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SUMMARY

The assembly of the Smad complex is critical for
TGFb signaling, yet the mechanisms that inactivate
or empower nuclear Smad complexes are less
understood. By means of siRNA screen we identified
FAM (USP9x), a deubiquitinase acting as essential
and evolutionarily conserved component in TGFb

and bone morphogenetic protein signaling. Smad4
is monoubiquitinated in lysine 519 in vivo, a modifica-
tion that inhibits Smad4 by impeding association with
phospho-Smad2. FAM reverts this negative modifica-
tion, re-empowering Smad4 function. FAM opposes
the activity of Ectodermin/Tif1g (Ecto), a nuclear
factor for which we now clarify a prominent role as
Smad4 monoubiquitin ligase. Our study points to
Smad4 monoubiquitination and deubiquitination as
a way for cells to set their TGFb responsiveness:
loss of FAM disables Smad4-dependent responses
in several model systems, with Ecto being epistatic
to FAM. This defines a regulative ubiquitination step
controlling Smads that is parallel to those impinging
on R-Smad phosphorylation.

INTRODUCTION

Transforming growth factor beta (TGFb) is a family of cytokines

regulating a vast array of biological processes (Akhurst and

Derynck, 2001; Niehrs, 2004). The ligand-activated receptor

phosphorylates the cytoplasmic transducer of the pathway,

R-Smad, which forms an active nuclear transcriptional complex

upon association with Smad4 (Schmierer and Hill, 2007). The

simplicity of this pathway is only apparent: cells can read TGFb

in different ways, turning on specific programs depending on

the cellular context as well as strength and duration of the

signal. The most striking example of this occurs in embryonic

development, where TGFb and bone morphogenetic protein
(BMP) ligands act on pluripotent cells as morphogens, able to

induce different gene-expression programs according to ligand

concentration and time of exposure (Niehrs, 2004). Although

the activation of a specific gene set can be explained by the

restricted expression (or activity) of a specific DNA-binding

cofactor of Smads, it is less clear how cells integrate TGFb inputs

quantitatively (Schmierer and Hill, 2007).

To translate quantitative differences of extracellular TGFb into

proportional levels of Smad activity, mechanisms must exist to

continuously inactivate nuclear Smad complexes; this avoids

saturation over time and guarantees that Smads keep moni-

toring receptor activation. One mechanism by which this is

achieved is by controlling R-Smad phosphorylation through

the opposing functions of the receptors’ kinase activity and

R-Smad nuclear phosphatases (Lin et al., 2006; Schmierer and

Hill, 2007). However, distinct and hitherto unexplored types of

regulation must exist. For example, it has been recently shown

that the nuclear R-Smad phosphatases target monomeric

R-Smad, but not the Smad4/R-Smad complex (Schmierer et al.,

2008), which raises the possibility that Smad4 is also a target of

regulation.

Smad4 is a central transducer of TGFb responses and is

essential for most TGFb biological effects, including embryonic

development, tumor suppression, and metastasis. Critically,

Smad4 is the only shared mediator of the TGFb and BMP

signaling branches. Unlike R-Smad, however, Smad4 is not

regulated by phosphorylation; this has so far sidestepped the

potential of Smad4 to also be subjected to rounds of activa-

tion/inactivation. Given the existence of Smad4 ubiquitin ligases

(Izzi and Attisano, 2006), we have here considered that ubiquiti-

nation may represent a mechanism to regulate Smad4 function.

Ubiquitination has been discovered for its role in protein

degradation, but in recent years several other mechanisms have

emerged by which ubiquitination can regulate protein function,

including regulation of subcellular localization, protein-protein

interactions, and activity (Salmena and Pandolfi, 2007). Just like

phosphorylation, which is constantly opposed by dephosphoryla-

tion, ubiquitination is also a reversible modification, as indicated

by the existence of a whole family of deubiquitinating enzymes
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(DUBs) (Nijman et al., 2005). Little is known about the role of DUBs

in the regulation of TGFb/BMP signaling.

Here we identified FAM/Usp9x, the homolog of Drosophila

fat facets (Wood et al., 1997), as a DUB critical for TGFb and

BMP responsiveness in human cells and Xenopus embryos. Bio-

Figure 1. Isolation of FAM/USP9x, a Deubi-

quitinating Enzyme Required for TGFb

Signaling

(A and B) siRNA screen to identify DUBs regulating

TGFb signaling. (A) Panel shows a diagram of the

screening procedure (see text). (B) Panel shows

the representative effects of selected anti-DUB

siRNAs on TGFb signaling. Immunoblot for laminB

serves as a loading control.

(C) Validation of FAM requirement for TGFb

responses in MDA-MB231 cells. Panels show

immunoblots of cells transfected with control

(lanes 1 and 2) or two independent FAM-siRNAs

(lanes 3 and 4).

(D) FAM is required for Smad-induced transcrip-

tion in stably depleted HeLa cells, as visualized

by northern blotting.

(E) Depletion of FAM in HaCaT cells stably inte-

grated with the CAGA12-lux reporter (Levy et al.,

2007) inhibits Smad activity. Data are represented

as mean and standard deviation (SD).

(F) FAM is required for BMP signaling in stably

depleted HeLa cells, as visualized by northern

blotting.

(G) FAM sustains Smad activity through its DUB

activity. Data are represented as mean and SD.

chemically, FAM interacts with and deubi-

quitinates monoubiquitinated Smad4,

opposing the activity of Ectodermin/

Tif1g (Ecto), for which we now revise the

function as a monoubiquitinating factor

that reversibly blocks Smad4 activity,

rather than stability (Dupont et al., 2005;

He et al., 2006). Monoubiquitination of

Smad4, which occurs in lysine 519,

hampers the ability of Smad4 to form

a stable complex with activated Smad2/3,

resulting in pathway inhibition.

RESULTS

FAM/USP9x Is a New Component
of the TGFb Pathway
We sought to identify DUBs involved in

TGFb signaling. To this end, we designed

an unbiased loss-of-function screen using

siRNAs to inhibit the expression of 75

known or predicted human DUBs (Fig-

ure 1A and Table S1 available online).

Pooled siRNAs (i.e., a mix of two oligos

for each gene) were transfected in HaCaT

keratinocytes; after 48 hr, cells were

treated with TGFb1 and then harvested for western blot analysis.

As read-outs, we used two endogenous TGFb responses, namely,

the induction of p21Waf1 and Smad3 phosphorylation (Figure 1B).

Out of this screen, six siRNA pools inhibited TGFb effects.

Among the corresponding candidate genes, FAM/Usp9x
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attracted our attention because it displayed the most penetrant

requirement for TGFb responses (see below). FAM is the human

homolog of Drosophila fat facets (faf) gene (FAM stands for Fat

facets in mammals), which is essential for fly early embryonic

development and, at later stages, plays a role in cell fate speci-

fication in the eye (Fischer-Vize et al., 1992). Little is known about

the function of FAM. Intriguingly, however, overexpression of faf

in fly neurons induces synaptic overgrowth, a BMP-related

Figure 2. FAM/Usp9x Is Required for TGFb Effects

(A) FAM is required for TGFb-induced growth arrest in HCT116chr3 (Wang

et al., 2004) colon cancer cells. The number of cells in each phase for unstimu-

lated cultures was given an arbitrary value of 100%, and all other values are

depicted relative to this. Data are represented as mean and SD. Immunoblots

in Figure S1E show efficient knockdown of target proteins.

(B and C) FAM is required for TGFb-induced cell migration as assayed in

MDA-MB231 breast cancer cells by transwell (B) or scratch-assay (C). The

wound edges, at the beginning of the experiment, are indicated by the white

dotted lines. Data are represented as mean and SD.
phenotype, but faf is unable to do so in Smad4/Medea mutants

(McCabe et al., 2004). This finding suggested that FAM could be

an evolutionarily conserved regulator of TGFb responses.

To validate whether FAM is a general mediator of TGFb

responses, we carried out the following experiments. First, we

confirmed the initial results using additional, independent

siRNAs targeting different regions of the gene, ruling out off-target

effects (Figures 1C, S1A, and S1B and data not shown). Second,

we extended the molecular characterization to expression of

additional endogenous Smad target genes, such as PAI1,

p15INK4B, Smad7, JunB, and Smurf1, analyzed at the protein

and/or mRNA levels. The results, exemplified in Figures 1C, 1D,

and S1, show that loss of FAM abolishes multiple TGFb gene

responses. FAM knockdown also blocks TGFb-mediated induc-

tion of a synthetic Smad promoter fused to luciferase (CAGA12-

lux, Figure 1E), in line with the notion that FAM is a critical factor

for Smad signaling per se. Finally, we cross-validated the require-

ment of FAM in different cells, such as HaCaT, MDA-MB231,

HeLa, HCT116, and HepG2, and found that FAM is required for

TGFb signaling in multiple cellular contexts (Figures 1 and S1).

We next sought to define the requirement of FAM for

BMP responses. To this end, we monitored the induction of

endogenous Id2 and Smad7, two established direct targets

of Smad1/5. BMP2 induced these genes in control cells (shGFP)

but not in FAM-depleted (shFAM) HeLa cells (Figure 1F). Similar

results were obtained in MDA-MB231 cells transfected with FAM

siRNAs (data not shown).

Next, we tested the effects of FAM gain-of-function. For this,

cells were transiently transfected with synthetic luciferase

reporters either monitoring Smad3 activity (CAGA12-lux), or

Smad1/5 activation (ID1-BRE-lux). Gain-of-FAM enhanced

TGFb and BMP responses (Figures 1G and S1D). In contrast,

overexpression of a catalytically inactive FAM C/S mutant (i.e.,

carrying a single Cys-Ser substitution in an essential residue of

the protease domain, Nijman et al., 2005) was inactive, indicating

that FAM acts as a deubiquitinase to promote TGFb activity (Fig-

ure 1G). Taken together, the data suggest that FAM is a novel

element in TGFb/BMP signal transduction.

FAM Is Required for TGFb Biological Effects
Canonical TGFb/Smad2/Smad4 signaling has pleiotropic func-

tions: growth-arrest is the dominant response induced in normal

epithelia or early neoplasms, whereas promotion of migratory/

invasive behaviors prevails in advanced tumors (Akhurst and

Derynck, 2001). If FAM targets Smad activity, then it should be

required for both types of responses. We first challenged FAM

depletion in HCT116 colon cancer cells, which undergo Smad4-

dependent growth arrest upon TGFb stimulation (Zhou et al.,

1998). Cells were transfected with control- or FAM-siRNAs,

treated for 24 hr with or without TGFb1, and then collected for

cell-cycle analysis. As reference, we also used Smad4-siRNA-

transfected cells. As shown in Figure 2A, TGFb1 treatment blocked

entry in S-phase, and this effect was lost by FAM depletion.

We then used metastatic MDA-MB231 breast cancer cells;

these respond to canonical TGFb signaling by increasing

their motility, an effect quantifiable by transwell migration

assays and by scratch-assay, in which a ‘‘wound’’ is introduced

in a confluent monolayer with a pipette tip. We compared
Cell 136, 123–135, January 9, 2009 ª2009 Elsevier Inc. 125



MDA-MB231 cells transfected with control-, Smad4-, or FAM-

siRNA. Depletion of FAM or Smad4 abolished TGFb-induced

migration (Figures 2B and 2C). Taken together, these results

show that FAM is a critical determinant for TGFb biological

effects, closely recapitulating Smad4 requirements.

FAM Is a Smad4 Deubiquitinating Enzyme
We aimed to gain insight into the molecular mechanisms

underlying FAM function. In Drosophila, zygotic fat facets has

been implicated in regulating endocytosis in photoreceptor

precursors (Cadavid et al., 2000). Receptor trafficking is also

important for TGFb signaling (Di Guglielmo et al., 2003). However,

two direct read-outs of receptor activity, namely the levels of phos-

pho-Smad2/3 and phospho-p38, were not significantly affected in

FAM-depleted cells (Figure S2). This suggests that FAM intercepts

TGFb signaling primarily downstream of receptor activation.

To test for physical interactions between FAM and Smads,

we first performed coimmunoprecipitation experiments with

overexpressed, tagged proteins. As shown in Figure 3A, FAM

coprecipitated efficiently with Smad4, in a manner independent

of signaling; moreover, we could also detect a weaker interaction

with R-Smads, in particular with Smad2. To test if the binding

with R-Smads was direct, we compared FAM/R-Smad interac-

tions in wild-type and Smad4-depleted (shSmad4) HEK293T

cells. As shown in Figure 3B, R-Smads interaction was inhibited

in the absence of Smad4.

To demonstrate that the interaction between FAM and Smad4

occurs at physiological levels of these proteins, HEK293T cells

were treated for 1 hr with TGFb1 and their lysates immunoprecip-

itated with an anti-FAM antibody. As shown in Figure 3C, endog-

enous Smad4 and FAM form a complex in vivo. To functionally

validate the relevance of Smad4 as key target of FAM, we moni-

tored the role of FAM on Smad4-independent events, namely,

nuclear accumulation of Smad2 and the degradation of SnoN

by TGFb (Nicolas and Hill, 2003; Stroschein et al., 1999). As

shown in Figure S3, these specific read-outs of Smad2/3 activity

were not affected by the absence of FAM.

We then explored the domains of Smad4 involved in FAM

recognition. To this end, we coexpressed FAM together with

Smad4 deletions. As shown in Figure 3D, FAM binds the

Smad4 MH1+linker, but not the isolated MH1, MH2, or linker

domains alone. Taken together, the data suggest that FAM is a

novel Smad4-interacting partner. It is noteworthy that this bio-

chemical interaction parallels the biological requirement of FAM

in both TGFb and BMP signaling, sharing Smad4 as transducer.

In light of the association of FAM with Smad4, we tested if FAM

regulates Smad4 ubiquitination. To reveal Smad4 modifications,

we transfected HEK293T cells with expression plasmids

encoding for Smad4 and HA-tagged ubiquitin, either alone or

in combination with FAM. Smad4 was immunoprecipitated and

its ubiquitination pattern visualized by immunoblotting against

HA-Ubiquitin. Remarkably, the major modification of Smad4

corresponds to a monoubiquitination (Figure 3E, lane 2), also

detectable using anti-Smad4 antibodies (not shown). After

longer exposures, minor higher-molecular-weight bands

appear, including a diubiquitinated band corresponding to

branching of another ubiquitin on K48 (Figure S4). Strikingly,

overexpression of wild-type FAM, but not of the catalytically
126 Cell 136, 123–135, January 9, 2009 ª2009 Elsevier Inc.
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in vivo (Figure 3E, compare lanes 3 and 4). Overexpression of

FAM also inhibits monoubiquitination of endogenous Smad4

(Figure 3F). Conversely, Smad4 monoubiquitination was mark-

edly enhanced upon depletion of FAM, indicating that FAM is

a required DUB for Smad4 (Figure 3G). Notably, steady-state

levels of Smad4 are unaffected by gain or loss of FAM, consis-

tent with a regulative-type ubiquitination (Figures S1, S2, and 3).

The deubiquitination of Smad4 by FAM is direct. To show this,

we purified to homogeneity unmodified Smad4, ubiquitinated

Smad4 (Ub-Smad4), and FAM proteins by affinity chromatog-

raphy. In coimmunoprecipitation assays, both unmodified and

Ub-Smad4 bind directly to FAM (Figure 3H). When proteins

were allowed to react in vitro, FAM cleaved Ub-Smad4, releasing

‘‘free’’ Smad4 and one Ub moiety (Figure 3I).

In sum, Smad4 is primarily targeted by monoubiquitination in

mammalian cells (Figure S6), and FAM is a required Smad4 DUB.

Ectodermin/Tif1g Is the E3 Monoubiquitin Ligase
Opposed by FAM
The data presented so far imply that, upon FAM depletion, a

Smad4 monoubiquitin ligase is left unopposed, leading to inhibi-

tion of TGFb signaling. In contrast to FAM, the loss of this mole-

cule should markedly enhance TGFb signaling. We therefore

sought to identify this enzyme using a candidate gene approach.

So far, several proteins have been proposed as Smad4

Ub-ligases in mammals, including Ectodermin/Tif1g/TRIM33,

b-TrCP1, WWP1, Smurfs, NEDD4-2, CHIP, and eIF4A (Izzi and

Attisano, 2006). We tested the specific requirement of these

genes as endogenous regulators of Smad activity by transfect-

ing their corresponding siRNAs in HaCaT cells carrying the

Smad reporter CAGA12-lux (using published or prevalidated

siRNA sequences; see Supplemental Experimental Procedures).

As shown in Figure 4A, Ecto stood out as a powerful endogenous

antagonist of Smad signaling.

We noticed that loss-of-Ecto promotes Smad activity without

stabilizing steady state levels of Smad4 (Figures S7A and S7B),

suggesting that Ecto inhibits TGFb signaling primarily by control-

ling Smad4 function, rather than stability. This is compatible with

a requirement of Ecto in regulative ubiquitination events, analo-

gous to those unveiled for FAM, and provides a revision of our

previous conclusions, based on data obtained with overex-

pressed Ecto and pulse-chase assays, that Ecto promoted

Smad4 instability (Dupont et al., 2005). We therefore tested if

Ecto may serve as a Smad4 monoubiquitin ligase. As shown in

Figure 4B, shRNA-mediated depletion of Ecto in HEK293T cells

leads to the reduction of the Smad4 monoubiquitination band;

this effect is specific, because it could be rescued by adding

back shRNA-insensitive wild-type Ecto (Ecto*). Similar results

were obtained for endogenous Smad4 (not shown). Thus, Ecto

is a required determinant for Smad4 monoubiquitination.

We think that our findings on Smad4 present interesting

analogies with those of another key tumor suppressor, p53.

p53 is monoubiquitinated by low levels of MDM2 in the nucleus,

inhibiting its activity and leading to p53 relocalization in the

cytoplasm; cytoplasmic monoubiquitinated-p53 may be polyu-

biquitinated by high doses of mdm2 (or other ligases) and then

degraded, or instead recycled by the activity of DUBs (Salmena



and Pandolfi, 2007). It is plausible that, p53 alike, some of the

other E3 ligases so far implicated in Smad4 polyubiquitination

might serve as ‘‘E4’’ enzymes acting downstream of Ecto-medi-

ated monoubiquitination, indeed promoting its degradation in

specific contexts (Hoppe et al., 2004; Heldin and Moustakas,

2006). Indeed, in colorectal cancer HCT116 cells, loss-

Figure 3. FAM Is a Smad4 Deubiquitinating

Enzyme

(A) FAM is a novel Smad4-interacting protein.

HEK293T cells were transfected as indicated with

expression plasmids encoding V5-tagged FAM

and Flag-tagged Smad1, Smad2, or Smad4. Cells

were left untreated (�) or treated for 2 hr with

TGFb1 or BMP2, and harvested for immunoprecip-

itation with anti-Flag affinity resin.

(B) Depletion of Smad4 (shS4 cells) diminishes

FAM/R-Smad interaction.

(C) FAM and Smad4 form an endogenous protein

complex in HEK293 cells.

(D) Mapping of Smad4 domains required for FAM

binding using combinations of the MH1, Linker

(L), and MH2 domains.

(E) Expression of FAM (wild-type, lane 3), but not

enzymatically inactive FAM (C/S, lane 4), deubi-

quitinates Smad4. The two anti-HA panels on the

top represents longer and shorter exposures of

the same blot, respectively. Immunoblots on the

bottom ensure even production of HA-ubiquitin,

Smad4, and FAM isoforms in lysates (Inputs).

(F) A major Smad4 monoubiquitination band is

also detectable on immunoprecipitated endoge-

nous Smad4, and FAM overexpression reduces it.

(G) FAM depletion (siRNA #2) enhances Smad4

monoubiquitination in MDA-MB231 cells.

(H) FAM interacts with Smad4 or monoubiquiti-

nated Smad4 (Ub-Smad4) in vitro. See Figure S5

for SDS-PAGE/Coomassie analysis of the purified

proteins.

(I) FAM directly deubiquitinates Ub-Smad4,

clipping away Smad4 from ubiquitin, when the

two purified proteins were allowed to react in vitro.

of-FAM does affect Smad4 stability, an

effect rescued by concomitant loss-of-

Ecto (data not shown). However, even in

contexts in which polyubiquitination is

easily detectable by western blotting,

such as in Xenopus embryos (Dupont

et al., 2005), Ecto-dependent monoubi-

quitinated Smad4 remains a dominant

isoform (Figure S8).

To establish the causality between the

requirement of Ecto as Smad4 inhibitor

and its role as Smad4 monoubiquitin

ligase, we compared the activity of wild-

type Ecto with that one of mutants

containing deletion of the RING-finger

domain (Ecto-DTRIM), or point mutation

of two critical cysteines in this E2 interac-

tion domain (Ecto-CAmut) (Joazeiro and

Weissman, 2000). As shown in Figures 4C and S7C, the Ub-

ligase activity of Ecto is critical for Ecto-mediated antagonism

over canonical Smad responses turned on by both TGFb and

BMP. Of note, the isolated Ecto-Middle, namely the isolated

Smad binding domain (Dupont et al., 2005; He et al., 2006), is

void of biological effects in human cells and Xenopus embryos
Cell 136, 123–135, January 9, 2009 ª2009 Elsevier Inc. 127



Figure 4. Ectodermin/Tif1g Is a Smad4 Monoubiquitin Ligase Restraining TGFb Signaling

(A) Comparative analysis of the requirement of distinct Smad4 ubiquitin ligases for canonical TGFb responses. Data are represented as mean of a representative

experiment (SD was below 5%).

(B) Ecto is required in vivo for Smad4 monoubiquitination in HEK293T cells (compare lanes 1 and 2). Adding back a shRNA-insensitive Ecto plasmid rescues

Smad4 ubiquitination to normal levels (Ecto*, lane 3). A similar requirement can be also observed in Xenopus embryos (Figure S8).

(C) RING-dependent activity of Ecto for inhibition of TGFb/Smad4 signaling. Data are represented as mean of a representative experiment (SD was below 10%).

(D) Ecto, Smad4, and Smad2 form a trimeric complex. See also a repetition of the same experiment with tagged Smad4 in Figure S9.

(E) Smad2 fosters ubiquitination of Smad4 by Ecto. TGFb stimulation was delivered using transfected Smad2 and 2 ng/ml TGFb treatment overnight.

(F) FAM antagonizes Ecto-mediated ubiquitination of Smad4. The ubiquitination assay was performed as in (E).
(Figure S7D), excluding that Ecto could antagonize canonical

TGFb signaling by simply titrating/squelching Smads.

Ectodermin/Tif1g has at least two distinct biological activities: it

inhibits Smad4 responses (Dupont et al., 2005; Levy et al., 2007)

and binds phospho-Smad2 (He et al., 2006). Thus, we investi-

gated whether binding of phospho(P)-Smad2/3 to Ecto could

also serve as potential modulator of Ectodermin for Smad4 mono-

ubiquitination. Indeed, we noticed that monoubiquitination of

endogenous Smad4 is enhanced by TGFb signaling (Figure S6),

raising the so far unexplored possibility that Ecto might form

a trimeric complex with both Smad2 and Smad4. To test this,

we used HEK293T cell extracts containing Flag-Ecto, Smad4,
128 Cell 136, 123–135, January 9, 2009 ª2009 Elsevier Inc.
and HA-Smad2. Ecto was first affinity purified on a Flag resin

and then eluted together with its coprecipitating proteins by incu-

bation with Flag peptide. The eluted complexes were then sub-

jected to a second affinity purification procedure on an anti-

Smad4 matrix. If Ecto/Smad2 and Ecto/Smad4 were segregated

in just mutually exclusive heterodimers, we should find only Ecto,

and not Smad2, as a Smad4 partner after this procedure. In

contrast, as visualized by immunoblot, both Smad2 and Ecto

were copurified (Figures 4D and S9). The results suggest that,

upon TGFb signaling, Ecto, Smad4, and Smad2 can form

a trimeric complex. To test the role of Smad2 as modulator of

Ecto, we compared Smad4 monoubiquitination in the presence



and absence of signaling. The presence of TGFb/Smad2 signaling

increases Smad4 monoubiquitination levels (Figure 4E) and over-

expression of FAM removes this modification (Figure 4F).

Ecto and FAM act in distinct cellular compartments: nucleus

and cytoplasm, respectively (Figure S10A). This argues that

monoubiquitinated Smad4 originates in the nucleus but needs to

shuttle back to the cytoplasm to be reactivated by FAM. Accord-

ingly, we could detect the interaction of Smad4 with FAM and Ecto

in the corresponding cytoplasmic and nuclear fractions of HaCaT

cells (Figures S10B and S10C). Moreover, cell fractionation anal-

yses indicate that ubiquitinated Smad4 originates in the nucleus,

and that this pool is enhanced upon a pulse of TGFb signaling (Fig-

ure S10D). Finally, the timing of Smad4 monoubiquitination closely

follows the kinetics of Smad4/Smad2 association and Smad2

phosphorylation (Figures S10E and S10F).

Ecto and FAM Operate in the Same Pathway Controlling
Cycles of Smad4 Inhibition and Reactivation
The relevance of the Ecto-Smad4-FAM loop is supported by bio-

logical evidences in three independent model systems: Xenopus

embryos, Drosophila, and mammalian cells. We first compared

in Xenopus embryos if phenotypes caused by loss-of-FAM reca-

pitulated those of Smad4 knockdown and Ecto overexpression.

During development, TGFb/Nodal ligands are critical for

inducing the mesoderm, whereas regulation of BMP signaling

is required for patterning along the dorsoventral axis (Niehrs,

2004; De Robertis and Kuroda, 2004). To study these processes

in frog embryos, we monitored the expression of Xbra, a direct

TGFb target in mesoderm, and the complementary expressions

of Sizzled and Otx2 as read-outs of BMP signaling.

To study the function of Xenopus FAM, we microinjected in

embryos an antisense morpholino covering the start codon of

the endogenous transcript (FAM-MO); this reagent downregu-

lated endogenous FAM protein levels at the gastrula stage

(Figure S11). Phenotypically, FAM depletion reduced the Xbra

and Sizzled domains and, conversely, expanded Otx2 expres-

sion, remarkably recapitulating the loss-of-Smad4 or Ecto

overexpression (Figures 5A–5L). These data are consistent

with the idea that FAM and Ecto act as antagonistic Smad4 regu-

lators during embryonic development.

We next decided to challenge the opposing functions of FAM

and Ecto using a completely heterologous assay. The develop-

ment of the Drosophila wing offered an ideal playground: the

fly has no Ectodermin homolog but requires BMP/Smad4

signaling for the formation of cross-veins (Figure 5N and

Hudson et al., 1998). Thus, we generated Drosophila strains ex-

pressing Ecto under the control of UAS sites, and used GAL4

under a wing-specific promoter (MS1096-Gal4) to direct Ecto

expression throughout the presumptive wing blade. Crucially,

expression of Ecto, but not of Ecto-CAmut (i.e., RING-finger

mutant), generated adult wings that phenocopy those of gbb

mutants lacking a BMP ligand (compare Figures 5N and 5O

with 5P). Thus, also in flies, Ecto behaves as a BMP antagonist.

Taking this experimental system one step further, we then

asked if overexpression of Fat Facets (Faf), the Drosophila

FAM homolog, could antagonize Ecto activity. As shown in

Figures 5Q, when Faf was expressed in the wing blade, we

observed appearance of ectopic veins between L1 and L2 (red
inset), a phenotype related to increased BMP signaling (Marquez

et al., 2001). Most importantly, when we overexpressed both Faf

and Ecto, the Faf phenotype dominated over Ecto activity,

because crossveins development was rescued and ectopic

veins continued to form (Figure 5R).

Remarkably, in human cells, depletion of Ecto rescued TGFb

responsiveness of FAM depleted cells, supporting the notion

that FAM and Ecto work in the same biochemical pathway

(Figure 5S). Some controls further substantiate this conclusion.

First, depletion of Smad4 abolished TGFb responses but, unlike

with FAM, this deficiency was not rescued by coupled Ecto

depletion, which would be expected if Smad4 is a downstream

mediator of Ecto activity. Second, raising signaling upstream

of Smad4 by knocking down receptor inhibitors, such as

Smad7 or Smurfs, could not rescue FAM depletion (Figure 5S).

The epistatic relationship between Ecto and FAM was confirmed

in TGFb-induced migration assays: knockdown of FAM

abolished migration, but this was dramatically rescued by the

compound FAM/Ecto knockdown (Figure 5T).

Smad4 Is Monoubiquitinated at Lysine 519
Next, we turned our attention to Smad4 monoubiquitination and

its functional consequences. To map the lysine responsible for

the Smad4 monoubiquitination pattern, we prepared a series

of Smad4 mutants bearing lysine-to-arginine substitutions. We

mutated all the lysines of Smad4 (Smad4-Kall), only those of

the MH1 domain (MH1-KR), or those of the MH2 domain

(MH2-KR). Then, we progressively narrowed down the mapping

to groups of neighboring lysines (Smad4 mutants dubbed A–F,

Figure 6A) and finally to individual lysines. When we visualized

the monoubiquitination pattern of these Smad4 mutants in

lysates of transfected HEK293T cells, we found that, in addition

to Kall, the MH2-KR and the F mutant (containing only K507R

and K519R mutations) displayed strongly reduced monoubiqui-

tination (Figure 6A). However, K519 was the most critical residue

for Smad4 monoubiquitination, whereas mutation of K507 had

minor effects (Figure 6B, lanes 3 and 4). Conversely, adding

back the sole wild-type K519 in the background of MH2-KR

Smad4 mutant was sufficient to restore the monoubiquitination

pattern (lanes 5 and 6), suggesting that K519 is a primary/direct

target of ubiquitination, rather than being required for activity/

recognition of the ubiquitination complex. Monoubiquitination

of Smad4 in another residue (K507) has been suggested to

play a positive role for Smad4 activity (Moren et al., 2003);

however, the negative monoubiquitination event in K519 here

described appears quantitatively dominant.

Finally, we investigated whether Ecto is instrumental for ubiq-

uitination of lysine 519. As shown in Figure 6C, Ecto promoted

ubiquitination of wild-type but not of K519R Smad4 proteins

in vivo. Further direct evidence of this event was obtained using

an in vitro cell-free ubiquitination assay with purified Smad4 and

Ecto proteins (Figure S13). Interestingly, K519 is the only Smad4-

specific lysine that is evolutionarily conserved across phyla

(Konikoff et al., 2008).

Ubiquitination of Smad4 Inhibits Smad2/3
Complex Formation
How can Smad4 K519 monoubiquitination inhibit TGFb gene

responses? To answer this question, we first searched for hints
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Figure 5. FAM and Ecto Operate in the Same Pathway Regulating Smad4

(A–L) Panels show in situ hybridizations on Xenopus embryos for the pan-mesodermal marker Xbra (at gastrula stage), for the ventral marker Sizzled and for the

dorsoanterior marker Otx2 (at neurula stages). Embryos were microinjected either with morpholino antisense oligonucleotides (MOs), dominant-negative Smad4

mRNA (DN-Smad4), or Ecto mRNA.
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Figure 6. Smad4 Ubiquitination at Lysine 519 Inhibits R-Smad/Smad4 Binding

(A and B) Top: Diagram and partial sequence of Smad4 lysine mutants. Bottom: Immunoblots of immunoprecipitated Smad4 mutants, mapping the ubiquitination

site on lysine 519.

(C) Mutation of K519 abolishes Ecto-induced Smad4 ubiquitination, without modifying levels of Smad4 sumoylation or acetylation (Figure S12). The ubiquitination

assay was performed as in Figure 4E.

(D) Model of the heterotrimeric R-Smad/Smad4 complex (Chacko et al., 2004). Note how Smad4 is involved in two different interactions, entailing the AB and the

BC interfaces. P indicates the phosphorylated C-terminal portion of R-Smads. Lysine 519 falls near to the BC interface.

(E) Crystallographic structure of the heterotrimeric R-Smad/Smad4 complex as described previously (Chacko et al., 2004). Lysine 519 side chain is highlighted

in yellow.

(F) In silico modeling of the tridimensional structure of Smad4-MH2 bearing K519-linked ubiquitin. Note how the ubiquitin moiety completely occupies the Smad4

surface involved in the BC interface with R-Smad.

(G and H) Purified ubiquitinated Smad4 (Ub-Smad4) is unable to bind recombinant Smad3-MH2 domain (G) or phospho-Smad2 (H). In (G) Ub/wt 1:1 is an

independent preparation of Ub-Smad4 containing similar amounts of nonubiquitinated Smad4 as contaminant.
in the structure of Smad4. Biochemical, functional, and crystallo-

graphic evidence indicates that the Smad transcriptional

complex is a heterotrimer comprising one Smad4 molecule

and two phospho-R-Smad molecules, designated as A, B, and

C (see model in Figure 6D; Chacko et al., 2004). The complex

is thus characterized by three nonidentical interfaces designated

AB (between one R-Smad and Smad4), CA (between the two
R-Smads), and BC (between Smad4 and the second R-Smad).

Although K519 does not participate directly in R-Smad recogni-

tion, it is positioned near the BC interface; given that missense

mutations in the vicinity of K519 are sufficient to destroy hetero-

trimeric complex formation (Chacko et al., 2001), we reasoned

that attachment of an ubiquitin moiety to K519 was very likely

to generate a similar damage (Figures 6D and 6E). Thus, we
(M–R) Close-up views of Drosophila wings showing anterior (acv) and posterior (pcv) cross-veins.

(N) Mutants for gbb, a BMP ligand, display missing cross-veins.

(O and P) Ectopic expression of Ecto (O), but not of the Ecto RING mutant (Ecto-CAmut [P]), in the wing primordium causes loss of the cross-veins.

(Q) Expression of Drosophila Fat facets (Faf) induces ectopic wing veins (red box).

(R) Expression of Fat facets antagonizes Ecto, rescuing the formation of the cross-veins.

(S and T) Ecto is epistatic to FAM. Panels in (S) show immunoblots of HaCaT cells transfected with the indicated combinations of siRNA. Ecto biological function is

required downstream of FAM, as also revealed by TGFb induced transwell migration assays in MDA-MB231 cells (T). Data are represented as mean and SD.
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modeled in silico the structure of monoubiquitinated Smad4 by

docking the structure of a single ubiquitin bound to K519 over

the Smad4 MH2 domain, and we found that this masks the BC

interface, potentially interfering with R-Smad recognition

(compare Figures 6E and 6F).

These structural hints suggest that K519 monoubiquitination

of Smad4 might correspond to a ‘‘latent’’ Smad4 that is

incapable of R-Smad recognition. To test this, we used pure

preparations of affinity-purified unmodified Smad4 and monou-

biquitinated Smad4 (Ub-Smad4), and compared their ability to

bind recombinant GST-Smad3-MH2 domain or in vitro phos-

phorylated Smad2. Strikingly, only unmodified Smad4 could

interact with R-Smads (Figure 6G).

To directly test if monoubiquitination is inhibitory in vivo, we

tested whether raising the levels of Ecto antagonizes the forma-

tion of the endogenous Smad4/Smad2 complex. As shown in Fig-

ure 7A, overexpression of Ecto decreases the ability of Smad4 to

interact with Smad2 upon TGFb treatment; importantly, this effect

is not simply due to the ability of Ecto to interact with Smads,

because overexpression of either the Middle domain of Ecto

(Ecto-M) or RING-deficient mutants (Ecto-DTRIM and Ecto-

CAmut) were unable to inhibit Smad4/Smad2 complex formation.

Upon TGFb signaling, Smad2 has been proposed to anchor

Smad4 in the nucleus (De Bosscher et al., 2004). Because

Smad4 monoubiquitination inhibits Smad2/4 complex, increasing

Smad4 monoubiquitination should affect Smad4 subcellular

localization similarly to loss of R-Smad. Indeed, Smad4 nuclear

accumulation upon TGFb stimulation is lost upon Smad2/3

knockdown and this is phenocopied by loss of FAM (Figures 7B

and 7D). This pairs with the previously published requirement of

Ecto for Smad4 nuclear exclusion (Dupont et al., 2005). As

a control, inhibition of the Smad4 nuclear exporting factor

CRM-1 with leptomycin B caused nuclear retention of Smad4 in

both control and FAM-knockdown cells (Figure 7B).

If cycles of Smad4 monoubiquitination and deubiquitination

are the means by which Ecto and FAM regulate TGFb signaling

in vivo, then loss of FAM should have no effect on cells express-

ing only the nonubiquitinated Smad4 K519R mutant. To test this

hypothesis, we engineered the Smad4-null MDA-MB468 cell line

with wild-type or K519R Smad4, expressed by retroviral infec-

tion at near-to-endogenous levels (i.e., those of MDA-MB-231

cells, data not shown). Both wild-type and K519R Smad4 were

equally able to rescue TGFb responsiveness, as monitored by

immunoblotting for p21Waf1 and PAI1, confirming that K519

mutation per se is compatible with Smad4 activity (Figure 7C).

Strikingly, whereas wild-type Smad4-expressing cells were

sensitive to FAM knockdown, K519R-reconstituted cells were

insensitive to FAM depletion. Thus, FAM works through

deubiquitination of K519-ubiquitinated Smad4. This pairs with

the biological requirement of Ecto for FAM function (Figure 5).

DISCUSSION

The assembly of the Smad complex is the most critical event in

TGFb signaling, yet we have few clues regarding the dynamic of

the active Smad2/Smad4 complex, the nature of the ‘‘fences’’

that cells raise against undesired signal activation, and the

mechanisms used to shut-off Smad2/4 nuclear accumulation
132 Cell 136, 123–135, January 9, 2009 ª2009 Elsevier Inc.
and to re-empower it in case of repeated ligand/receptor activa-

tion. The present work represents a contribution to these inves-

tigations. We now establish that Smad4 monoubiquitination is

a reversible system by which cells forestall responsiveness to

TGFb, and define a novel set of enzymatic activities mediating

this inhibition, including the identification of the first DUB essen-

tial for Smad function (Figure 7D).

A Model for TGFb Signaling Regulation: Turnover
of Smad4 Monoubiquitination by Ectodermin/Tif1g

and FAM
By means of a siRNA-based screen and subsequent validations,

we identifiedFAM/Usp9x asDUBrequired for Smad4activity. FAM

depletion disables canonical Smad responses in mammalian cells,

including TGFb-induced growth arrest and migratory behavior.

We propose that Ecto and FAM impinge on Smad4 function

from opposite cellular compartments: in the nucleus, Ecto

monoubiquitinates in lysine 519 free-Smad4 and, to a greater

efficiency, the Smad4/Smad2 complex. Thus, Ecto serves as

Smad4 antagonist and destabilizing factor for the R-Smad/

Smad4 complex. We propose that ‘‘latent’’ Ub-Smad4 is less

retained in the nucleus by R-Smads. Additionally, ubiquitination

might more actively regulate Smad4 shuttling, for example by

recruiting still-unknown ubiquitin binding proteins, that might

assist nuclear export or anchor Smad4 in cytoplasm. In the cyto-

plasm, FAM/Usp9x deubiquitinates and recycles Smad4,

re-empowering its competence to mediate TGFb signaling.

Ectodermin/Tif1g Serves as Smad4
Monoubiquitin Ligase
We identified in Ecto a critical factor for Smad4 monoubiquitination

at lysine 519. Ecto knockdown prevents to a large extent Smad4

monoubiquitination, leading to upregulation of canonical Smad

signaling (Figure 4A). In our assays, Ecto is an inhibitor of

Smad4-dependent TGFb and BMP responses and its effects are

opposite and epistatic to those of FAM. Crucially, for all these

antagonistic effects, Ecto requires its RING-finger domain. These

findings are consistent with other independent evidence: (a) the

recent identification of Ecto/Tif1g as most critical restraining factor

of TGFb responses in genome-wide screen for E3 Ub-ligases (Levy

et al., 2007); (b) the developmental requirement of Xenopus Ecto as

natural barrier to Nodal and BMP signaling for ectoderm pluripo-

tency in frog embryos (Dupont et al., 2005; Pinho and Niehrs,

2007); and (c) the requirement of Ecto/Tif1g to restrain endoge-

nous gene responses in human cells (Figures S7A and S7B).

Others have proposed that Ecto/Tif1g binds to Smad2 and

Smad3, competing them away from Smad4, and functions as

signaling factor with them (He et al., 2006). This biochemical

interaction could, in principle, provide an alternative explanation

for the inhibitory activity of Ecto toward canonical TGFb signaling

(‘‘squelching’’ model). These observations have contributed to

a controversy surrounding Ecto/Tif1g activity (Heldin and Mous-

takas, 2006). As addressed in detail in the Supplemental Results

and Discussion, a ‘‘squelching’’ model cannot explain the activity

of Ecto against well-established Smad2/Smad4 dependent

TGFb read-outs in several cell and developmental set-ups;

however, the finding that Smad2 binding might support Ecto

monoubiquitinase activity, and, in so doing, destabilize the



Figure 7. Monoubiquitination of Smad4 Affects R-Smad/Smad4 Complex In Vivo

(A) Coimmunoprecipitation of Smad2/Smad4 complexes. Smad2 association to Smad4 is inhibited only by overexpressed wild-type Ecto. Ecto-DTRIM is an

N-terminal deletion of Ecto; Ecto-CAmut is mutated in the RING-finger; Ecto-MIDDLE contains the sole Smad binding domain. Thirty-six hours after transfection,

cells were serum starved overnight and then treated for 2.5 hr with 0.5 ng/ml TGFb1.

(B) Immunofluorescence (IF) for endogenous Smad4 in HeLa cells transfected with the indicated siRNAs and treated as indicated with the TGFb-receptor inhibitor

SB431542, TGFb1, or leptomycin B (LMB). Graph shows quantification of the IF stainings (n = 2 ± SD). For control of effective knockdowns and nuclear coun-

terstains, see Figure S14.

(C) MDA-MB468 are Smad4-null cells unable to respond to TGFb stimulation (lanes 1 and 2), but regain TGFb responsiveness, as monitored by p21Waf1 and PAI1

immunoblotting, after retroviral expression of wild-type (lanes 3 and 4) or K519R (lanes 7 and 8) Smad4. Upon loss-of-FAM, however, only wild-type Smad4 and

not the nonubiquitinatable K519R mutant is inhibited (compare lanes 5 and 6 with lanes 9 and 10).

(D) A model for Smad4 monoubiquitination turnover mediated by FAM and Ecto.
interaction between Smad4 and Smad2, also serves as essential

reconciliation of our data with the biochemical observations of

He et al. (2006) (see also the model in Figure S16C).

A Smad4/2 Complex ‘‘Disruptase’’
Smad4 monoubiquitination can be envisioned as a barrier against

undesired activation of the pathway; in this scenario, it precedes
signaling, raising the thresholds of responsiveness to both TGFb

and BMP ligands. Additionally, Smad4 monoubiquitination might

also operate as a mean to disrupt the Smad4/Smad2 complex in

order to turn-off signaling. Indeed, our data collectively suggest

that the Smad4/Smad2 complex might be the preferred target

of Ecto in vivo; whereas the mechanistic details of this inhibition

must await better structural characterizations and the cloning of
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additional cofactors, it is tempting to speculate that Ecto binding

to nuclear Smad2/4 complex serves as an intermediate step to

transiently dissociate Smad2 and Smad4 so that the Ub moiety

can be finally added, locking away Smad4 from Smad2. Perhaps

this explains the residual anti-TGFb activity of RING-deficient

Xenopus Ectodermin once injected at high doses in Xenopus

embryos (data not shown).

In the case of R-Smads, phosphorylation and nuclear

accumulation are maintained only while receptors are active,

suggesting that the nucleus is constantly cleared of phospho-

R-Smads by the activity of phosphatases and degradative

ubiquitin ligases, such as PPM1A (Lin et al., 2006) and Smurf-1

(Fuentealba et al., 2007). So far, because Smad4 is not phos-

phorylated by receptors, the existence of a conceptually similar

clearing mechanism for Smad4 has gone unnoticed. We now

show that the monoubiquitination/deubiquitination cycle of

Smad4 is required for TGFb signaling, because TGFb/phos-

pho-R-Smads are ineffective in the absence of FAM. More

crucially, elegant work by Hill and colleagues has shown that

Smad phosphatases operate only on homomeric phospho-

R-Smads (Schmierer et al., 2008); that is, after R-Smads have

been disengaged from Smad4. This implies the existence of

a Smad-complex ‘‘disruptase,’’ whose nuclear activity must be

reverted by an opposing activity in the cytoplasm. Our work

suggests that these functions are fulfilled by the interplay

between Ecto and FAM through Smad4 monoubiquitination.

EXPERIMENTAL PROCEDURES

Additional methods can be found in the Supplemental Experimental

Procedures.

Plasmids

pEF-DEST V5-tagged mouse FAM/Usp9x, wild-type and C/S mutant, were

a kind gift from Dr. Stephen Wood. Expression plasmids for human Flag-Ecto-

Middle (449–885), human Flag-Ecto-DTRIM (449–1121), and Xenopus HA-

tagged Ecto-Middle (370–811) were generated by PCR amplification of the indi-

cated protein segments from full-length Ecto cDNA and cloned in pCS2. Human

Ecto siRNA-insensitive (Ecto*) was obtained by targeted mutagenesis at wobble

codons, preserving the natural protein sequence. Human Smad4-Flag lysine

mutants (A–F mutants, MH1-KR, and MH2-KR in Figure 6A) were obtained by

reciprocal swappings between a wild-type cDNA (wt* in Figure 6A) and

a complete Lys-Arg mutant Smad4 cDNA (Kall in Figure 6A), both engineered

to bear unique restriction sites surrounding each group of neighboring lysines,

without altering the encoded protein (GeneScript). K507R and K519R single

mutants were obtained by targeted mutagenesis. For retroviral infections,

untagged Smad4 and Smad4-K519R cDNAs were subcloned in pBABE-

PURO. All the plasmids were verified by nucleotide sequencing.

Cell Cultures and Transfections

HaCaT, HCT116chr3, HEK293T, and HeLa cells were cultivated in DMEM

10%FCS, MDA-MB231, and MDA-MB468 cells in DMEM/F12 10% FCS

(HepG2 in MEM 10% FCS supplemented with NEA). DNA transfections were

performed with calcium phosphate or Transit-LT1 reagent (MirusBio); for

siRNA transfections we used Lipofectamine-RNAiMax (Invitrogen) in all cell

lines but MDA-MB468 and HepG2 cells, for which we used Transit-TKO

(MirusBio). HaCaT cells expressing HA-ubiquitin were obtained by stable

transfection as described previously (Cordenonsi et al., 2007). TGFb1 or

BMP2 cytokines (Peprotech and R&D) were diluted in normal medium for

HaCaT and HCT116chr3 cells; for the remaining cell lines, cells were starved

overnight with 0.2% (HEK293T, HeLa, HepG2), 0.5% (MDA-MB468), or no

serum (MDA-MB231) before treatment in the same medium. Where indicated,
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control cells were supplemented with 5 mM SB431542 (Tocris) in the medium

to quench autocrine TGFb signaling.

For FAM knockdown, the sequences of the siRNA were as follows: #1: GAU

GAGGAACCUGCAUUUCtt; #2: GCAGUGAGUGGCUGGAAGUtt. These were

used as a 1:1 mix, except as otherwise indicated. A complete list of siRNAs can

be found in Supplemental Experimental Procedures.

Immunoprecipitations/GST Pulldowns

For in vivo ubiquitination assays, HEK293T cells were transfected with the

calcium-phosphate method with HA-ubiquitin (8 mg/10 cm dish), Smad4-

Flag (100 ng/dish), FAM (8 mg/dish), and/or Ecto (4 mg/dish) plasmids as

indicated. DNA content was kept uniform by adding pBluescript plasmid.

Forty-eight hours later, cells were harvested by sonication in Ub-lysis buffer

(50 mM HEPES [pH 7.8], 200 mM NaCl, 5 mM EDTA, 1% NP40, 5% glycerol,

freshly complemented with 1 mM DTT, protease inhibitor cocktail [Roche],

phosphatase inhibitor cocktail II [Sigma], 250 ng/ml ubiquitin-aldehyde

[Sigma]). Cell lysates were immunoprecipitated 4 hr at 4�C with protein-A se-

pharose/a-Smad4 (H552) beads in the same buffer supplemented with 2 mM

MgCl2, followed by three washes of 2 min rotating at room temperature (RT)

(50 mM HEPES [pH 7.8], 500 mM NaCl, 5 mM EDTA, 1% NP40, 5% glycerol).

For protein-protein interaction studies, cells were treated as indicated in the

text and lysed by sonication in Marais’ lysis buffer (25 mM HEPES [pH 7.8],

400 mM KCl, 5 mM EDTA, 0.4% NP40, 10% glycerol freshly supplemented

with 1 mM DTT, protease, and phosphatase inhibitors). Extracts were diluted

fourfold to bring KCl concentration to 100 mM and NP40 to 0.1%, supple-

mented with 0.5% BSA (Roche frk.V) and 10 mM MgCl2, and subjected to

protein-A sepharose immunoprecipitation 4 hr at 4�C. Beads were quickly

washed three times at RT with 100 mM KCl, 0,05% NP40. For cell-fractionation

studies, see Cordenonsi et al. (2003). For in vitro protein-protein interactions,

purified and/or recombinant proteins were diluted in binding buffer (25 mM

HEPES [pH 7.5], 100 mM KCl, 2 mM MgCl2, 0.1% NP40, 5% glycerol), immu-

noprecipitated with protein-A sepharose beads, and washed three times with

the same buffer. To visualize coprecipitating proteins in immunoprecipitation

experiments, we used ExactaCruz HRP-conjugated secondary antibodies;

for endogenous Smad2 visualization upon coimmunoprecipitation, beads

were treated for 2 hr at 37�C with PNGaseF (NEB) after the final IP washings

to shift Iggs toward lower molecular weights.

Protein Purifications and In Vitro Ub/Deubiquitination Assays

To obtain purified monoubiquitinated-Smad4, Smad4-Flag, and HA-Ub

expression, plasmids were calcium-phosphate transfected in HEK293T. Cell

lysates (Ub lysis buffer) were immunoprecipitated overnight with a-Flag-M2

resin (Sigma), followed by two sequential elutions with Flag peptide (Sigma,

1 mg/ml in 50 mM HEPES [pH 7.5], 100 mM NaCl, 0.1% NP40, 5% glycerol).

Pooled Flag eluates were subsequently immunoprecipitated with a-HA resin,

followed by two sequential elutions with HA peptide (Sigma) in 500 mM

NaCl. Pooled HA eluates were dialyzed overnight against 50 mM HEPES

(pH 7.5), 100 mM NaCl, 5% glycerol, and 1 mM DTT. For purification of FAM

protein from mammalian cells, FAM-V5-transfected HEK293T cell lysates

(without protease or DUB inhibitors) were immunoprecipitated overnight with

a-V5 resin (Bethyl) and eluted with 0.4 mg/ml V5 peptide (Sigma) in 100 mM

NaCl, and dialyzed overnight Flag-Ecto protein was obtained similarly.

For in vitro deubiquitination assay, purified Ub-Smad4 and FAM were

incubated overnight at 30�C in 50 mM HEPES (pH 7.5), 100 mM NaCl, 5% glyc-

erol, 5 mM MgCl2, 1 mM ATP, and 1 mM DTT. For in vitro ubiquitination assay,

purifiedproteins weremixed ina total volumeof50ul, containing10ul rabbit retic-

ulocyte lysates supplemented with Ubch5 (500 ng) and Ub-aldehyde, and incu-

bated at 30�C for 1.5 hr (as described in Shenoy et al., 2001). The reactions con-

tained the indicated combinations of Flag-Ecto (500 ng), Smad4-Flag (wild-type

and mutants, 200 ng), and recombinant human ubiquitin (Boston Biochem, 5 mg).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Results and Discussion,

Supplemental Experimental Procedures, 16 figures, and 1 table and are avail-

able with this article online at http://www.cell.com/supplemental/S0092-
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