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Abstract 

Granot, F. and J. Skorin-Kapov, On polynomial solvability of the high multiplicity total weighted 

tardiness problem, Discrete Applied Mathematics 41 (1993) 139-146. 

In a recent paper Hochbaum et al. developed a polynomial algorithm for solving a scheduling problem 

of minimizing the total weighted tardiness for a large number of unit length jobs which can be parti- 

tioned into few sets ofjobs with identical due dates and penalty weights. The number of unit jobs in a 

set is called the multiplicity of that set. The problem was formulated in Hochbaum et al. as an integer 

quadratic nonseparable transportation problem and solved, in polynomial time, independent of the size 

of the multiplicities and the due dates but depending on the penalty weights. In this paper we show how 

to solve the above problem in polynomial time which is independent of the sizes of the weights. The 

running time of the algorithm depends on the dimension of the problem and only the size of the 

maximal difference between two consecutive due dates. In the case where the due dates are large, but the 

size of the maximal difference between two consecutive due dates is polynomially bounded by the 

dimension of the problem, the algorithm runs in strongly polynomial time. 

1. Introduction 

In a recent paper by Hochbaum et al. [4] the following scheduling problem was 

addressed. Many jobs of unit length but with only a few sets of distinct due dates 
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and penalty weights need to be scheduled on a single machine. The objective is to 

minimize the total weighted tardiness. In [4], the problem was formulated as an in- 

teger quadratic nonseparable transportation problem. It was solved by first solving 

a related continuous quadratic problem and then a rounding procedure was used to 

derive the optimal integral solution from the continuous one. In order to obtain the 

optimal solution for the continuous quadratic programming problem in polynomial 

running time, independent of the multiplicities and the due dates, a simultaneous 

approximation algorithm can be used (see Chandrasekaran and Kabadi [ 11, or in the 

case of distinct weights, also Granot and Skorin-Kapov [3]). 

Recall that the size of a number is the length of its binary description (i.e., the 

number of bits needed to record a given number in a binary format). In this paper 

we show how to solve the above problem in time which polynomially depends only 

on the dimension of the problem and on the size of the maximal difference between 

consecutive due dates. We suggest two alternatives. Either solve a single related con- 

tinuous quadratic program and then use a rounding procedure to obtain the re- 

quired integral solution, or else solve a sequence of linear programming problems 

where the number of problems solved is bounded by the size of the maximal dif- 

ference between two consecutive due dates. If the size of the maximal difference 

between consecutive due dates is polynomially bounded by the dimension of the 

problem, both alternatives will result with algorithms which run in strongly poly- 

nomial time. In other words, the proposed algorithms are strongly polynomial in 

the case when all due dates are “very big”, that is, all clustered close to the sum 

of all multiplicities. 

2. Problem formulation and transformation 

Following the notation of Hochbaum et al. [4] consider n sets of unit jobs. Set 

i includes pi jobs all having the same due date d, and penalty weight wi. We refer 

to p, as the multiplicity of type i and denote by P= C:=, pi the total number of unit 

jobs. We are seeking an assignment of the unit jobs to the P distinct time intervals 

(i-l,i], i=l,..., P which will minimize the total weighted tardiness. The weighted 

tardiness of each unit of type i scheduled at interval (f - 1, t] is Wi max(I - d,, 0). 

Assume without loss of generality that 

W,? W*Z*..Z w,>o. 

Permute the types of jobs so that dn(rr < ... < dn(,,) and set d,(e) = 0 and dncn+ r) = P. 

Define the ith due-date interval as (dn(i),d,(i+,)] for i=O, . . . . n. The weight of job 

j in interval i, denoted by w:‘, is defined to equal zero if job j is not tardy (i.e., 

d,,(i) < dj) and wj otherwise. Assume without loss of generality that all the due dates 

are distinct, that is, there are no empty intervals. This since empty intervals can be 

omitted from further consideration resulting with a reduced number of intervals. 

Hochbaum et al. [4] gave the following integer quadratic programming formula- 
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tion of the total weighted tardiness problem: 

s.t. j$oX,j = Pj, j=l , ..-, n, 
(1) 

X;j 10 and integer, i=O ,..., n, j=l,..., n 

where aj =d,(,+i) -G$(~) denotes the length of the ith due-date interval, and x,j is 

the number of units of type j in interval i. 
In this paper we introduce a transformation that will enable us to replace the 

above nonseparable quadratic integer programming problem (1) with an equivalent 

separable problem in which the constraint matrix remains totally unimodular. 

Theorem 1. Problem (1) is equivalent to a separable quadratic integer programming 

problem having (n* + 5n + 2)/2 constraints and 3n(n + 1)/2 variables. Moreover, 
the constraint matrix of the equivalent problem is totally unimodular. 

Proof. In order to prove the theorem, we restate problem (1) by distinguishing be- 

tween tardy and nontardy job units in each interval. Let us denote by yij (respec- 

tively, xjj) the number of nontardy (respectively, tardy) units of type j in interval i 
and by W,p(j) the weight of the jth tardy type in interval i. Clearly, Wipe ~~~(~~2 .+. 2 

W [p(i)> w;~(;+ 1) = 0. Moreover, in interval (O,d,C,,] there are no tardy jobs and in in- 

terval (dnC+ P] all the jobs are tardy. In interval i, i.e., (d,Cil,d,Ci+lJ tardy types 

are 77(l), . . . . z(i) and nontardy are rc(;+i), . . . ,7tcn). Using this observation, the con- 

straint set can be written as 

j-l 

&Yin(J)+ijxin(j) =Pn(j), j=L . . ..n. 

n i 

C Yin(j)+i~lxi7Z(j)=6i, i=O ,...,n, 
j=i+l 

yin(j),X;,(j) 2 0 and integer, i=O , . . . , n, j = 1, . . . , n. 

In the objective function only the tardy types, i.e., x-variables will appear. In any 

interval i, tardy types will be scheduled in a nonincreasing order of their weights, 

say (P(I),P(2), . . . . p(i)). The quadratic part of the objective function of (1) for in- 

terval i will thus be given by C;.,, w~,,~~,{+x,&~)+ Cill, x;,,(~)x~~(~)}. This expression 

can be further written as 
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The equivalent separable quadratic programming problem of (1) will thus be 

min E f: 
;=I j=l 

Wln(j)(d*(;)-d,(j)+t)X;n(j)+3 f? f: (wli,(j)-wip(j+l))u$~ 
;=I j=l 

j-l n 

s.t. i50Yi,Cj)+ C Xur(j) =Pn(j), j=1,***,n9 
i=j 

i yin(j)+ i X;n(j)=df, i=O,...,?l, 
j=i+l j=l (2) 

Yin(j) L 0 and integer, 

xincjj L 0 and integer, 

uij 2 0 and integer, 

i=l,..., n, j=i,i-1 , ee.9 1, 

i=O ,..., n-l,j=i+l,..., n, 

i=l ,..., n,j=l,..., i, 

i=l,..., n,j=l,..., i. 

This problem has n(n + 1)/2 y-variables n(n + 1)/2 x-variables and n(n + 1)/2 U- 

variables. The number of constraints is n + (n + 1) + n(n + 1)/2 = (n2 + 5n + 2)/2. 

It remains to show that the constraint matrix of (2) is totally unimodular. To that 

end observe that the constraint matrix of (2) is of the form 

A= AN AT o 
0 B -I > 

where AN (respectively, AT) represents the part of A associated with nontardy (re- 

spectively, tardy) types, -I is a negative identity (n(n + 1)/2) x (n(n + 1)/2) matrix 

corresponding to the variables ui r, u22, uZ1, z433r ~32, u31, . . . , unn, u,(,, _ ,), . . . , unl. Ma- 

trix B is then an n(n + 1)/2 x n(n + 1)/2 block diagonal matrix where the ith diagonal 

block denoted by C,, i = 1, . . . , n is an ix i matrix. We claim that C; is an interval 

matrix, that is, a zero one matrix in which the ones in each column are consecutive. 
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To that end, recall that for interval i the u-variables are ordered as U;i, Uii_ i, . . . , Uil 

and that Uij = Ci = 1 x;~C~), for Jo i. 
If a variable, say Xin(e), is not included in the definition of Uij (i.e., its weight is 

not among the j largest weights in that interval) then trivially, it is not among the 

j - 1 largest weights. Therefore Xi,(,) is not included in the definition of UiJ _ r, . . . , Uil. 

This proves the claim since if a variable Xiffcj) has a zero coefficient in any con- 

straint in Ci it will also have zero coefficients in all other constraints following that 

one. 

Recall also that interval matrices are totally unimodular (see e.g., [6]). Moreover, 

if (‘$ “,r) is totally unimodular, then so is a. In order to show that (“cN 2) is 

totally unimodular we will show that by performing linear operations on its rows, 

it can be transformed into an interval matrix. This clearly preserves the total 

unimodularity. Let us denote by a,, . . . . a,, the first n rows in (“sl ‘2) and by 

bo, . . . . b, the next n + 1 rows. Further, the rows of (0,B) will be denoted by 

c11,C2I,c22,C31,c32,c33r..~,c,I, c,Z,*..,c,,,. 
Perform now the following linear operations: 

l For k=n-1, . . . . 1 add row (lk to rows ak+i,...,a,,; 

l for i=l,..., n add rows bj, j=i, . . ..n to bi_1; 

0 for j=l,..., II add row Cjl to bj+1,...,b,; 

l add cjl to all rows preceding it in (0,B) for j= 2, . . . , n. 
The matrix (‘$” $) is thus transformed to an interval matrix and therefore the 

matrix A is totally unimodular. 0 

Example. For the sake of clarity we calculate the matrices AN, A, and B for a sim- 

ple example. Suppose we have three types of jobs with respective parameters: 

WI =3, d, =4, Pl = 3; 

w2 = 2, d2 = 1, p2=3; 

w3 = 1, d3 = 2, p3 = 3. 

Therefore, P=9; &=(O,l], 6i=(1,2], a2=(2,4], S,=(4,9]; and 7r(1)=2, 71(2)= 

3, 7r(3)=1. 

A,,,= 

rl00 00 0 

010 10 0 

001 01 1 

111 00 0 

000 11 0 

000 00 1 

,000 00 0 

A,= 
-1 

10 100 

0 01 010 

0 00 001 
I 

0 00 000 ’ 

1 00 000 

0 11 000 

0 00 111 1 
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B= 

1 00 000 

0 11 000 

0 10 000 

0 00 111 

0 00 101 

0 00 001 

11 with C,=l; C2=(i0), and 

C, has the given form since among the tardy types within the second interval job 2 

(= n(l)> has bigger weight than job 3 (= rr(2)). In the third interval all the types are 

tardy and since n(l)= 2, n(2) = 3, n(3)= 1 or wn(s)> wncl)> wnr2), it follows that 

u33 =X3n(l) +X3n(2) +X377(3); u32 =X3n(l) +X3=(3); u31 =X3n(3). 

3. Polynomial solvability 

After the transformation of problem (1) to problem (2) which is a separable 

quadratic problem with integral coefficients and totally unimodular constraint ma- 

trix, problem (2) can be solved in a number of ways. In the sequel we discuss some 

possibilities and their complexities. 

One approach for solving the total weighted tardiness problem in time poly- 

nomial in the dimension of the problem and in the size of the maximal difference 

between two consecutive due dates is to use the algorithm proposed by Hochbaum 

and Shanthikumar in [5] for solving an integer nonlinear separable programming 

problem with a totally unimodular constraint matrix. This involves a solution of 

log, U linear programs, where U is the maximal upper bound on the variables. In 

order to assure that the size of the first due date interval 6,, = dn(i) will not appear 

in the complexity of the algorithm, the variables in the first due date interval (i.e., 

YOn(l)9 . . ., YOn(n)) will be expressed as 

j-l 

c Yin(j)- i Xin(,), j=L...,n. Jkj) = Pn(j) - ;= 1 
i=j 

The constraint expressing the sum of variables in the first due date interval will 

become 
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or 

The constraints expressing the sum of variables in other due date intervals will not 

change. Along the same lines as in the proof of Theorem 1 one can check that the 

constraint matrix of the above problem is still totally unimodular, however, the 

maximal upper bound on the variables is U= max{d,(i, -d,+ 1l, i = 2, . . . , n + 1). 

Using Tardos’ algorithm [7], the complexity of each linear program in Hochbaum 

and Shanthikumar’s [5] approach will depend only on the dimension of the original 

problem. If the size of the maximal difference between consecutive due dates is poly- 

nomially bounded by the dimension of the problem, the algorithm from [5] is 

strongly polynomial. 

Another approach to solve the total weighted tardiness problem in polynomial 

time which will depend only on the dimension of the original problem and on the 

size of U is to first use the simultaneous approximation algorithm for quadratic in- 

teger programming problems by Granot and Skorin-Kapov [2] as a preprocessing 

algorithm. This will result in replacing the penalty weights and due dates with cer- 

tain integers having sizes polynomially bounded by the dimension of the problem 

and by the size of the maximal upper bound on the variables without changing the 

set of optimal solutions for (2). 

Recall that for problem (2), all the variables are bounded by the lengths of the 

due date intervals. We assume that only the first interval (i.e., (O,dncl,]) is very big, 

and that the others are small. Note, however, that the variables yoncl), . . . ,_Y~~(~) do 

not appear in the objective function. It can easily be shown that their bounds will 

not affect the scalar N used in the simultaneous approximation algorithm. There- 

fore, a scalar N=4n2 U can be used. 

After the preprocessing is done, one can proceed with the algorithm outlined in 

[4] to solve the total weighted tardiness problem via the solution of a related con- 

tinuous quadratic programming problem using Chandrasekaran and Kabadi’s algo- 

rithm [l] or Granot and Skorin-Kapov’s algorithm [3] and then using the rounding 

procedure of [4]. Note, however, that the requirement that the objective function 

be strictly convex (i.e., all weights be distinct) in Granot and Skorin-Kapov’s algo- 

rithm [3] is not necessary. This since for the case where the linear part of the ob- 

jective function involves only “small” integrals, the transformation of variables 

proposed in [3] involving the inverse of the objective function matrix in order to 

homogenize the objective function, is not needed. 
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