Kj  , i = 1 ,  2, . . . , s 

~=1 (2.2) 
$ 

Y,+I  = Y ,  + E b ~ K ~ ,  n = 0, 1,2, . . . .  
i----1 
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Here yn stands for an approximation of the solution y(t,~) at the step-point tn = nh, and the 
formula parameters aij,  bi, and c~ are also expressed in the Butcher tableau given by 

b-r 

where A, b and c are s-dimensional square matrix and vectors, respectively. Furthermore, by 
introducing the s-dimensional vector e -- (1, 1 , . . . ,  1) v, we assume 

e X b - - 1  and A e - - c .  

As is well known, the linear stability analysis is carried out through the application of IRK (2.2) 
to the following linear test equation 

y'(t) = Ay(t), ~A < 0, y(0) = Y0- (2.3) 

It implies the numerical recurrence formula (e.g., [11]) 

Y,~+I = r(z)yn,  n = O, 1 , . . . ,  (z = )~h) (2.4) 

and the rational function r(z), called the stability factor of IRK, is given by 

r(z)  = 1 + zbX(I  - z A ) - l e  

det [I - z (A - ebX)] (2.5) 
---- det[I  - zA] , if det[I  - zA] ~ O. 

Thus we arrive at the following definition (e.g., [11]). 

DEFINITION 2.1. Let  R(q) be a function of q. 

a. H any reM negative q implies IR(q)[ < 1, then R(q) is said to be Ao-acceptable. 
b. I f  any complex q of  negative re~l part implies IR(q)l < 1, then R(q) is said to be A- 

acceptable. 
c. I f  an A-acceptable R(q) further satisfies the condition lim~q-~-oo IR(q) l = 0, then R(q) is 

said to be L-acceptable. 

By virtue of this definition, we call an IRK A0-stable, A-stable, and L-stable when it provides 
the stability factor being A0-acceptable, A-acceptable, and L-acceptable, respectively. 

3.  A S U F F I C I E N T  C O N D I T I O N  O F  A S Y M P T O T I C  S T A B I L I T Y  

For the systems (1.6), we will briefly give a sufficient condition of the asymptotic stability. 
Here we mean the asymptotic stability by 

every solution of (1.6) satisfies l i r a  y(t) = O. 

The following is readily seen (e.g., [10]). 

LEMMA 3.1. The system is asymptotically stable f f  and only ff a / / the  roots of the characteristic 
equation 

det [~I - L - M e  -¢T] = 0 (3.1) 

have negative real parts. Here e - ¢ r  stands for the matr/x diag{e -¢~1 , e -¢~2, . . . .  e - ¢~  }. 

Below we give a sufficient condition of the asymptotic stability which will provide a basis of 
numerical stability analysis. Hereafter, we adopt the inner product of d-dimensional vectors and 
the vector norm induced from it. The matrix norm is the subordinate one of the vector norm. 
Moreover the Hermitian conjugate of the matrix L wilt be denoted by L*. 
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THEOREM 3.1. If  the matrices L and M in (1.6) satisfy the condition 

1 
JIMII < -~Amax(L + L ' ) ,  (3.2) 

then the system is asymptotically stable. Here Amax denotes the maximum eigenvalue of a matrix. 

The quantity -(1/2)Xmax(L + L*), the maximum eigenvalue of the "real part" of the matrix L, 
has a crucial role in the present paper. Thus we will denote it by ~(L). The proof is similar as 
in [12]. However, here we will give it for the reference. 

PROOF. By virtue of Lemma 3.1, it suffices to show the negativeness of the real part of charac- 
teristic roots. Equation (3.1) implies the existence of a unit vector x E C d satisfying 

( ~ I  - L - M e  - ~ T )  x = 0 .  

Let HI and //2 be the real and imaginary parts, respectively, of the matrix L. That  is, L = 
HI + ill2, H1 = (1/2)(L + L*) a n d / / 2  = (1/2i)(L - L*). Put  ¢ = a + lb. The inner product 
with x of the above equation yields 

- (HIX, x) - i(H2x, x) -- (Me-aTe-ibTx,  X), 

which further implies 

(a - (Hxx,  x ) )  2 + (b - (H2x,  x ) )  2 = [ (Ue"Te- 'bTX,  X)[ 2 

_< IIMII 2 • Ile-"TII 2 • Ile-ibTII ~ = IIMII 2 • Ile-"TII ~. 

Suppose that  a > 0. The above inequality gives 

l a -  (Hxx,  x)l  _< IIU]l. 

On the other hand, the condition (3.2) implies (Hxx, x) < 0, which, together with the above 
inequality, gives 

a -  (HlX, x) _< [[MII. 

Thus we have 

-~/(L) < - ( H x x ,  x) < ][MJl. 

This contradicts our assumption, and the proof is completed. | 

4 .  C H A R A C T E R I S T I C  E Q U A T I O N  O F  I R K  F O R  D D E S  

Now we express the numerical process when an IRK is applied to (1.6). The numerical solution 
is given by 

$ 

Yn+l = Yn + Z b ,  K,~,,, (4.1) 
i=1 

while the stage values Kn,i are computed by 

Kn,~ = h y .  + aiiKn,j + M Yn-m(,) + Z aiiKn-m(r),i ' (4.2) 
j=l  j=l  

(i = 1 ,2 , . . . ,S ) .  
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Here for each/, /f i  E [0, 1) denotes the real number given by 6i -- m~ - T i / h  for a certain integer m,, 
and the approximated delayed values Yn-m(*) and Kn-m(,) , j  are calculated through the Lagrange 
interpolation process. That  is, 

(x L tf (1) Pdt d)Yn-m,+p,~ , Yn-m(r) = Pl( 1)Y~-ml+pl , ' ' ' ,  L qf " (d) 
/ \ p l = - - q  p d = - - q  

T 

Kn-m(.)j = K(~,n ,+p, j ,  • • •, Lpd(ed)K(d)-,nd+pd J 
p =- -  p d = - - q  

for j = 1, 2 , . . . ,  s and the Lagrange interpolation multiplier is 

r 6 - k  

k = - q , k # p  

Here the superscript (l) indicates the I th component of the vector and the initial function @(t) 
will be referred whenever the argument t is negative. Note that  the integers m~ are supposed to 
be greater than or equal to r + 1. It is possible when the stepsize h becomes sufficiently small. 

Next we will convert equations (4.1) and (4.2) into a more compact form for the stability 
analysis. By introducing (sd)-dimensional vectors as 

Kn T (K,~,I ' T T T 
= K 4 , 2 , . . .  ,K,~, , )  , 

K~#_m(~) = , K~-m(~),~) , ( K o \ . < . ) , , , .  T T 

and two matrices E = Lh and .h4 = Mh, we can express (4.1) and (4.2) in a matrix form 

i n  e ~,['I'd-A®£-b T ® Id Od)(yn+l ) = ( :  ~d£)\(Kn-1 ) y n  

K n -  1-m(~) . + ( A ® A A  0 K # e ® 0 ~  ) # (4.3) 0 0)( ( ) Yn-m(v) \ Yn+l-m(*) 

Assume a solution of the above recurrence equation of the type 

( y i ~ l )  =znx, 

where x is a complex (s + 1) d-dimensional vector 

x : 

and z is a complex variable. A calculation leads to 

Kn-m(*) = Lp, (61)Zn-ml+Pl f (1) , . . . ,  Lpd(~d)Zn"md+p'l~(d),..., 
\ Yn+l--m(r) XPl=--q Paffi-- q 

T 
Lpa (~d)Zn-md~d ~ ((s+l )d) ) 

p d ffiffi-.q 

Hence, by introducing a d-dimensional diagonal matrix Tm as 

Tm= diag (61)z -m~+p~, Lp2(~f2)z-m2+p2,. • •, Lp,l(~fd)Z -md+pd 
p Paffi--q pd..~--q 
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and furthermore an ( s + 1) d-dimensional diagonal matrix T as 

T = diag(Tm, Tin, . . . ,  Tin), 

we obtain # 
( Kn-m(r) ~ =  znTx.  
\ Yn+l-m(r) ] 

Substitution of the above results into (4.3) yields 

z n ( Isd - A ® £ 0 e 
~, _ b T ® I d  I d ) - - z n - l ( O  0 ~d f-') 

(4.4) 
-zn(A@o'hd ~ ) T - z n - l (  O0 e ® A 4 ) T )  x = o ' 0  

The condition which assures the existence of a nonzero x in (4.4) implies the characteristic 
equation of IRK applied to (1.6) with the Lagrange interpolation as follows. 

det ((Iad -- A @ £)z - ( A  ® .Ad)Tz - ( e ®  £ ) -  (e® A4)T)  
( - b  T ® Id)z Idz - Id = 0. (4.5) 

To reduce the expression (4.5) simpler, we define the following four matrices. 

QI(z) = Z(Isd -- A @ (£ + A/lTm)), 

Q2(z) = --e ® (£: + A4Tm), 

Q3(z) = - ( b  T ® Id)Z, 

~4(Z)  = ( Z  - -  1)Id. 

Thus we have another expression of the characteristic equation as 

(Ql (z )  Q2(z)) 
det Qs(z) Q4(z) =0 .  (4.6) 

The following lemma can be readily seen. 

LEMMA 4.1. I fde t  Ql(z) does not vanish, the equation (4.6) is equivalent to 

det [~4(z) - ~3(Z)Ql(Z) -1" ~2(z)] = 0. (4.7) 

Note that  due to the definition of £ and A4 we can assert the nonsingularity of Q1 (z) for 
sufficiently small h. We can, henceforth, regard (4.7) as the final form of the characteristic 
equation. 

5. GPG-STABILITY OF IRK M E T H O D S  

Since delay differential equations include the delay argument, numerical stability strongly de- 
pends on the relationship of the stepsize with the magnitude of the delay. Therefore, we will give 
two definitions of numerical stability for DDEs. 

DEFINITION 5.1. A numerical method for DDF~ (1.6) is said to be PG-stable if, for an asymp- 
totically stable system, the numerical solutions {y.} satisfies 

lim y .  = 0 
n . . - - + ~  

for every stepsize h of integral fraction of all r~. 

However, we are treating the several delay case, which does not always imply existence of the 
stepsize h of integral fraction of all ri. We need, therefore, to introduce the following. 
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DEFINITION 5.2. A numerical method for DDEs (1.6) is called GPG-stable if, for an asymptoti- 
ca//y stable system, the condition Yn --* 0 holds as n --* oo for every h > O. 

Since in Section 3, we have obtained a sufficient condition of the asymptotic stability of linear 
DDEs (1.6), we refer to the condition (3.2) as our basis of numerical stability. 

To attain a criterion of GPG-stabillty of IRK for DDEs, an estimation of the magnitude is 
significant on the effect induced from the Lagrange interpolation process. Thus we focus on the 
polynomial 

r 

~/(Z,~) = E LP(~)zP+q" 
p------q 

Fortunately, Strang [13] and Iserles and Strang [14] established the following result. 

LEMMA 5.1. Whenever Izt = 1 and 0 <_ 6 < 1, the estimation 

<_ 1 

holds i f  and only i f  the relationship q _< r < q+2 is valid. Moreover, i f q + r  > 0 and q _< r <_ q+2, 
[z[ = 1 a n d 0  < 5 < 1 holds, then [7(z,~)[ = 1 if  and only i f  z = 1. 

First, investigate the magnitude of 

RCz; 6) = ~ Lp(6) . z p-"~ = 7(z, 6)z -('~+q) 
p f  --q 

when the integer m is greater than r. In the case of z on the unit circle, Lemma (5.1) implies 
IR(z, 6)[ _< 1 for every 5 6 [0,1). When [z[ = 0¢, we have [R(z,5)[ = 0 since the stepsize h can 
be so small tha t  rn > s + 1 holds. Thus the maximum modulus principle for an analytic function 
yields 

IR(z,~)l < 1, for [z[ > 1 and ~ E [0,1). (5.1) 

Taking advantage of the above estimation, we have the following lemma. 

LEMMA 5.2. Assume that the condition (3.2) holds and every integer m~ is greater than r. Then 
we have that  all the eigenvalues of the matrix L + M T ,  n have negative real part for [z[ _> 1. That 
is, ~()~i(L + MTm))  < 0 for i = 1, 2 , . . . ,  d and [z[ >_ 1. 

PROOF. As Iz[ _> 1 and m~ >_ s + 1 (i = 1 ,2 , . . .  ,d), the estimation (5.1) implies 

IITmll = diag (61)Z-mI+Pl, . . . ,  Lp,(~d)Z -m"+~" < 1. 
p pa-~--q 

Let A = a + ib be an eigenvalue of L + MTm. There exists a vector x E C d of unit length satisfying 
(L + M T m ) x  = Ax. Taking the inner product with x, we obtain 

A - (Lx, x) - (MT,~x, x) = O, 

which, with the Schwartz' inequality, yields 

a = (Hlx ,  x) + r .  c o s ¢  < ~/(L) + IIMII. 

Here we put (MTrnx, x) = re icp. This completes the proof. 1 

Now we give our main theorem. 
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THEOREM 5.1. Assume that the condition (3.2) holds and q < r _< q + 2. An IRK applied to the 
system (1.6) with the LaKranKe interpolation process is GPG-stable if and only if it is A-stable. 

PROOF. Assume that IRK is A-stable. It suffices to show that all the roots of its characteristic 
equation (4.6) have the modulus less than unity. Assume there exists a root 4 of (4.6) with 
the modulus greater than or equal to unity. Lemma 5.2 implies also ~A~(L: + A4Tm) < 0 for 
positive h. Thus we have for 14[ >_ 1 

det[Ql(4)]=4Sddet[l,d-A®(E. + M2~m) ] 
d 

= 4sd l'I det [I, - A " Aj (£ % A4Tm) ] ~ 0. 
j=l 

Here Tm means the matrix Tm substituted with 4 in the variable z. 
Now we can apply Lemma 4.1, which derives the equation of 4 as 

(5.2) 
=deS [ ( 5 - 1 ) I d - ( b  T ®Id)[Isd-- A@ (£. + A4Tm)] -1 (e@ (£  + fl4Tm))] = 0  

for 14[ _> 1. In the determinat of (5.2) we can notice the block of matrices of the form 1: + A4Tm. 
Actually, denoting it by Q(4), we can establish 

det[41d - r(Q(4))] = 0 (5.3) 

in place of (5.2), where 

r(Q(4)) = Id + (b T @ Id) (I,d -- A ® Q(4))- t (e  @ Q(4)). 

By the spectral mapping theorem, we have 

A(r(Q(4))) = r(A(Q(4)), 

which, together with equation (5.3), the inequality ~(A(Q(4)) < 0 and the A-stability of IRK, 
implies 

[4[ = [r(A(Q(4))[ < 1. 

This contradicts the assumption [5[ _> 1. 
Converse is obviously seen, and the proof is completed. | 

6. C O N C L U D I N G  REMARKS 

The condition (3.2) can be easily applied in actual applications. As a matter of fact, numerical 
evaluations of the spectral radius as well as of the maximum eigenvalue are available. Thus our 
condition may contribute to the stability judgement, and the numerical solutions based on IRK 
will be of practical value. However, the condition is only a sufficient one, and we cannot yet 
discriminate all the stable cases. It is a future problem. 
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