We propose a method for reusing and modifying a deductive database. The need for such techniques occurs when new rulebased applications differ only slightly from existing ones or when an application is to be incrementally updated. Such techniques are particularly important when reprogramming is expensive or unreliable. In order to facilitate reuse, we extend deductive database systems by the concept of predicate substitution. In this way, during query evaluation, not only variables, but also predicates can be substituted. We provide a proof theory and a model theory for this language, including a fixpoint semantics. In addition, we show that substitution increases the expressive power of Datalog: not only does its data complexity increase from PTIME to EXPTIME, but substitution also allows large sets of Datalog rules to be succinctly expressed. In fact, finite rulebases with substitution can express infinite rulebases without substitution.

I. INTRODUCTION

This paper develops a method for reusing and modifying deductive databases. The need for such techniques occurs when new rulebased applications differ only slightly from existing ones or when an application is to be incrementally updated. Such techniques are particularly important when reprogramming is expensive or unreliable. Unfortunately, these issues have not yet received significant attention in the deductive database literature. This paper attempts to address them, focussing on a particular class of modifications that we call predicate substitution. The idea is to reuse and modify a set of rules by substituting one predicate symbol for another. Augmented with this capability, deductive databases can better exploit the polymorphism that exists in many database operations.

Transitive closure is a simple example of such an operation. It is polymorphic in that every binary relation has a transitive closure. Nevertheless, in many deductive database systems, one cannot write a rulebase that computes the transitive closure of an arbitrary binary relation. Instead, one can only write rules that compute the transitive closure of a particular relation. The following rules, for example, compute the transitive closure of the relation R:

$$ TR(x, y) \leftarrow R(x, y). $$
$$ TR(x, z) \leftarrow R(x, y), \ TR(y, z). $$

To compute the transitive closure of another relation, say S, one must write a new set of rules, defining a new predicate TS in terms of S. In this way, a user is forced to rewrite rulebases if he wants to apply them to different sets of data.

Predicate substitution carries out this rewriting automatically. For instance, to compute the transitive closure of S, the user specifies that S be substituted for R in the two rules above. Two new rules, equivalent to the following, are then generated:

$$ TS(x, y) \leftarrow S(x, y). $$
$$ TS(x, z) \leftarrow S(x, y), TS(y, z). $$
If necessary, new predicates such as TS are also generated. In this way, predicate substitution allows a user to specify new rulebases by reusing and modifying old ones. Note that in this example, one binary predicate substitutes for another predicate of equal arity. More generally, predicate substitution allows for the substitution of predicates of different arity. As we shall see, the result is a more flexible language that permits a greater exploitation of polymorphism.

We believe that predicate substitution is a principle that can be applied to logic-based languages generally in order to facilitate reuse and modification. In this paper, however, we focus on Horn logics and on Datalog in particular. That is, we develop a logic programming language that combines logical inference with predicate substitution. The rules in this logic, called rules with substitution, allow a user to select other rules for reuse and modification and to combine the modified rules into larger rulebases. Rulebases defined in this way can themselves be reused and modified, so that the process of constructing rulebases is closed under predicate substitution.

We develop these ideas in several ways. First, Section 2 defines predicate substitution precisely in terms of a copy-and-substitute mechanism. This mechanism formalizes our intuition that predicate substitution specifies how to “edit” a set of rules to produce a new set of rules with different predicate symbols. Although this mechanism might seem procedural, we show how to formulate it as a declarative language with a logical semantics. Section 2 develops the proof theory for the logic, Section 3 develops the model theory, and Section 4 develops the fixpoint theory. A main result is that the proof theory is sound and complete for the model theory. Likewise for the fixpoint theory.

In the model theory, rulebases without substitution are the models for rulebases with substitution. This semantics corresponds to the intuition that rules with substitution are written by a user who has rules without substitution “in mind.” This intuition is similar to the view taken of ordinary Datalog rules, in which the user has an “intended model” in mind (the minimal model of the rules), which he could have written if he had enough space and enough time. In this way, just as Datalog provides a concise notation for describing large databases, Datalog with substitution provides a concise notation for describing large rulebases. Hence, it can be argued that in going from Datalog to Datalog-with-substitution, we achieve an upgrade similar to that in going from relational algebra to Datalog. These ideas are illustrated by the Examples in Sections 3.1 and 4.3.

To support this view, we show that predicate substitution is a concise notation for describing large rulebases. This conciseness is achieved by reusing and modifying rule sets, possibly many times. In fact, by combining recursion and substitution, it is possible to reuse and modify rule sets infinitely many times. Using this idea, we show that a finite set of rules with substitution can specify an infinite set of rules without substitution. Furthermore, this infinite set is not equivalent to any finite one. Fortunately, it is not necessary to materialize all these rules, since our inference system works directly on the rule specifications, not on the rules themselves. This is similar to inference in Datalog in that a query can be evaluated without materializing the least fixpoint of the rulebase. The conciseness of predicate substitution is illustrated by the Examples in Section 4.3.

In the tradition of logic programming [19, 1], Section 4 complements the model theory of predicate substitution with a fixpoint theory. It defines a monotonic and continuous “T-operator” that can be applied to a rulebase in a bottom-up fashion, generating the minimal model (or least fixpoint) piece-by-piece. In Horn logic, the T-operator takes a database as input and returns another database as output. In our logic, the T-operator takes a Horn rulebase as input and returns another Horn rulebase as output. Starting with the empty rulebase, the T-operator is applied over-and-over again until the minimal model is generated. Each application of the operator unfolds rules with substitution into equivalent Horn rules. If a rulebase has recursion through substitution, then its minimal model may contain infinitely many Horn rules, and it may take infinitely many applications of the T-operator to generate them all. However, because the T-operator is continuous, any particular Horn rule will be generated after a finite number of applications. In this way, the Horn rules represented by a rulebase with substitution can be enumerated. These ideas are illustrated by the Examples in Section 4.3.

Since predicate substitution provides a short-hand notation for describing rule sets, it might appear that it is a merely syntactic device, one that increases the flexibility and convenience of a logic, but not its expressive power. This conclusion would be incorrect however, since predicate substitution can actually increase the power of a logic. In evidence of this, Sections 6 and 7 show that substitution increases the power of Datalog (function-free Horn logic). Whereas the data complexity of Datalog is complete for $PTIME$, the data complexity of Datalog augmented with substitution is complete for $EXPTIME$. (In this paper, the terms $EXPTIME$ and “exponential time” mean $DTIME[2^{n^{O(1)}}]$.) Proof theoretically, this boost in expressive power comes from recursion through substitution, and in particular, from the ability of the logic to simulate the computations of alternating $PSPACE$ machines. Model theoretically, this increased power has an interesting interpretation: when a Datalog rulebase with substitution is $EXPTIME$-complete, it represents an infinite Datalog rulebase without substitution. Because this rulebase is infinite, it is not subject to the normal $PTIME$ bound on the complexity of finite Datalog programs. In cases like this, substitution provides an extremely concise notation for representing Datalog rulebases.
1.1. Related Work

Predicate substitution is an attempt to augment a logic with the minimal amount of power needed to reuse and modify programs. This distinguishes predicate substitution from related works in the logic-programming literature, especially those that use higher-order function terms. This is the case, for instance, in the HiLog system of Chen, Kifer and Warren [8], and in the meta-programming methodology of Kwok and Sergot [9]. Although these systems can apply a logic program to different predicates, their use of function symbols gives these systems a great deal of power, so that inference is undecidable. In contrast, inference in Datalog with predicate substitution is decidable, and in fact, is in \textsc{exptime}.

There are also philosophical and practical differences between predicate substitution and higher-order functions. Although they allow a program to be applied to different predicates, the explicit use of higher-order functions requires a programmer to anticipate the reuse and modification of a program before writing it, by using special higher-order variables in a program's definition. In contrast, predicate substitution allows a program to be reused even though the programmer originally wrote it with a specific set of predicates in mind. To achieve this, predicate substitution modifies programs before reusing them. It is as if every predicate symbol in a program with predicate substitution were a higher-order variable, though guaranteed to be bound to a specific predicate symbol at run time. The proof and model theories developed in this paper reflect this capability.

Predicate substitution is also different from works on polymorphism in functional languages, such as [12, 13]. One obvious difference is that predicate substitution applies to logic programming, not functional programming. A deeper difference is that these works are concerned with static type checking and how to make it polymorphic, whereas our work has nothing to do with type checking, whether static or dynamic. As with most logic programs and deductive databases, the language developed in this paper is untyped. However, any typing discipline developed for first-order logic programs should also be applicable to logic programs with predicate substitution. For instance, [14] adds static polymorphic type checking to Prolog, and many of their techniques could be applied to Prolog augmented with predicate substitution. Work on type checking, polymorphic or otherwise, is thus orthogonal to our work.

There is another difference as well. Any typing discipline—even a polymorphic one—decreases the flexibility of an otherwise untyped language. In contrast, predicate substitution increases the flexibility of (untyped) logic programs, by adding a limited form of second-order functionality. Intuitively, it allows new predicate symbols to be constructed at run time, much as the (untyped) lambda calculus allows new lambda terms to be constructed at run time. In this sense, predicate substitution adds features to logic programming that are normally found only in functional programming and in higher-order logics.

1.2. Introductory Examples

To better convey the intuition behind predicate substitution, we present several examples and discuss possible applications. Each example uses Horn logic with substitution to exploit the polymorphic nature of certain database operations in a way that Horn logic alone cannot. In these examples, the expression \([P/Q]\) is a substitution operator that replaces the predicate symbol \(P\) by the predicate symbol \(Q\). This operator is applied to other predicates in order to reuse and modify their definitions. For example, the expression \(\text{"A}(x)[P/Q]\)" intuitively means, “Substitute \(Q\) for \(P\) in the definition of \(\text{A}\)”. Here, the “definition of \(\text{A}\)” is the set of rules defining \(\text{A}\) (e.g., the logic program for \(\text{A}\), or the Datalog program for \(\text{A}\)).

The expression \(\text{A}(x)[P/Q]\) is called a predicate with substitution. It can be used in queries or in rules bodies, just as other predicates can. In fact, it is treated as an ordinary predicate of first-order logic except that its definition is not given by the user but is derived automatically by reusing and modifying the definition of \(\text{A}(x)\). The examples below illustrate this idea.

The first two examples illustrate the reuse and modification of a sorting module. Such modules can be defined in general logic programming languages, like Prolog. By reusing and modifying the module, we greatly extend its range of application. The first example illustrates basic predicate substitution, in which a predicate substitutes for predicates of equal arity. The second example illustrates full predicate substitution, in which a predicate substitutes for predicates of different arity. Full substitution uses a generalization of the notation described above.

Example 1.1 (Basic Substitution). A database \(R\) that sorts people by age, we reuse it, with slight modifications, to sort people by weight. We suppose that the database \(DB\) defines the predicates \(\text{Person}(x), \text{Age}(x, y)\) and \(\text{Weight}(x, w)\), which mean respectively that \(x\) is a person, and that \(x\) has age \(y\) and weight \(w\). We suppose also that the rulebase defines a predicate \(\text{SortAge}(x, n)\) that sorts people by age. That is,

\[
R, DB \rightarrow \text{SortAge}(x, n)
\]

iff \(x\) is the \(n\)-th oldest person in the database. We do not know how the predicate \(\text{SortAge}\) is implemented, nor what algorithm it uses. We know only that the rules defining \(\text{SortAge}\) are written in terms of the base predicates \(\text{Person}\) and \(\text{Age}\).
To sort people by weight instead of by age, we can rewrite these rules substituting \(Weight \) for \(Age \). The predicate with substitution \(SortAge(x, n)[Age/Weight] \) does this automatically. That is,

\[
R, DB \vdash SortAge(x, n)[Age/Weight]
\]

iff \(x \) is the \(n \)th heaviest person in the database. This predicate with substitution can be used in rule bodies to define other predicates. In this way, the following rule defines a predicate \(SortWeight \) that sorts people by weight:

\[
SortWeight(x, n) \equiv SortAge(x, n)[Age/Weight]
\]

This rule is called a rule with substitution. Intuitively, it means that the Horn rules defining \(SortWeight \) are the same as those defining \(SortAge \) except that \(Age \) is replaced by \(Weight \). In this way, predicate substitution exploits the fact that sorting is polymorphic on the sorted attribute.

Example 1.1 illustrates the most basic kind of predicate substitution. It is basic in several ways: it only substitutes base predicates, it only performs a single substitution, and it only substitutes predicates of equal arity. Predicate substitution is more general than this. In the substitution \([P/Q]\), the predicate \(P \) must be a base predicate, but the predicate \(Q \) need not be. Furthermore, substitutions can be applied multiple times, to define predicates like \(A[P/Q][R/S] \). Finally, by extending the syntax, one predicate can be replaced another of greater arity. Specifically, if the arity of \(Q \) is greater than that of \(P \), then to replace \(P \) by \(Q \), we use the expression \([P/Q](y_1, \ldots, y_m)\) where \(y_1, \ldots, y_m \) denote the extra arguments of \(Q \) that do not appear in \(P \). The next example illustrates these possibilities.

Example 1.2 (Full Substitution). Continuing the previous example, a university would like to use the sorting program, but in a more general fashion. It would like to sort numerous groups of students, and it would like to sort them by grade, not age.

As before, we suppose that the sorting predicate \(SortAge(x, n) \) is written in terms of the base predicates \(Person(x) \) and \(Age(x, y) \). We also suppose that the university’s database defines the predicates \(FullTime(s) \) and \(Grade(s, g, c) \), which mean respectively that \(s \) is a full-time student, and that \(s \) received grade \(g \) in course \(c \). The university wants to sort the full-time students in each course, and it wants to sort them by their grade in that course. The following rules do exactly this:

\[
FTStudent(s, c) \leftarrow FullTime(s), grade(s, g, c).
\]

\[
SortGrade(s, c, n) \leftarrow SortAge(s, n)[Person/FTStudent](c)[Age/Grade](c)
\]

The first rule defines a predicate \(FTStudent(s, c) \) that identifies each full-time student \(s \) taking course \(c \). Then, for each course, \(c \), the second rule sorts the full-time students in the course by the grade they received in the course. Thus, \(SortGrade(s, c, n) \) is true iff of all the full-time students in course \(c \), student \(s \) received the \(n \)th highest grade. Conceptually, \(SortGrade \) is defined by Horn rules that are identical to those defining \(SortAge \) except that the base predicate \(Person \) is replaced by the derived predicate \(FTStudent \), and \(Age \) is replaced by \(Grade \).

Numerous variations on Examples 1.1 and 1.2 are possible. It is not hard, for instance, to change the comparator on which the sort is based. To do this, suppose the rules defining \(SortAge \) use the arithmetic predicate \(leq \) to compare peoples ages, where \(leq(y_1, y_2) \) is true iff \(y_1 \leq y_2 \). By using predicate substitution, \(leq \) can be replaced by different comparison predicates. For instance, the predicate \(SortAge(s, n)[leq/geq] \) sorts people by age, but in reverse order. Likewise, comparators for real numbers or other data types can be substituted for \(leq \).

The next example shows an application to scientific databases in which a module for matrix multiplication is reused and modified to compute matrix powers. Like the sorting module above, matrix multiplication modules can be defined in general logic programming languages, like Prolog.

Example 1.3 (Recursive Substitution). A particular scientific application needs to perform simple operations on large matrices. Since the application also needs to interface to a database system, it is decided that the matrices should be stored in the database itself. Each matrix is stored as a ternary relation, \(M(i, j, v) \), where \(v \) is the \(i \)th element of the matrix represented by \(M \). To multiply matrices, the rulebase defines a predicate, \(Mult \), that multiplies matrices \(M_1 \) and \(M_2 \). That is,

\[
R, DB \vdash Mult(i, j, v)
\]

iff \(v \) is the \(i \)th element in the product of \(M_1 \) and \(M_2 \). To multiply other matrices, we use predicate substitution. For instance, \(Mult(i, j, v)[M_1/A][M_2/B] \) represents the product of matrices \(A \) and \(B \). By combining multiplication and substitution in more complex ways, we can define other matrix operations. For instance, the following rules use recursion through substitution to compute the \(n \)th power of matrix \(M \):

\[
Power(i, j, v, 1) \leftarrow M(i, j, v)
\]

\[
Power(i, j, v, n) \leftarrow Mult(i, j, v)[M_1/M][M_2/Power](n-1)
\]

The first rule defines the first power of \(M \) to be \(M \) itself. The second rule defines the \(n \)th power of \(M \) to be \(M \) times its
The predicate ``male'' by ``person''. 1 Such updates could be Likewise, other bodies of law might be amended to replace replaced by a new predicate meaning ``citizen or resident''. In this case, every occurrence of the predicate ``citizen'' could be act might be amended to treat residents as citizens. In this reasoning about tax law, especially corporate tax law and Act in Prolog [16], and McCarty has developed systems for systems have a variety of applications, such as computer-based medical and legal consultation systems. Kowalski and systems have a variety of applications, such as computer-reuse and modification of expert database systems. Such definitions for the base predicates of the module.

In addition, rules with substitution seem well suited to the reuse and modification of expert database systems. Such systems have a variety of applications, such as computer-based medical and legal consultation systems. Kowalski and Sergot, for instance, have encoded the British Nationality Act in Prolog [16], and McCarty has developed systems for reasoning about tax law, especially corporate tax law and estate tax law [11, 15]. As laws are amended, such systems have to be updated. For instance, sections of the income tax act might be amended to treat residents as citizens. In this case, every occurrence of the predicate “citizen” could be replaced by a new predicate meaning “citizen or resident”. Likewise, other bodies of law might be amended to replace the predicate “male” by “person”.1 Such updates could be expressed and implemented with predicate substitution.

The need to often reuse and modify existing rule bases occurs in rulebased specifications of the operations of large enterprises, such as big corporations, computer operating systems or various legal systems, such as tax-law, citizenship law etc. When changes are small, it simply does not make sense to rewrite possibly-huge rulebased specifications. It is definitely more attractive to reuse as much as possible of the old definition.

From the above examples it may appear that adding the principle of substitution may increase the convenience and flexibility of a language but not its expressive power. We show, however, that the expressive power increases as well, and in particular, that predicate substitution increases the expressive power of Datalog (function-free Horn logic). To illustrate this increased power, Section 7 provides a set of rules that use recursion through substitution to solve an EXPTIME-complete problem—a task impossible for Datalog.

2. PROOF THEORY: INFERENCE WITH PREDICATE SUBSTITUTION

This section develops predicate substitution in terms of the reuse and modification of rulebases. The syntax of predicates and rules with substitution is defined precisely, and an inference system is developed in terms of a copy-and-substitute mechanism. The development is initially informal, leaning on a number of illustrative examples. The mechanism is then defined precisely and an axiomatization is given.

2.1. Syntax

The language of predicate substitution includes three infinite sets: predicate symbols, function symbols, and variables. Each predicate and function symbol has a non-negative arity. A function symbol of arity 0 is called a constant symbol, or simply a constant. From these symbols, we recursively build two other sets of symbols: function terms and predicate symbols with substitution. Function terms are defined in the standard way: a variable or a constant symbol is a function term; and if f is a function symbol of arity k ≥ 1, and x₁, ..., xₖ are function terms, then f(x₁, ..., xₖ) is also a function term.

Definition 2.1 (Predicate Symbols with Substitution).

- Every predicate symbol of arity k is a predicate symbol with substitution of arity k.
- Suppose P and Q are predicate symbols of arity m and m + k, respectively, where k > 0. If σ is a predicate symbol with substitution of arity n, then σ/PQ is a predicate symbol with substitution of arity n + k.

As an example, suppose A is a predicate symbol of arity 1, and P and Q are predicate symbols of arity i. Then A[P/Q], A[P/Q₁] and A[P₂/Q₁][P₃/Q₃] are predicate symbols with substitution of arity 2, 3 and 4, respectively. Thus, while predicate symbols have an arbitrary arity, predicate symbols with substitution have an arity derived from their structure. This is the only formal difference between them. For convenience, we shall sometimes refer to predicate symbols as “predicate symbols without substitution”.

In this paper, an atomic formula is an expression of the form P(x₁· · · xₖ) where each xᵢ is a function term and P is a predicate symbol (without substitution) of arity k. We could easily extend the notion of atomic formulas to include predicate symbols with substitution, but it is convenient to use a different notation and a different terminology for them. For instance, although A[P₂/Q₃] is a predicate symbol with substitution of arity 2, we shall not write A[P₂/Q₃](x, y), nor shall we call it an atomic formula. Instead, we shall write A(x)[P₂/Q₃](y) and call it a predicate with substitution. Formally, however, there is no difference between the two notations. The latter notation is convenient because it allows the atomic formula A(x) to preserve its syntactic identity after a predicate substitution is applied to it. Likewise, we shall write A(x)[P₂/Q₃](y) [P₄/Q₅](z) instead of A[P₂/Q₃][P₄/Q₅](x, y, z). In this way, the formulas A(x) and A(x)[P₂/Q₃](y) both preserve their syntactic identities. The next definition makes this terminology precise.

1 L. T. McCarty. Personal communication.
DEFINITION 2.2 (Predicates with Substitution).

- Every atomic formula is a predicate with substitution.
- Suppose P and Q are predicate symbols of arity m and $m+k$, respectively, where $k \geq 0$. If P is a predicate with substitution, then so is $\sigma[P/Q](y_1 \cdots y_k)$, for any function terms $y_1 \cdots y_k$.

The expression $[P/Q](y_1 \cdots y_k)$ is called a predicate substitution, or simply a substitution. For clarity, when P and Q have equal arity, we write $[P/Q]$ instead of $[P/Q](\cdot)$.

Expressions of the form $[P/Q]$ are called basic substitutions. In the substitution $[P/Q](y_1 \cdots y_k)$, the variables $y_1 \cdots y_k$ denote the extra arguments of Q that do not appear in P. By default, we take these to be the last k arguments of Q. Intuitively, the expression $\sigma[P/Q](y_1 \cdots y_k)$ means, “For each tuple $(y_1 \cdots y_k)$, substitute $Q(x_1 \cdots x_n, y_1 \cdots y_k)$ for $P(x_1 \cdots x_n)$ in the definition of σ.” We could have chosen $y_1 \cdots y_l$ to be any l arguments of Q. The particular choice does not matter, though, since we can use Horn rules to permute any k arguments into the last k positions.

Predicate substitutions should be distinguished from the more familiar form of substitution in which function terms are substituted for variables. For instance, in the expression $\{w(x), v(y)\}$, the terms $f(x)$ and y are to be substituted for the variables u and v, resp. We call these expressions term substitutions to distinguish them from predicate substitutions. Throughout this paper, the symbol $[\theta]$ denotes a predicate substitution and σ denotes a term substitution.

DEFINITION 2.3 (Rules with Substitution). A rule with substitution is an expression of the form $\beta \leftarrow \beta_1 \cdots \beta_l$, where β and each β_i are predicates with substitution, and $l \geq 0$. If β is an atomic formula, then the rule is called a Horn rule with substitution. A (Horn) rulebase with substitution is a set of (Horn) rules with substitution.

In this paper, the terms “Horn rule” and “rule without substitution” shall refer to classical Horn rules without substitution, i.e., to rules of the form $\beta_0 \leftarrow \beta_1 \cdots \beta_k$, where each β_i is an atomic formula.

We shall use rules with substitution to specify sets of rules without substitution. In the process, we take a database perspective. That is, we consider a rule-based system to consist of two parts: a set of rules, called the rulebase; and a set of ground atomic formulas, called the database. This dichotomy leads naturally to two sorts of predicates: base predicates, whose extention is given explicitly in the database; and derived predicates, whose extention is implied by the database together with the rulebase. Only derived predicates may appear in the heads of rules, and such rules are said to define the predicate. For example, the rule $A(x) \leftarrow B(x, y)$ defines the predicate A. The set of rules defining a predicate is called its definition, or its intension. These ideas and terminology are common in the deductive database literature.

It is common to define a database to be a finite set of ground atomic formulas constructed from constant symbols and base predicate symbols. However, none of the semantical results in this paper uses this assumption. Only the complexity results assume the database is finite. Thus, to keep the development general, we define a database to be any set of ground atomic formulas. A database may thus be finite or infinite, and may be constructed from base or derived predicate symbols, and constant or function symbols. This means that the extention of a base predicate is specified entirely by the database. However, the extention of a derived predicate may be specified partially by the rulebase and partially by the database. Only the rules are affected by predicate substitution.

2.2. The Copy-and-Substitute Mechanism

We treat predicates with substitution as derived predicates. Thus, the expression $A(x)[P/Q]$ is a derived predicate. However, the user is not allowed to provide rules defining these predicates. Instead, the rules defining $A(x)[P/Q]$ are generated automatically from the rules defining $A(x)$. Intuitively, the rules defining $A(x)[P/Q]$ are identical to the rules defining $A(x)$ except that P is replaced everywhere by Q. Thus, the user provides a set of Horn rules with substitution, from which a set of non-Horn rules with substitution is automatically generated.

To be more precise, we define the intension of $A(x)[P/Q]$ in terms of a copy-and-substitute mechanism. First, we copy all the rules in the rulebase, and in this copy, each predicate $B(x)$ is given a new name $B(x)[P/Q]$. In this way, the original rulebase and its copy can co-exist as a single rulebase without interfering with each other. Second, each occurrence of $P(x)$ in the premises of these rules is replaced by $Q(x)$. In this way, substitution is carried out. Finally, for all base predicates $B(x)$, the predicate $B(x)[P/Q]$ is replaced by $B(x)$. Intuitively, a base predicate is not defined by rules, so it is unaffected by predicate substitutions. The result of these three steps is a rulebase that is identical to the original except that P has been replaced everywhere by Q. Also, instead of defining $A(x)$, the new rulebase defines $A(x)[P/Q]$, for every derived predicate A.

The rest of this section develops the copy-and-substitute mechanism in detail. Before defining it formally, we illustrate it through a short series of increasingly complex examples. The first two examples both illustrate basic substitution and full substitution.

Example 2.1 (A Simple Case). Let σ be the following rulebase, where B and C are base predicates:

$A(x) \leftarrow B(x), P(x),
A(x) \leftarrow C(x, y), P(x), P(y).

$2 We could equally well use the notation $B(x)[P/Q]$ instead of $B(x)[P/Q]$.

The latter notation simply provides a systematic way of providing new and distinct predicate names for each substitution.
(i) If \(Q \) is a unary predicate symbol, then \(A(x)[P/Q] \) is a unary predicate with substitution, defined by the following rules:

\[
A(x)[P/Q] \leftarrow B(x), Q(x).
\]

\[
A(x)[P/Q] \leftarrow C(x, y), Q(x), Q(y).
\]

(ii) Likewise, if \(R \) is a binary predicate symbol, then \(A(x)[P/R] \) is a binary predicate with substitution, defined by the following rules:

\[
A(x)[P/R] \leftarrow B(x), R(x, z).
\]

\[
A(x)[P/R] \leftarrow C(x, y), R(x, z), R(y, z).
\]

Example 2.2 (Intermediate Predicates). Let \(\mathcal{S} \) be the following rulebase, where \(C \) and \(D \) are base predicates:

\[
A(x) \leftarrow P(x), C(x, y), B(y).
\]

\[
B(x) \leftarrow D(x), P(x).
\]

(i) If \(Q \) is a unary predicate symbol, then \(A(x)[P/Q] \) and \(B(x)[P/Q] \) are unary predicates with substitution, defined by the following rules:

\[
A(x)[P/Q] \leftarrow Q(x), C(x, y), B(y)[P/Q].
\]

\[
B(x)[P/Q] \leftarrow D(x), Q(x).
\]

(ii) Likewise, if \(R \) is a binary predicate symbol, then \(A(x)[P/R] \) and \(B(x)[P/R] \) are binary predicates with substitution, defined by the following rules:

\[
A(x)[P/R] \leftarrow R(x, z), C(x, y), B(y)[P/R].
\]

\[
B(x)[P/R] \leftarrow D(x), R(x, z).
\]

The idea of copying rules, renaming predicates and making substitutions applies to Horn rulebases with substitution as well as to those without. Furthermore, the idea can be applied recursively; that is, once predicates such as \(A(x)[P/Q] \) have been defined, they can be used to define more complex predicates such as \(A(x)[P/Q][R/S] \). These two ideas are illustrated in the next example.

Example 2.3 (Substitution in Rule Bodies). Let \(\mathcal{S} \) be the following rulebase, where \(Q \) and \(R \) are base predicates:

\[
A(x) \leftarrow B(x)[P/Q]
\]

\[
B(x) \leftarrow P(x), R(x).
\]

Applying the substitutions \([R/S]\) and \([P/Q]\) to these rules, we get the following rules (among others):

\[
A(x)[R/S] \leftarrow B(x)[P/Q][R/S]
\]

\[
B(x)[P/Q] \leftarrow Q(x), R(x).
\]

\[
B(x)[P/Q][R/S] \leftarrow Q(x), S(x).
\]

Since these rules are treated classically, we can infer the following two rules:

\[
A(x) \leftarrow Q(x), R(x).
\]

\[
A(x)[R/S] \leftarrow Q(x), S(x).
\]

The examples above illustrate how predicate substitution works. The following definition makes the idea precise.

Definition 2.4 (Predicate Substitution). Let \(\mathcal{S} \) be a Horn rulebase with substitution. Then the closure of \(\mathcal{S} \), under predicate substitution, denoted \(\mathcal{S}' \), is the smallest set of rules with substitution satisfying the following conditions:

1. \(\mathcal{S} \subseteq \mathcal{S}' \)

2. If \(\beta \leftarrow \beta_1 \cdots \beta_n \) is in \(\mathcal{S}' \) then \(\beta[\theta] \leftarrow \beta_1[\theta] \cdots \beta_n[\theta] \) is in \(\mathcal{S}' \) for every predicate substitution \([\theta]\).

3. The rule \(P(x)[P/Q](\bar{y}) \leftarrow Q(x, \bar{y}) \) is in \(\mathcal{S}' \) for every predicate substitution \([P/Q](\bar{y})\).

4. The rule \(B(x)[P/Q](\bar{y}) \leftarrow B(x) \) is in \(\mathcal{S}' \) for every predicate substitution \([P/Q](\bar{y})\) and every base predicate \(B \neq P \).

Here, \(\bar{x} \) and \(\bar{y} \) are lists of distinct variables.

The four items in this definition are discussed in the proof of Lemma 2.13.

The set of rules \(\mathcal{S}' \) is infinite and contains an infinite number of syntactically distinct predicate symbols. These predicates may be semantically distinct as well. As the next example shows, this is possible because substitution is not idempotent; that is, in general, \(A(x)[B/C][B/C] \) is not the same as \(A(x)[B/C] \). Thus, from a finite set of predicate symbols, predicate substitution can create new and semantically distinct predicates whose names have arbitrary length, such as \(A(x)[B/C][B/C][B/C] \).

Example 2.4 (Infinite Rule Sets). Suppose \(\mathcal{S} \) consists of the following two rules, where \(B \) and \(P \) are base predicates:

\[
A(x) \leftarrow P(x)
\]

\[
Q(x) \leftarrow B(x, x'), P(x').
\]

We use Definition 2.4 to generate rules for three predicates with substitution, \(A(x)[P/Q], A(x)[P/Q][P/Q] \) and \(A(x)[P/Q][P/Q][P/Q] \). Using classical inference, we expand these rules, to derive three new rules:
Then using rulebase S, following inferences (among others):

These rules are not in S^1, but are logically entailed by it. They show that the three predicates with substitution are not equivalent. More generally, the rules—both implicit and explicit—for $A(x)[P/Q]$ are different from the rules for $A(x)[P/Q]^+$. We therefore have an infinite number of semantically distinct predicates with substitution.

Because Example 2.4 uses basic substitution, each new predicate has the same arity as the original predicate. When full substitution is used, new predicates can have increasing arity, as in $A(x_1)[P/R](x_2)[P/R](x_3)[P/R](x_4)...$. In this way, predicates of unbounded arity can be generated.

2.3. Inference from Databases

The copy-and-substitute mechanism developed above takes a set of Horn rules with substitution, S, and generates a larger set of rules with substitution, S^1. We treat this set classically, i.e., as a set of classical Horn rules. To be useful, classical Horn rules must be augmented with a database, from which the rules can derive atomic formulas. Definition 2.5 below formalizes this idea. In this definition, and in the rest of the paper, the symbol $|-_{c}$ denotes inference in classical first-order logic, and all free variables are universally quantified at the top level. As defined in Section 2.1, a database is any set of ground atomic formulas.

Definition 2.5 (Inference). Suppose H is a ground predicate with substitution, S is a Horn rulebase with substitution, and DB is a database. Then

$S, DB |- H$ if $S^1 \cup DB |-_{c} H$.

For example, if $DB = \{Q(b), R(b), Q(a), S(a), P(b)\}$ then using rulebase S from Example 2.3 leads to the following inferences (among others):

\[
S, DB |- B(b)[P/Q] \quad S, DB |- A(b)
\]

Because S^1 is infinite, its value is largely conceptual, providing a concise definition of inference with substitution. However, to actually perform inference, it is impractical to first generate S^1 and then invoke classical inference procedures. The lemma below offers a more practical alternative by providing a finite axiomatization which is sound and complete. The inference system in the lemma can be operated in either a top-down or a bottom-up manner. When operated top-down, it attempts only those substitutions that are relevant to proving its current goal.

Lemma 2.6 (An Axiomatization). Let H be a ground predicate with substitution, S a Horn rulebase with substitution, and DB a database. Then $S, DB |- H$ iff H can be inferred from the following inference system:

Axioms.
1. For every substitution $[P/Q](\gamma)$,

\[
P(\bar{x})[P/Q](\gamma) \leftrightarrow Q(\bar{x}, \gamma).
\]
2. For every substitution $[P/Q](\gamma)$ and every base predicate $B \neq P$,

\[
B(\bar{x})[P/Q](\gamma) \leftrightarrow B(\bar{x}).
\]
3. Every rule in S.
4. Every atomic formula in DB.

Inference Rules. For all predicates with substitution $\beta_0 \cdots \beta_n$,

1. For any predicate substitution $[\theta]$,

\[
\beta_0 \leftrightarrow \beta_1 \cdots \beta_n \\
\beta_{\theta} = \beta_1 \cdots \beta_n[\theta].
\]
2. For any term substitution σ,

\[
\beta_0 \leftrightarrow \beta_1 \cdots \beta_n \\
\beta_{\sigma} = \beta_1 \cdots \beta_n[\sigma].
\]
3. Modus Ponens:

\[
\begin{align*}
\beta_1 \cdots \beta_n \\
\beta_0 \rightarrow \beta_1 \cdots \beta_n \\
\beta_{0} \rightarrow \beta_{1} \cdots \beta_{n}.
\end{align*}
\]

Given a predicate H, the first inference rule effectively makes copies of the rules defining H in order to derive rules defining $H[\theta]$. The first two axioms come directly from the definition of S^1. The other axioms and inference rules are familiar from classical Horn logic: the second inference rule makes all instances of a rule available for inference, and the third rule applies rules to atomic facts to infer more atomic facts.

2.4. Basic Properties of Inference

This section develops some of the basic formal properties of the rule set S^1 defined in Section 2.2. These properties are central to the proofs of soundness and completeness given in Section 3. We first prove a compactness result for entailment with substitution. The remaining development is then divided into two subsections, each leading to a central result. In this section, as in the rest of this paper, the symbol $|-_{c}$ denotes inference in classical first-order logic.
To prove our first result, below, recall that Definition 2.4 provides four items that contribute rules to \mathcal{S}. Using this definition, each rule in \mathcal{S} can be generated as follows: First pick a rule from items 1, 3 or 4; then apply item 2 to it some number of times (possibly zero times). It follows that every rule in \mathcal{S} originates either as a rule in \mathcal{S} or as a rule described by item 3 or 4. From this observation, we get the following lemma, which is a prelude to compactness.

Lemma 2.7. Let \mathcal{S} be a (possibly infinite) set of rules with predicate substitution. If $\rho_1 \cdots \rho_n$ are rules in \mathcal{S}, then there is a finite subset \mathcal{S}_n of \mathcal{S} of cardinality at most n such that $\rho_1 \cdots \rho_n$ are all in \mathcal{S}_n.

Proof. Each rule ρ' originates as a single rule ρ'_1 from item 1, 3 or 4 of Definition 2.4, as observed above. Let $\mathcal{S}_0 = \{\rho'_1, \ldots, \rho'_n\} \cap \mathcal{S}$. Then \mathcal{S}_n is a finite subset of \mathcal{S} of cardinality at most n, as required. Furthermore, we claim that each ρ' is in \mathcal{S}_n. To see this, consider two cases. If ρ' originates from item 1 or 4, then $\rho' \in \mathcal{S}_0$, hence $\rho' \in \mathcal{S}_n$. In particular $\rho' \in \mathcal{S}_n$. On the other hand, if ρ' originates from item 1, then $\rho' \in \mathcal{S}_0$, so $\rho' \in \mathcal{S}_0$, hence $\rho' \in \mathcal{S}_n$.

Corollary 2.8 (Compactness). Suppose that $\mathcal{S} \models \rho$ where ρ is a Horn rule with substitution, and \mathcal{S} is a (possibly infinite) rulebase with substitution. Then $\mathcal{S} \models \rho$ for some finite subset \mathcal{S}_n of \mathcal{S}.

Proof. Suppose that $\mathcal{S} \models \rho$. Then, by the compactness of classical entailment, there is a finite subset, \mathcal{S}_n of \mathcal{S} such that $\mathcal{S}_n \models \rho$. By Lemma 2.7, there is a finite subset \mathcal{S}_n of \mathcal{S} such that $\mathcal{S}_n \subseteq \mathcal{S}_n$. Therefore $\mathcal{S}_n \models \rho$, and so $\mathcal{S}_n \models \rho$.

Properties I

This section shows that if $\mathcal{S} \models \rho$, then $\mathcal{S} \models \rho$ where predicates with substitution are treated as ordinary predicates of classical first-order logic. This result is used throughout this paper and is crucial to the proof of completeness in Section 3.3.

Lemma 2.9. If $\mathcal{S} \models \rho$, then $\mathcal{S} \models \rho[\theta]$, for any rule with substitution ρ and any set \mathcal{S} of Horn rules with substitution.

Proof. Suppose that $\mathcal{S} \models \rho$. Then there is a proof of ρ from some finite subset, $\{\rho_1, \ldots, \rho_n\}$, of rules in \mathcal{S}. By replacing each occurrence of ρ_i in this proof by $\rho_i[\theta]$, we obtain a proof of $\rho[\theta]$ from $\{\rho_1[\theta], \ldots, \rho_n[\theta]\}$. But each $\rho_i[\theta]$ is in \mathcal{S}. Hence $\mathcal{S} \models \rho[\theta]$.

Example 2.5. Suppose that \mathcal{S} contains the following two rules:

\[
A(x) \leftarrow B(x, y) \\
B(x, y) \leftarrow C(x, y), D(y).
\]

Then \mathcal{S} also contains the following two rules, for any P, Q and z:

\[
A(x)[P/Q](z) \leftarrow B(x, y)[P/Q](z) \\
B(x, y)[P/Q](z) \leftarrow C(x, y)[P/Q](z), D(y)[P/Q](z).
\]

By resolving the first pair of rules above, we get the following rule, which is also entailed by \mathcal{S}:

\[
A(x) \leftarrow C(x, y), D(y).
\]

Likewise, by resolving the second pair of rules above, we get the following rule, which is also entailed by \mathcal{S}:

\[
A(x)[P/Q](z) \leftarrow B(x, y)[P/Q](z), D(y)[P/Q](z).
\]

In the notation of Lemma 2.9, rule (1) is ρ, and rule (2) is $\rho[\theta]$, where θ is $[P/Q](z)$.

Lemma 2.10. If $\mathcal{S} \models \mathcal{S}$, then $\mathcal{S} \models \mathcal{S}$ where \mathcal{S} and \mathcal{S} are sets of Horn rules with substitution.

Proof. Treating \mathcal{S} as a classical first-order rulebase, let $\text{cl}(\mathcal{S})$ be the set of Horn rules classically entailed by \mathcal{S}. We call $\text{cl}(\mathcal{S})$ the “Horn closure” of \mathcal{S}. This closure has the following properties:

1. $\mathcal{S} \subseteq \text{cl}(\mathcal{S})$.
2. If $\beta \models \beta_1 \cdots \beta_n$ in $\text{cl}(\mathcal{S})$, then the rule $\beta[\theta] \models \beta_1[\theta] \cdots \beta_n[\theta]$ is in $\text{cl}(\mathcal{S})$ for every predicate substitution $[\theta]$.
3. The rule $P(x)[P/Q](y) \models Q(x, y)$ is in $\text{cl}(\mathcal{S})$ for every substitution $[P/Q](y)$.
4. The rule $B(x)[P/Q](y) \models B(x, y)$ is in $\text{cl}(\mathcal{S})$ for every base predicate $B \neq P$.

The first item follows since $\mathcal{S} \models \mathcal{S}$, by hypothesis; the second item follows from Lemma 2.9, and the last two items follow from the definition of \mathcal{S}. The set $\text{cl}(\mathcal{S})$ thus satisfies each of the four conditions in the definition of \mathcal{S}. By definition, however, \mathcal{S} is the smallest set satisfying these conditions. Thus $\mathcal{S} \subseteq \text{cl}(\mathcal{S})$. Therefore, each rule in \mathcal{S} is classically entailed by \mathcal{S}. Hence $\mathcal{S} \models \mathcal{S}$.

Corollary 2.11. If $\mathcal{S} \models \mathcal{S}$, then $\mathcal{S} \models \mathcal{S}$ where \mathcal{S} and \mathcal{S} are Horn rulebases with substitution.

Proof. Since $\mathcal{S} \subseteq \mathcal{S}$, then $\mathcal{S} \models \mathcal{S}$. But $\mathcal{S} \models \mathcal{S}$, by hypothesis. So $\mathcal{S} \models \mathcal{S}$, by Lemma 2.10.

It follows immediately that if \mathcal{S} and \mathcal{S} are classically equivalent, then so are \mathcal{S} and \mathcal{S}. Hence, Horn rulebases with substitution that are classically equivalent express exactly...
the same database queries. We thus have the following result:

Corollary 2.12. If \mathcal{S}_1 is classically equivalent to \mathcal{S}_2, then for any database DB and any predicate with substitution β,

$$\mathcal{S}_1, DB \models \beta \iff \mathcal{S}_2, DB \models \beta.$$

Properties II

This section elucidates the relationship between a predicate with substitution $\beta[\theta]$ and the simpler predicate with substitution β. In particular, it is shown that reasoning about $\beta[\theta]$ can be broken into two phases: (i) ignoring $[\theta]$ and reasoning just about β, and (ii) ignoring β and reasoning just about $[\theta]$. The precise statement of this result (Lemma 2.13) is crucial to the proof of soundness given in Section 3.3.

Lemma 2.13. Let \mathcal{S} be a set of Horn rules with substitution, and let DB be a database. If $\beta[\theta]$ is a ground predicate with substitution, then $\mathcal{S}, DB \models \beta[\theta]$ iff the following two conditions are satisfied for some (possibly empty) set of ground atomic formulas, $x_1 \ldots x_n$:

$$\mathcal{S} \models \beta[\theta] \iff x_1 \ldots x_n$$

and

$$\mathcal{S}, DB \models x_j[\theta] \quad \text{for all} \quad 1 \leq j \leq n. \quad \text{(4)}$$

Proof. The if direction is straightforward. First observe the following:

$$\mathcal{S} \models \beta[\theta] \iff x_1 \ldots x_n$$

by statement (3) and Lemma 2.9,

$$\mathcal{S} \cup DB \models x_j[\theta] \quad \text{for} \quad 1 \leq j \leq n$$

by statement (4) and Definition 2.5.

Hence, $\mathcal{S} \cup DB \models \beta[\theta]$ by classical modus ponens, and therefore $\mathcal{S}, DB \models \beta[\theta]$ by Definition 2.5.

To prove the only if direction, we need the following observations:

1. In Definition 2.4, there are four items that contribute rules to \mathcal{S}. The first item contributes rules whose heads are atomic (since each rule in \mathcal{S} has an atomic head). The third and fourth items contribute rules whose heads contain exactly one predicate substitution. Only the second item contributes rules whose heads have more than one substitution, and these rules have the form $\beta[\theta] \leftarrow \beta_1[\theta] \ldots \beta_n[\theta]$, where $\beta \leftarrow \beta_1 \ldots \beta_n$ is also a rule in \mathcal{S}.

2. A rule with substitution may have an empty premise. Using logic-programming parlance, we shall call such a rule a unit rule. A unit rule is simply a predicate with substitution.

3. In the fixpoint semantics of logic programming [1, 19], each Horn rulebase, R, has an associated operator, TR. This operator takes a set of ground atoms, I, as input and returns another set of ground atoms, $TR(I)$, as output. Starting at the empty set, and applying this operator over-and-over again, one can generate all the ground atoms that are classically entailed by R. That is, $R \models A$ if $A \in TR(I)$ for some finite k. This property remains true even if R is infinite. This is so because infinite rulebases do not change the essential properties of the operator TR; it remains monotonic and continuous. The Tarski Fixpoint Theorem [17], which is at the heart of the fixpoint semantics, can thus be applied in the usual way [1, 19].

Keeping these observations in mind, we proceed to prove the only if direction of the lemma. The main idea is to treat $\mathcal{S} \cup DB$ as a classical Horn rulebase and to exploit its associated operator, $TR \cup DB$. Suppose, therefore that $\mathcal{S}, DB \models \beta[\theta]$. Then $\mathcal{S} \cup DB \models \beta[\theta]$, by definition; so $\beta[\theta] \in TR \cup DB(\{\theta\})$ for some $k \geq 0$. We show that the lemma is true for all $\beta[\theta] \in TR \cup DB(\{\theta\})$. The proof is by induction on k. For brevity, we write T^n instead of $TR \cup DB(\{\theta\})$.

Basis. Suppose that $\beta[\theta] \in T^0$. Then $\beta[\theta]$ is a ground instance of a unit rule in $\mathcal{S} \cup DB$. This can happen in only two ways:

Case (i). $\beta[\theta] \in DB$. This case is impossible, since DB is a set of atoms whereas $\beta[\theta]$ is not atomic, since it contains the predicate substitution $[\theta]$.

Case (ii). $\beta[\theta]$ is a ground instance of a unit rule in \mathcal{S}. In this case, β is also a ground instance of a unit rule in \mathcal{S}, by observation 2 above. Thus $\mathcal{S} \models \beta$, trivially. Hence condition (3) of the lemma is satisfied with $n = 0$. Consequently, condition (4) is trivially satisfied, since the set $\{x_1, \ldots, x_n\}$ is empty.

Induction. Suppose that $\beta[\theta] \in T^n$. We must show that conditions (3) and (4) of the lemma are both satisfied. We consider two cases, depending on whether or not β is atomic:

Case (i). If β is atomic, then we are done, since

$$\mathcal{S} \models \beta \leftarrow \beta$$

3 Indeed, the Tarski Fixpoint Theorem is only needed for handling infinities. If everything is finite, as with classical Datalog, then much simpler developments exist.
and
\[\mathcal{S}, DB \models \beta[\theta]. \]

The first line has the form of condition (3), and the second line has the form of condition (4).

Case (ii). If \(\beta \) is non-atomic, then \(\beta[\theta] \) contains more than one predicate substitution. Therefore, by observation 1 above, every rule in \(\mathcal{S} \) that infers \(\beta[\theta] \) is due to item 2 of Definition 2.4.

Since \(\beta[\theta] \in T^{k+1} \), there must be a rule in \(\mathcal{S} \) that derives \(\beta[\theta] \) from \(T^k \) in one step. By item 2 of Definition 2.4, this rule has a ground instance of the form
\[\beta[\theta] \equiv \beta_1[\theta] \cdots \beta_m[\theta], \]
for some \(\beta_1, \ldots, \beta_m \), where the rule \(\beta \leftarrow \beta_1 \cdots \beta_m \) is also ground instance of a rule in \(\mathcal{S} \).

Furthermore, \(\beta_i[\theta] \in T^k \) for each \(i \). Thus, by induction hypothesis, the lemma holds for each \(\beta_i[\theta] \). There is therefore a set of ground atomic formulas, \(x'_1 \cdots x'_n \), that makes both the following statements true:
\[S^1 \models \beta_i \leftarrow x'_1 \cdots x'_n, \quad (5) \]
\[\mathcal{S}, DB \models x'_i[\theta] \quad \text{for all } 1 \leq i \leq n. \quad (6) \]

Moreover, since \(\beta \leftarrow \beta_1 \cdots \beta_m \) is a ground instance of a rule in \(\mathcal{S} \), we have \(\mathcal{S} \models \beta \leftarrow \beta_1 \cdots \beta_m \). Combining this with statement (5) gives the following:
\[\mathcal{S} \models \beta \leftarrow x_1 \cdots x_n x_1' \cdots x_n', \quad (7) \]

This statement has the form of condition (3). In addition, statement (6) has the form of condition (4). Thus, conditions (3) and (4) are both satisfied.

3. MODEL THEORY

Section 2 developed the proof theory for Horn rulebases with predicate substitution. This section develops the model theory. In this theory, rulebases without substitution are the models for rulebases with substitution. This corresponds to the intuition that rules with substitution are written by a user who has rules without substitution “in mind.” Section 3.1 develops the basic model-theoretic notions, Section 3.2 establishes the basic properties of models, and Section 3.3 shows that the proof theory developed in Section 2 is sound and complete for the model theory developed in this section.

3.1. Satisfaction, Models, and Entailment

This section develops the basic model-theoretic notions of satisfaction, model and entailment for predicate substitution. The definitions are general in that they apply to arbitrary rules with substitution, not just to Horn rules with substitution. This generality is an important element in our proof of soundness, since we will need to say what it means to be a model of \(\mathcal{S} \), not just of \(\mathcal{S} \). In addition, we shall give two equivalent definitions of “model”. One definition is used to prove soundness of the proof theory, and the other is used to prove completeness (in Sections 3.2 and 3.3).

In our model theory, an interpretation is a classical Horn rulebase. These interpretations can be compared to modal structures [7]. This is possible because a classical rulebase can be thought of semantically as a set of classical models, instead of syntactically as a set of rules. In modal logic, an interpretation has a set of states. The expression \(M, s \models \phi \) means that formula \(\phi \) is true at state \(s \) of interpretation \(M \).

In our logic, an interpretation is a classical Horn rulebase, which has a set of classical Herbrand models. These models contain all the information about the rulebase, and are analogous to the states of a modal structure. Moreover, like modal states, a classical Herbrand model is essentially a set of ground atomic formulas. We shall use databases to specify these Herbrand models. Given a classical Horn rulebase \(R \), a database \(DB \) specifies the minimal Herbrand model of \(R + DB \). Following modal terminology, we shall speak of formulas being true at a database state. To extend these ideas to predicates with substitution, we look at the classical Herbrand models of \(R' \), the closure of \(R \). The definitions below make these ideas precise.

Definition 3.1 (Interpretations). An interpretation is any set of classical Horn rules.

Definition 3.2 (Satisfaction). Let \(R \) be an interpretation, let \(DB \) be a database, and let \(\beta \) and \(\beta \) be ground predicates with substitution. Then,

\(R, DB \models \beta \) if and only if \(\beta \) is in the minimal Herbrand model of \(R' \cup DB \), (i.e., \(\models R' \cup DB \models \beta \), where \(\models \) denotes entailment in classical first-order logic.)

\(R, DB \models \beta \leftarrow \beta_1 \cdots \beta_n \) if and only if the following holds:
\[R, DB \models \beta \leftarrow \beta_1 \cdots \beta_n. \]

If \(R, DB \models \phi \) then we say that \(R \) satisfies \(\phi \) at \(DB \).

Definition 3.3 (Models). If \(R \) is an interpretation, then

\(R \) is a model of a ground rule with substitution if \(R \) satisfies the rule at every database;
\(R \) is a model of non-ground rule with substitution if \(R \) is a model of every ground instantiation of the rule;
\(R \) is a model of a set of rules with substitution if \(R \) is a model of each rule in the set.

If \(R \) is a model of \(\phi \), then we write \(R \models \phi \).
Definition 3.4 (Entailment). Let \(\mathcal{S} \) be a set of Horn rules with predicate substitution, let \(DB \) be a database, and let \(\beta \) be a ground predicate with substitution. Then \(\mathcal{S} \) entails \(\beta \) at \(DB \), written \(\mathcal{S}, DB \models \beta \), if and only if \(R, DB \models \beta \) for every model \(R \) of \(\mathcal{S} \).

Example 3.1. Suppose \(R \) is the following interpretation, where \(E, F \) and \(P \) are base predicates:

\[
\begin{align*}
B(x) & \leftarrow E(x), P(x). \\
A(x) & \leftarrow E(x), Q(x). \\
A(x) & \leftarrow Q(x), F(x, y), Q(y).
\end{align*}
\]

Then \(B(x)[P/Q] \) is defined by the following rule:

\[
B(x)[P/Q] \leftarrow E(x), Q(x).
\]

The body of this rule is identical to the body of one of the rules defining \(A(x) \). Thus, any database that makes \(B(x)[P/Q] \) true also makes \(E(x) \) and \(Q(x) \) true; so, it makes \(A(x) \) true. \(R \) is therefore a model of the rule \(A(x) \leftarrow B(x)[P/Q] \).

An Equivalent Definition

Section 3.3 uses Definition 3.3 to prove that the proof theory of Section 2 is sound. To prove completeness, however, it is convenient to use a different characterization of models. This characterization is based on Example 3.1 above. The gist of this example is the following observation:

Suppose that the following holds for any finite set of atomic formulas, \(x_1, \ldots, x_n \), and any function term, \(x \),

\[
\text{if } R^1 \models B(x)[P/Q] = x_1 \cdots x_n, \quad \text{then } R^1 \models A(x) = x_1 \cdots x_n. \tag{7}
\]

Then any database that makes \(B(x)[P/Q] \) true will also make \(A(x) \) true. Hence, \(R \) is a model of \(A(x) \leftarrow B(x)[P/Q] \).

The following theorem generalizes this observation, and replaces the if by if and only if. It is also the basis of the fixpoint semantics developed in Section 4.

Theorem 3.5. Let \(R \) be an interpretation, and let \(\beta \leftarrow \beta_1, \ldots, \beta_m \) be a rule with predicate substitution. Then \(R \) is a model of the rule iff for all finite sets of atomic formulas, \(\gamma \), and all term substitutions \(\sigma \),

\[
R^1 \models \beta \sigma \iff R^1 \models \beta_i \sigma \iff \gamma, \quad \text{for } 1 \leq i \leq m. \tag{8}
\]

This theorem is proved by the following two lemmas.

Lemma 3.6. Let \(R \) be an interpretation. If \(R \) satisfies condition \((8) \) in Theorem 3.5, then \(R \) is a model of \(\beta \leftarrow \beta_1, \ldots, \beta_m \).

Proof. Let \(DB \) be a database, and let \(\sigma \) be a term substitution that makes \(\beta \leftarrow \beta_1, \ldots, \beta_m \) ground. By Definitions 3.2 and 3.3, we must show that if \(R, DB \models \beta, \sigma \) for \(1 \leq i \leq m \), then \(R, DB \models \beta \).

Lemma 3.7. If \(R \) is a model of \(\beta \leftarrow \beta_1, \ldots, \beta_m \), then \(R \) satisfies condition \((8) \) in Theorem 3.5.

Proof. Let \(\gamma \) be a finite set of atomic formulas, and let \(\sigma \) be a term substitution. We must show that if \(R^1 \models \beta \sigma \iff \gamma \) for \(1 \leq i \leq m \), then \(R^1 \models \beta \sigma \iff \gamma \). To do this, let \(x \) be a list of all the variables in \(\gamma, \beta, \sigma \), and each \(\beta, \sigma \); and let \(\epsilon \) be a list (of the same length) of distinct skolem constants, that is,
constants that do not appear in \(R, \gamma, \beta \sigma, \) or any \(\beta, \sigma \). Note that the term substitution \(\{ x/c \} \) makes each of these formulas (except \(R \)) ground. Keeping this in mind, we have the following:

if \(R^i \models \beta, \sigma \leftarrow \gamma \) for \(1 \leq i \leq m, \) then \(R^i \models \forall \bar{x} (\beta, \sigma \leftarrow \gamma) \) since the variables in \(\bar{x} \) are universally quantified,

\[R^i \models (\beta, \sigma \rightarrow \gamma[\bar{x}/c]) \] by observation (9),

\[R^i \models \beta, \sigma[\bar{x}/c] \rightarrow \gamma[\bar{x}/c] \] by Definition 3.2, treating \(\gamma[\bar{x}/c] \) as a database,

\[R^i \models \beta[\bar{x}/c] \rightarrow \gamma[\bar{x}/c] \] by Definition 3.3, since \(R \models \beta \leftarrow \beta_1 \cdots \beta_m, \)

\[R^i \models \beta[\bar{x}/c] \rightarrow \gamma[\bar{x}/c] \] by the Deduction Theorem,

\[R^i \models (\beta \sigma \rightarrow \gamma)[\bar{x}/c] \] where the variables in \(\bar{x} \) are universally quantified.

Example 3.2 (Models). In the three examples below, \(E \) and \(P \) are base predicates.

Intermediate Predicates. The interpretation below is a model of \(A(x) \leftarrow B(x)[P/Q] \):

\[B(x) \leftarrow P(x), C(x). \]
\[C(x) \leftarrow F(x, y), P(y). \]
\[A(x) \leftarrow E(x), \{ P \}. \]

Recursion. The interpretation below is a model of \(A(x) \leftarrow A(x)[P/Q] \). A recursive rule can thus have a non-recursive model:

\[A(x) \leftarrow E(x), P(x). \]
\[A(x) \leftarrow E(x), \{ Q \}. \]

\[A(x) \leftarrow Q(x), F(x, y), \{ Q \}. \]

Function Symbols. Interpretation \(R_1 \) below is a model of \(A(z) \leftarrow B(z)[P/Q] \), but interpretation \(R_2 \) is not. Here, \(f \) is a function symbol.

\[R_1 = \{ B(f(x)) \leftarrow E(f(x), y), \{ P \}. \]
\[A(x) \leftarrow E(x, y), \{ Q \}. \]
\[R_2 = \{ B(x) \leftarrow E(f(x), y), \{ P \}. \]
\[A(x) \leftarrow E(f(x), y), \{ Q \}. \]

It is worth noting that satisfaction is not monotonic in \(R \). As the ext example shows, if \(R_1 \subseteq R_2 \), then it is not necessarily the case that if \(R_1 \models \alpha \leftarrow \beta \) then \(R_2 \models \alpha \leftarrow \beta \). This should not be surprising, since satisfaction is not generally monotonic in logical systems. For instance, in classical first-order logic, if \(s_1 \) and \(s_2 \) are Herbrand structures and \(s_1 \subseteq s_2 \), then it is not necessarily true that if \(s_1 \models \psi \) then \(s_2 \models \psi \) for an arbitrary first-order sentence \(\psi \).

Example 3.3 (Non-Monotonicity of Satisfaction). Interpretation \(R_1 \) below is a model of the rule \(A(x) \leftarrow B(x)[P/Q] \), but the larger interpretation \(R_2 \) is not:

\[R_1 = \{ B(x) \leftarrow E(x), \{ P \}. \]
\[A(x) \leftarrow E(x), \{ Q \}. \]
\[R_2 = \{ B(x) \leftarrow E(x), \{ P \}. \]
\[A(x) \leftarrow E(x), \{ Q \}. \]

3.2. Basic Properties

This section develops some of the basic formal properties of models and entailment. Lemma 3.8 is a straightforward consequence of either characterization of models—Definition 3.3 or Theorem 3.5. Lemma 3.9 is less straightforward consequence of either characterization of modelsDefinitions and features and is an immediate consequence of Lemma 3.9 and is crucial to the proof of soundness in Section 3.3.

Lemma 3.8. Let \(R \) be an interpretation, and \(\beta \) and \(\beta \) be ground predicates with substitution.

1. If \(R \models \beta \leftarrow \beta_1 \cdots \beta_n \) and \(R, DB \models \beta \), for each \(i \), then \(R, DB \models \beta \).
2. If \(R \models \beta \leftarrow \beta \) and \(R \models \beta \leftarrow \beta \) then \(R \models \beta \leftarrow \beta \).
3. If \(R \models \beta \leftarrow \beta \cdots \beta \) then \(R \models (\beta \leftarrow \beta \cdots \beta) \sigma \) for any term substitution \(\sigma \).
4. If \(R \models \beta \leftarrow \beta \cdots \beta \) then \(R \models \beta \leftarrow \beta \cdots \beta \).
5. \(R \models R \).
Lemma 3.9. Let R be an interpretation.

1. If $R \models \beta \leftarrow \beta_1 \cdots \beta_m$ then $R \models [\theta] \beta \leftarrow \beta_1[\theta] \cdots \beta_m[\theta]$, for every predicate substitution $[\theta]$.

2. $R \models P(x)[P/Q][\bar{y}] \leftarrow \bar{Q}(x, \bar{y})$ for every predicate substitution $[P/Q][\bar{y}]$ and every basic predicate symbol $B \neq P$.

3. $R \models B(\bar{x})[P/Q][\bar{y}] \leftarrow B(\bar{x})$ for every predicate substitution $[P/Q][\bar{y}]$ and every basic predicate symbol $B \neq P$.

Proof. R is a model of R^1, by Lemma 3.8. Thus R is a model of the rules $P(x)[P/Q][\bar{y}] \leftarrow \bar{Q}(x, \bar{y})$ and $B(\bar{x})[P/Q][\bar{y}] \leftarrow B(\bar{x})$, since they are in R^1, by Definition 2.4. This proves items 2 and 3. To prove item 1, assume that R is a model of the rule $\beta \leftarrow \beta_1 \cdots \beta_m$. We first prove the ground case, i.e., when β, β_1, and $[\theta]$ are all ground. With this in mind, let DB be a database, and suppose that $R, DB \models \beta[\theta]$ for each $1 \leq i \leq m$. We must show that $R, DB \models \beta[\theta]$. To prove this, we first apply Lemma 2.13 to $\beta[\theta]$ for each i. By this lemma, there is a set of ground atomic formulas, $\alpha_1 \cdots \alpha_n$, such that

$$R^1 \mid \vdash \beta_i \leftarrow \alpha_1 \cdots \alpha_n$$

and

$$R, DB \models \alpha_i[\theta] \text{ for each } i$$

Therefore,

$$R^1 \cup \{ \alpha_1 \cdots \alpha_n \} = \beta_i$$

by (10) and the Deduction Theorem,

$$R^1 \cup \{ \alpha_1 \cdots \alpha_n, \beta_1 \alpha_1 \cdots \alpha_n, \cdots, \beta_m \alpha_1 \cdots \alpha_n \} = \vdash \beta_i$$

by monotonicity,

$$R, \{ \alpha_1 \cdots \alpha_n, \beta_1 \alpha_1 \cdots \alpha_n, \cdots, \beta_m \alpha_1 \cdots \alpha_n \} \models \beta_i$$

by Definition 3.2,

$$R, \{ \alpha_1 \cdots \alpha_n, \beta_1 \alpha_1 \cdots \alpha_n, \cdots, \beta_m \alpha_1 \cdots \alpha_n \} \models \beta$$

by Definition 3.2, since $R \models \beta \leftarrow \beta_1 \cdots \beta_m$.

$$R^1 \cup \{ \alpha_1 \cdots \alpha_n, \alpha_1 \alpha_2 \cdots \alpha_n, \cdots, \alpha_1 \alpha_m \alpha_n \} = \beta$$

by Definition 3.2,

$$R^1 \mid \vdash \beta \leftarrow \alpha_1 \cdots \alpha_n$$

by the Deduction Theorem,

$$R, DB \models \beta[\theta]$$

by Lemma 2.13 and Statement (11).

This proves item 1 for the ground case. It therefore proves item 1 for all ground instantiations of any rule and any predicate substitution. This in turn proves item 1 for all rules and all predicate substitutions, by Definition 3.3.

Items 1, 2 and 3 in Lemma 3.9 correspond respectively to items 2, 3 and 4 in Definition 2.4. This gives the following result, upon which soundness is based.

Corollary 3.10. Let R be an interpretation, and \mathcal{S} be a Horn rulebase with substitution. If $R \models \mathcal{S}$ then $R \models \mathcal{S}'$.

Proof. Let $\mathcal{S}(R)$ be the set of rules with substitution modelled by R, including both Horn and non-Horn rules. Thus $\mathcal{S}(R) = \{ \rho \mid R \models \rho \}$. By assumption, $\mathcal{S}' \subseteq \mathcal{S}(R)$, so $\mathcal{S}(R)$ satisfies item 1 in Definition 2.4, and by Lemma 3.9, $\mathcal{S}(R)$ satisfies the other three items in Definition 2.4. But \mathcal{S}' is defined to be the smallest set satisfying all four of these items. Hence $\mathcal{S}' \subseteq \mathcal{S}(R)$, that is, $R \models \mathcal{S}'$.

3.3. Soundness and Completeness

This section shows that the proof theory of Section 2 is sound and complete with respect to the model theory of Section 3.

Theorem 3.11 (Soundness and Completeness). Suppose β is a ground predicate with substitution, \mathcal{S} is a Horn rulebase with substitution, and DB is a database. Then,

$$\mathcal{S}, DB \models \beta \iff \mathcal{S}, DB \models \beta.$$

Completeness: We first prove the only if direction of Theorem 3.11. To do this, we define a rulebase, $R_{\mathcal{S}}$, called the canonical model of \mathcal{S}. This model, defined proof-theoretically, provides the necessary link between the proof theory and model theory. Completeness follows from the basic properties of this model.

Definition 3.12. If \mathcal{S} is a set of Horn rules with substitution, then $R_{\mathcal{S}}$ is the set of Horn rules that are classically entailed by \mathcal{S}'. That is,

$$R_{\mathcal{S}} = \{ \pi \models \alpha \mid \alpha \models \pi \models \alpha \}$$

where α and π are atomic formulas.

Lemma 3.13. $\mathcal{S}' \models R_{\mathcal{S}}$.

Proof. Follows immediately from Lemma 2.10, since $\mathcal{S}' \models R_{\mathcal{S}}$.

Lemma 3.14. $R_{\mathcal{S}}$ is a model of \mathcal{S}.

Proof. The proof is based on the characterization of models given in Theorem 3.5. Let γ be a finite set of atomic formulas, and σ a term substitution. If $\pi \models \beta_1 \cdots \beta_n$ is a rule in \mathcal{S}, then it is also in \mathcal{S}', so $\mathcal{S}' \models (\pi \leftarrow \beta_1 \cdots \beta_n) \sigma$. Keeping this in mind, we have the following:
Theorem 3.11. To do this, recall that if DB is a database, and β is a ground predicate with substitution.

Lemma 3.15. If R_β, $DB \models \beta$ then \mathcal{A}, $DB \models \beta$, where DB is a database, and β is a ground predicate with substitution.

Proof: if R_β, $DB \models \beta$
then $R_\beta \cup DB \models \beta$ by Definition 3.2,
$R_\beta \cup DB \models \beta$ by Lemma 3.13,
$\mathcal{A} \cup DB \models \beta$ by classical completeness,
\mathcal{A}, $DB \models \beta$ by Definition 2.5.

Completeness follows immediately. By Definition 3.4, if \mathcal{A}, $DB \models \beta$ then R, $DB \models \beta$ for any model R of \mathcal{A}. In particular, R_β, $DB \models \beta$ by Lemma 3.14. Hence \mathcal{A}, $DB \models \beta$ by Lemma 3.15.

Soundness. We now prove the if direction of Theorem 3.11. To do this, recall that if \mathcal{A}, $DB \models \beta$ then $\mathcal{A} \cup DB \models \beta$, by Definition 2.5. In using classical inference, the predicates with substitution in \mathcal{A} are treated as ordinary predicates of first-order classical logic. Thus, for purposes of inference, \mathcal{A} is an (infinite) classical Horn rulebase. β can therefore be derived by the following inference system for Horn rulebases:

Axioms. π is an axiom, for each atomic formula π in DB.

Inference Rules.

Let $\beta \equiv \beta_1 \cdots \beta_m$ be a ground instance of a rule in \mathcal{A}.
If β_i is derivable for each i, then β is also derivable.

To prove the soundness of inference, it is sufficient to prove the following lemma, which states that the axioms and inference rules of the above system are sound.

Lemma 3.16. 1. \mathcal{A}, $DB \models \pi$ for each atomic formula π in DB.

This section develops the fixpoint semantics of Horn rules with predicate substitution, following the tradition of classical logic programming [1, 19]. A main result is that a Horn rulebase with substitution has a unique minimal model. As in classical Horn logic, the minimal model can be viewed as the user’s “intended model”, a model that he could have written if he had the time, space and inclination. Another result is that the minimal model can be constructed in a bottom-up, iterative fashion by the repeated application of a monotonic and continuous “T-operator.” As in classical Horn logic, the T-operator is defined on a lattice of interpretations. However, while the T-operator of classical logic essentially maps databases to databases, the T-operator developed here maps Horn rulebases to Horn rulebases. In effect, predicate substitution elevates Horn rules to the meta-level: Whereas they are normally a specification language, they are now the objects being specified.

Given a Horn rulebase with substitution, \mathcal{A}, each application of the T-operator “unfolds” the rules in \mathcal{A} into classical Horn rules. As the operator is applied again and again, more and more unfolding occurs. In this way, the specification of a Horn rulebase is gradually unfolded into the Horn rulebase itself. If \mathcal{A} is non-recursive, then the unfolding process is similar to macro expansion, terminating after a finite number of steps; but if \mathcal{A} is recursive, then the unfolding process may go on indefinitely. However, because the T-operator is continuous, the process converges to the minimal model, so that each Horn rule in the minimal model is generated after a finite (though possibly unbounded) number of steps.

Section 4.1 develops the lattice of interpretations, and shows that it is complete. Section 4.2 defines the T-operator for this lattice, and shows that it is monotonic and continuous, and thus has a least fixpoint. Finally, Section 4.3 illustrates the bottom-up computation of least fixpoints using the T-operator, including the generation of infinite fixpoints.

Example 4.1 (Minimal Models). Suppose that \mathcal{A} and \mathcal{B} are the following Horn rulebases with substitution, where E, F and P are base predicates:
classical Horn rules in S model, these are the modified to produce rules defining B.

In each model, the rules defining B are the set of all Horn rules. This understanding simplifies the presentation that follows.

Then each of the following Horn rulebases is a model of \mathcal{S}_1, but only R_2 is a model of \mathcal{S}_2. In addition, R_1 is the minimal model of \mathcal{S}_1, and R_3 is the minimal model of \mathcal{S}_2.

$$\begin{align*}
\mathcal{S}_1 &= \left\{ \begin{array}{l}
B(x) \leftarrow E(x), P(x), \\
A(x) \leftarrow B(x)[P, Q]
\end{array} \right\} \\
\mathcal{S}_2 &= \left\{ \begin{array}{l}
B(x) \leftarrow E(x), P(x), \\
A(x) \leftarrow B(x)[P, Q], \\
A(x) \leftarrow F(x, y), P(x), P(y).
\end{array} \right\}
\end{align*}$$

In each model, the rules defining $B(x)$ are reused and modified to produce rules defining $A(x)$. In the minimal model, these are the only rules defining A. In addition, classical Horn rules in \mathcal{S}_1 are the only rules defining B in the minimal model. The minimal model thus contains no superfluous rules.

4.1. The Lattice of Horn Rulebases

A central feature of any fixpoint semantics is a lattice of interpretations. In the case of predicate substitution, each lattice element is an equivalence class of classical Horn rulebases (finite or infinite). Two Horn rulebases are in the same equivalence class if and only if they are classically equivalent. For simplicity, we shall speak as if lattice elements were individual Horn rulebases. In effect, we use individual members of an equivalence class to denote the entire class. We shall therefore say that the least element of the lattice is the empty rulebase, and the greatest element is the set of all Horn rules. This understanding simplifies the presentation that follows.

Lemma 4.1. The set of all classical Horn rulebases is a complete lattice under the following operations:

1. Since classical entailment is transitive and reflexive, it is a partial order.
2. We must show that $\bigcup \mathcal{A}$ is the least upper bound of the elements in \mathcal{A} under the partial order \sqsupseteq. Clearly it is an upper bound. To show that it is minimal, suppose that R_0 is an arbitrary upper bound, that is, $R_0 \sqsupseteq R$ for every R in \mathcal{A}. Then $R_0 \models R$ for every R in \mathcal{A}. Thus $R_0 \models \bigcup \mathcal{A}$, so $R_0 \models \bigcup \mathcal{A}$. Hence $\bigcup \mathcal{A}$ is minimal.
3. We must show that $\bigcap \mathcal{A}$ is the greatest lower bound of the elements in \mathcal{A}. Clearly it is a lower bound. To show that it is maximal, suppose that R_0 is an arbitrary lower bound. Then,

$$\begin{align*}
R &\models R_0 & \text{for every } R \in \mathcal{A} \\
R &\models R_0 & \text{for every } R \in \mathcal{A} \\
R_0 &\models \bigcap_{R \in \mathcal{A}} \{ \rho \mid R \models \rho \} & \text{for every } R \in \mathcal{A} \\
R_0 &\models \bigcap \mathcal{A} \\
\bigcap \mathcal{A} &\models R_0 \\
\bigcap \mathcal{A} &\sqsubseteq R_0
\end{align*}$$

Thus, $\bigcap \mathcal{A}$ is the greatest lower bound. □

In general, $R_1 \cap R_2 \neq R_1 \cap R_2$. For instance,

if $R_1 = \{ A \leftarrow P, P \leftarrow B \}$ and $R_2 = \{ A \leftarrow Q, Q \leftarrow B \}$ then $R_1 \cap R_2 = \{ A \leftarrow B \}$ and $R_1 \cap R_2 = \{ \}$. The following basic result shows that rulebases higher in the lattice satisfy more formulas.

Lemma 4.2. If $R_2 \sqsupseteq R_1$ and $R_1, DB \models \beta$ then $R_2, DB \models \beta$, for any database DB, and any ground predicate with substitution β.

Proof. Suppose that $R_2 \sqsupseteq R_1$. Then $R_2 \models R_1$, so $R_2 \models R_2 \supseteq R_1$. By Corollary 2.11. Hence,

if $R_1, DB \models \beta$ then $R_2, DB \models \beta \models \beta$ by definition

$R_2, DB \models \beta \models \beta$ since $R_2 \models R_2$ and $R_2 \models R_1$.

4.2. The T operator

Another central feature of any fixpoint semantics is a “T operator,” which takes one lattice element as input and returns another lattice element as output. The T operator provides a way of “moving” from point to point within the lattice. Each Horn rulebase with substitution \mathcal{S}, has its own
operator, \(T_\varphi\). An important property of this operator is that the fixpoints of \(T_\varphi\) are exactly the models of \(\varphi\), thus providing a link between the fixpoint theory and the model theory.

\(T_\varphi\) maps each classical Horn rulebase \(R\) to another classical Horn rulebase \(T_\varphi(R)\). In the simplest case, if \(\varphi\) contains the Horn rule \(A \leftarrow B\), and if \(\varphi\) contains the rule \(B \leftarrow C\), then \(T_\varphi(R)\) contains the rule \(A \leftarrow C\). Of course, \(\varphi\) may also contain rules with substitution, such as \(A \leftarrow B[P/Q]\). In this case, \(R^1\) provides the rules defining \(B[P/Q]\). If \(R^1 \vdash \neg B[P/Q] \lor C\), then \(T_\varphi(R)\) contains the rule \(A \leftarrow C\). Notice that we ask about the rules entailed by \(R^1\), and not just about the rules in \(R^1\). This allows the rules premises in \(R^1\) to be expanded until they are atomic. The next definition formalizes these considerations. It should be compared to the characterization of models given in Theorem 3.5. Much of the development in this section depends on that theorem.

Definition 4.3 (T Operator). If \(\varphi\) is a Horn rulebase with substitution, then \(T_\varphi\) is a mapping from classical Horn rulebases to classical Horn rulebases. In particular, for each classical Horn rulebase, \(R\),

\[T_\varphi(R) = \bigcup_n \{x \sigma \leftarrow \gamma | \text{for some rule } x \leftarrow \beta_1, \ldots, \beta_n \text{ in } \varphi, R^1 \vdash \beta_i \sigma \leftarrow \gamma \text{ for all } 1 \leq i \leq n\}\]

where the union is over all term substitutions \(\sigma\), and each \(\gamma\) is a finite set of atomic formulas.

Intuitively, the operator \(T_\varphi\) "unfolds" the rules with substitution in \(\varphi\) and converts them into classical Horn rules, just as the operator \(T_R\) of classical Horn logic "unfolds" the Horn rules in \(R\) and converts them into atoms. The basic result following shows that the operator \(T_\varphi\) maps equivalent rulebases onto equivalent rulebases. (This property is essential since each lattice element is actually an equivalence class of Horn rulebases.)

Lemma 4.4. If \(R_1 \equiv R_2\) then \(T_\varphi(R_1) \equiv T_\varphi(R_2)\).

Proof. In fact, we shall prove that \(T_\varphi(R_1) = T_\varphi(R_2)\). If \(R_1 \equiv R_2\), then \(R_1\) and \(R_2\) are classically equivalent, and so by Corollary 2.11, \(R_1^1\) and \(R_2^1\) are classically equivalent too. Thus, referring to Definition 4.3, \(R_1^1\) classically entails \(\beta_i \sigma \leftarrow \gamma\) iff \(R_2^1\) does. Hence \(T_\varphi(R_1) = T_\varphi(R_2)\).

A fixpoint of \(T_\varphi\) is a classical Horn rulebase \(R\) such that \(R \supseteq T_\varphi(R)\). The following result says that the fixpoints of \(T_\varphi\) are exactly the models of \(\varphi\).

Lemma 4.5. \(R \models \varphi\) iff \(R \supseteq T_\varphi(R)\).

Proof. In the if direction, suppose that \(R \models \varphi\). To prove this, suppose that \(x \leftarrow \beta_1, \ldots, \beta_n\) is a rule in \(\varphi\). Then, for any term substitution \(\sigma\), and any finite set of atomic formulas, \(\gamma\),

\[
\text{if } R^1 \models \beta_i \sigma \leftarrow \gamma \quad \text{for each } i
\]

\[
\text{then } R \models \varphi \models \sigma \leftarrow \gamma \quad \text{in } T_\varphi(R) \quad \text{by Definition 4.3}
\]

\[
R \models \varphi \models \sigma \leftarrow \gamma \quad \text{since } R \models \varphi \models T_\varphi(R).
\]

Thus \(R \models x \leftarrow \beta_1, \ldots, \beta_n\) by Theorem 3.5. This is true for any rule in \(\varphi\). Hence \(R \models \varphi\).

In the only if direction, suppose that \(R \models \varphi\). We must show that \(R \models \varphi \models T_\varphi(R)\). Then, for some rule \(x \leftarrow \beta_1, \ldots, \beta_n\) in \(\varphi\),

\[
R^1 \models \varphi \models \sigma \leftarrow \gamma
\]

for each \(i\), by Definition 4.3. Furthermore, \(R \models \varphi\) by hypothesis, so

\[
R \models x \leftarrow \beta_1, \ldots, \beta_n
\]

Combining these two statements, we get \(R^1 \models \varphi \models \sigma \leftarrow \gamma\) by Theorem 3.5. Thus, \(R \models \varphi \models \sigma \leftarrow \gamma\) by Definition 2.4, since \(\varphi \models \sigma \leftarrow \gamma\) is a classical Horn rule. Therefore \(R\) classically entails every rule in \(T_\varphi(R)\). Hence \(R \models \varphi \models T_\varphi(R)\).

Monotonicity.

We now show that the operator \(T_\varphi\) is monotonic. If the input to the operator increases, then so does the output. Because it is monotonic, the operator has a least fixpoint \(\text{fix}(T_\varphi)\), which is also the unique minimal model of the rulebase \(\varphi\). We show that the minimal model is canonical in that the formulas satisfied in this model are exactly the formulas entailed by \(\varphi\).

Lemma 4.6 (Monotonicity). If \(R_1 \supseteq R_2\) then \(T_\varphi(R_1) \supseteq T_\varphi(R_2)\).

Proof. Suppose that \(R_1 \models \varphi\). We show that \(T_\varphi(R_1) \subseteq T_\varphi(R_2)\). First note that \(R_1^1 \models \varphi\) by Corollary 2.11. Thus, referring to Definition 4.3,

\[
\text{if } \varphi \models x \sigma \leftarrow \gamma \text{ iff } R_1^1 \models x \leftarrow \beta_i \sigma \leftarrow \gamma \text{ iff } T_\varphi(R_1) \models \beta_i \sigma \leftarrow \gamma
\]

\[
\text{then } R_1^1 \models \varphi \models x \sigma \leftarrow \gamma \quad \text{for some rule } x \leftarrow \beta_i, \ldots, \beta_n\text{ in } \varphi, \text{by Definition 4.3,}
\]

\[
R_1^1 \models \varphi \models \sigma \leftarrow \gamma \quad \text{since } R_1^1 \models \varphi, R_2,
\]

\[
\varphi \models x \leftarrow \beta_i, \ldots, \beta_n \text{ in } \varphi.
\]

Thus every rule in \(T_\varphi(R_2)\) is also in \(T_\varphi(R_1)\).
Since $T_\mathcal{F}$ is a monotonic operator on a complete lattice, it has a least fixpoint, as stated in the following lemma. This result is due to Tarski [17].

Theorem 4.7 (Least Fixpoint). The operator $T_\mathcal{F}$ has a least fixpoint $\text{lfp}(T_\mathcal{F})$. That is, $\text{lfp}(T_\mathcal{F}) \leq R$ for all fixpoints R of $T_\mathcal{F}$.

As the following corollary shows, the least fixpoint of $T_\mathcal{F}$ is a canonical model of \mathcal{F} in that the database queries satisfied in this model are exactly the queries entailed by \mathcal{F}.

Corollary 4.8. Let \mathcal{F} be a Horn rulebase with substitution, β be a ground predicate with substitution, and DB be a database. Then

$$\mathcal{F}, DB \models \beta \iff \text{lfp}(T_\mathcal{F}), DB \models \beta.$$

Proof. In the only if direction, suppose that $\mathcal{F}, DB \models \beta$. Then $R, DB \models \beta$ for all models R of \mathcal{F}. In particular $\text{lfp}(T_\mathcal{F}), DB \models \beta$ since $\text{lfp}(T_\mathcal{F})$ is a model of \mathcal{F}. In the if direction, suppose that $\text{lfp}(T_\mathcal{F}), DB \models \beta$. Then, $R, DB \models \beta$ for all models $R \geq \text{lfp}(T_\mathcal{F})$, by Lemma 4.2.

Let k be the maximum of the k_i’s. Then $R_i \leq R_k$ by hypothesis, so $R_i \models \beta$. Thus $R_i^+ \models R_i^+$ by Corollary 2.11. Hence $R_i^+ \models \beta, \sigma \leftarrow \gamma$ for each i, by (12). But $x \leftarrow \beta_1, \cdots, \beta_n$ is a rule in \mathcal{F}. Thus $\exists \sigma \leftarrow \gamma$ is in $T_\mathcal{F}(R_k)$ by Definition 4.3. Hence $\exists \sigma \leftarrow \gamma$ is in $\bigcup_i T_\mathcal{F}(R_i)$, that is, in $\bigcup_i T_\mathcal{F}(R_i)$.

We have thus shown that every rule in $T_\mathcal{F}(\bigcup_i R_i)$ is also in $\bigcup_i T_\mathcal{F}(R_i)$. Thus $T_\mathcal{F}(\bigcup_i R_i) \subseteq \bigcup_i T_\mathcal{F}(R_i)$, and so $T_\mathcal{F}(\bigcup_i R_i) = \bigcup_i T_\mathcal{F}(R_i)$.

The following standard definitions define $T^\mathcal{F}(R)$, which is the result of repeatedly applying the operator $T_\mathcal{F}$ to R.

Definition 4.11. Let \mathcal{F} be a Horn rulebase with substitution, and let R be a classical Horn rulebase. Then,

- $T^\mathcal{F}(R) = R$
- $T^\mathcal{F}_1(R) = T^\mathcal{F}_1(R)$
- $T^\mathcal{F}_0(R) = \bigcup_{i \geq 0} T^\mathcal{F}_i(R)$.

Starting from the empty rulebase $\{\}^\dagger$, the operator $T_\mathcal{F}$ produces a sequence of larger and larger Horn rulebases $T^\mathcal{F}(\{\}), T^\mathcal{F}_1(\{\}), T^\mathcal{F}_2(\{\}), \ldots$. The main result of this section is that this sequence converges to the least fixpoint of $T_\mathcal{F}$, as stated in the next lemma. This result follows from the monotonicity and continuity of the operator $T_\mathcal{F}$, as originally shown by Tarski [17].

Theorem 4.12. $T^\mathcal{F}(\{\}) = \text{lfp}(T_\mathcal{F})$.

To start a least fixpoint computation, we must compute $T^\mathcal{F}(\{\})$. This is a relatively easy computation. As the next lemma shows, $T^\mathcal{F}(\{\})$ extracts the classical Horn rules from \mathcal{F}. It may also convert some rules with substitution into rules without substitution, but these rules are unlikely to be in \mathcal{F} in the first place. For instance, the rule $A(x) \leftarrow P(x) \leftarrow Q(x)$ is unlikely to be in \mathcal{F}, since the programmer would probably have used the rule $A(x) \leftarrow Q(x)$ instead.
would be in $T_{\mathcal{F}}(\{ \})$, i.e., $T_{\mathcal{F}}$ would “unfold” the given rule into a Horn rule.

Lemma 4.13. The classical Horn rules in \mathcal{F} are also in $T_{\mathcal{F}}(R)$, for any R.

Proof. Let $\alpha \leftarrow \beta_1 \cdots \beta_n$ be a classical Horn rule in \mathcal{F}. Then each β_i is an atomic formula. Thus, $\beta_1 \cdots \beta_n$ can play the role of γ in Definition 4.3. To do this, first note that $\beta_1 \leftarrow \beta_1 \cdots \beta_n$ is a classical tautology, for each i, and so $R^i \models \gamma \leftarrow \beta_1 \cdots \beta_n$. Thus, from Definition 4.3, it follows that $\alpha \leftarrow \beta_1 \cdots \beta_n$ is in $T_{\mathcal{F}}(R)$, by using $\gamma = \beta_1 \cdots \beta_n$ and using the empty substitution for σ. \hfill \square

4.3. Examples

As shown in the previous section, the minimal model of a Horn rulebase with substitution, \mathcal{F}, can be generated by applying the operator $T_{\mathcal{F}}$ over and over again. With each application of the operator, substitution rules in \mathcal{F} are expanded into classical Horn rules. The first application of $T_{\mathcal{F}}$ simply extracts the classical Horn rules in \mathcal{F}. The second application combines these classical Horn rules with substitution rules in \mathcal{F} to generate new classical Horn rules. The process then repeats: Each application of the operator generates new classical Horn rules, which are then combined with substitution rules in \mathcal{F} to produce still more classical Horn rules. If at any point, no new Horn rules are generated, then the minimal model has been reached. The examples of this section illustrate the step-by-step expansion of substitution rules into classical Horn rules. The last two examples, 4.4 and 4.5, show two ways in which a finite set of Horn rules with substitution can be expanded into an infinite set of classical Horn rules. Example 4.4 uses function symbols to generate an infinite set of rules, each of fixed length. Example 4.5 uses no function symbols, but generates longer and longer rules.

Example 4.2. Suppose \mathcal{F} consists of the following three rules:

\[
\begin{align*}
A(x) &\leftarrow B(x), C(x). \\
A(x) &\leftarrow D(x, y), C(x), C(y). \\
A'(x) &\leftarrow A(x)[C/C']
\end{align*}
\]

where B, C and D are base predicates. It then takes two applications of the operator $T_{\mathcal{F}}$ to generate the minimal model of \mathcal{F}. That is, \(\text{lfp}(T_{\mathcal{F}}) = T_{\mathcal{F}}^2(\{ \}) \). This model consists of four Horn rules, generated as follows:

\[
\begin{align*}
A(x) &\leftarrow B(x), C(x). \\
A(x) &\leftarrow D(x, y), C(x), C(y). \\
A'(x) &\leftarrow B(x), C(x). \\
A'(x) &\leftarrow D(x, y), C(x), C(y).
\end{align*}
\]

Typically, not all the substitution rules in \mathcal{F} will be applicable during each application of the operator $T_{\mathcal{F}}$. At first, only a few substitution rules may be applicable. However, as more and more classical Horn rules are generated, more and more substitution rules become available for conversion into classical Horn rules. This is illustrated by the following propositional example.

Example 4.3. Suppose \mathcal{F} consists of the following $n + 1$ rules:

\[
\begin{align*}
A_1 &\leftarrow B_1, B_2, B_3 \cdots B_n. \\
A_2 &\leftarrow A_1[B_1/C_1]. \\
A_3 &\leftarrow A_2[B_2/C_2]. \\
\vdots \\
A_{n+1} &\leftarrow A_n[B_n/C_n]
\end{align*}
\]

where each B_i and C_i is a base predicate. It then takes $n + 1$ applications of the operator $T_{\mathcal{F}}$ to generate the minimal model of \mathcal{F}. That is, \(\text{lfp}(T_{\mathcal{F}}) = T_{\mathcal{F}}^{n+1}(\{ \}) \). This model consists of $n + 1$ classical Horn rules, generated as follows:

\[
\begin{align*}
A_1 &\leftarrow B_1, B_2, B_3 \cdots B_n. \\
A_2 &\leftarrow C_1, B_2, B_3 \cdots B_n. \\
A_3 &\leftarrow C_1, C_2, B_3 \cdots B_n. \\
\vdots \\
A_{n+1} &\leftarrow C_1, C_2, C_3 \cdots C_n.
\end{align*}
\]

In general, when there is recursion through substitution, the minimal model of \mathcal{F} will be infinite, and generating this model will require an infinite number of iterations of the operator $T_{\mathcal{F}}$.

Example 4.4. Suppose \mathcal{F} consists of the following three rules:

\[
\begin{align*}
A(x) &\leftarrow B(x, a), B(x, b), B(x, c). \\
A(x) &\leftarrow A(x)[B/B']. \\
B'(x, y) &\leftarrow B(x, fy)
\end{align*}
\]

where B is a base predicate, and f is a unary function symbol. Note that the second rule involves recursion through substitution. This recursive rule has the following consequence, for any integer $i \geq 1$, and any function terms u and w,

\[
\begin{align*}
A_{n+1}(\{ \}) &\models A(x) \leftarrow B(x, u), B(x, v), B(x, w). \\
\text{then } T_{\mathcal{F}}^{n+1}(\{ \}) &\models A(x) \leftarrow B'(x, u), B'(x, v), B'(x, w). \\
\text{and } T_{\mathcal{F}}^{n+1}(\{ \}) &\models B'(x, y) \leftarrow B(x, fy) \\
\text{hence } T_{\mathcal{F}}^{n+1}(\{ \}) &\models A(x) \leftarrow B(x, fu), B(x, fv), B(x, fw).
\end{align*}
\]
Thus, since the rule $A(x) \leftarrow B(x, a), B(x, b), B(x, c)$ is in \mathcal{S},

$T^+_\mathcal{S} \{ \} \models A(x) \leftarrow B(x, a), B(x, b), B(x, c)$.

$T^+_\mathcal{S} \{ \} \models A(x) \leftarrow B(x, f a), B(x, f b), B(x, f c)$.

$T^+_\mathcal{S} \{ \} \models A(x) \leftarrow B(x, f^2 a), B(x, f^2 b), B(x, f^2 c)$.

\ldots $T^+_\mathcal{S} \{ \} \models A(x) \leftarrow B(x, f^i a), B(x, f^i b), B(x, f^i c)$.

Thus, an infinite set of classical Horn rules is built up one rule at a time by reusing and modifying the seed rule $A(x) \leftarrow B(x, a), B(x, b), B(x, c)$ an infinite number of times.

Example 4.4 shows how a finite rulebase with substitution can represent an infinite rulebase without substitution. In this case, the use of function symbols was crucial. In contrast, the next example shows that an infinite minimal model is possible even without function symbols. Intuitively, infiniteness comes about because the length of the rules in the minimal model is unbounded: each application of the T-operator generates longer and longer rules. In this respect, Datalog with substitution is different from classical Datalog, for which the minimal model is always finite.

Example 4.5. Suppose \mathcal{S} consists of the following three rules:

$A(x) \leftarrow P(x)$

$A(x) \leftarrow A(x)[P/Q]$

$Q(y) \leftarrow B(x, y), P(y)$.

where B and P are base predicates. Note that the second rule involves recursion through substitution. This recursive rule has the following consequence, for any integer $i \geq 1$, and any sequence of variables $x_1, x_2, \ldots, x_i, x_{j+1}$.

if $T^+_\mathcal{S} \{ \} \models A(x_1) \leftarrow B(x_1, x_2) \cdots B(x_{j-1}, x_j), P(x_j)$,

then $T^+_\mathcal{S} \{ \} \models A(x_1) \leftarrow B(x_1, x_2) \cdots B(x_{j-1}, x_j), Q(x_j)$.

and $T^+_\mathcal{S} \{ \} \models Q(x) \leftarrow B(x, y), P(y)$.

hence $T^+_\mathcal{S} \{ \} \models A(x_1) \leftarrow B(x_1, x_2) \cdots B(x_{j-1}, x_j), B(x_j, x_{j+1}), P(x_{j+1})$. Thus, since the rule $A(x) \leftarrow P(x)$ is in \mathcal{S},

$T^+_\mathcal{S} \{ \} \models A(x_1) \leftarrow P(x_1)$.

$T^+_\mathcal{S} \{ \} \models A(x_1) \leftarrow B(x_1, x_2), P(x_2)$.

$T^+_\mathcal{S} \{ \} \models A(x_1) \leftarrow B(x_1, x_2), B(x_2, x_3), P(x_3)$.

\ldots

Thus, the rules in $T^+_\mathcal{S} \{ \} \models$ test the database for “B chains” of length i. Each application of the operator $T^+_\mathcal{S}$ takes a rule that tests for chains of length i and transforms it into a rule that tests for chains of length $i+1$. In this way, an infinite set of classical Horn rules is built up, one rule at a time, by reusing and modifying the seed rule $A(x) \leftarrow P(x)$ an infinite number of times.

5. DATALOG WITH SUBSTITUTION

So far, the development in this paper has been general in that rules and databases could be infinite and could contain arbitrary function terms. In the rest of the paper, we focus on a special case: the finite, function-free Horn case. This is the case of most importance for database applications. Thus, from now on, databases are finite, and all function terms are either constant symbols or variables. In database parlance, this is called the Datalog restriction. We shall use the word “Datalog” as a synonym for “function-free Horn,” and we shall refer to classical Datalog rules and to Datalog rules with substitution.

This section develops a specialized fixpoint semantics for Datalog rules with substitution. Unlike the semantics developed earlier, the value of this semantics is not conceptual, but computational: it is a technical device needed to establish the upper complexity bound in Section 6. The model theory and fixpoint theory developed in the previous two sections are the starting point for our proof of this upper bound. This section puts that semantics into a form that is computationally tractable, and in which the minimal model is always finite.

If we combine Corollary 4.8 and Theorem 4.12, then we get the following result:

$\mathcal{S}, DB \models \beta$ iff $T^+_\mathcal{S} \{ \} \subset DB \models \beta$. (14)

Thus, instead of using the rulebase with substitution, \mathcal{S}, to answer queries, we can use its minimal model, $T^+_\mathcal{S} \{ \}$. This model is a set of classical Horn rules. In principle, we can construct this set by starting with the empty set, $\{ \}$,
and applying \(T_\varphi \) to it over and over again until saturation is reached, i.e., until there are no more changes. Unfortunately, the minimal model may be infinite and thus impossible to materialize, even in the function-free case, as Example 4.5 showed.

To overcome this difficulty, this section develops a ground version of the fixpoint theory. To answer queries about a particular database, we shall not use the minimal model of \(\mathcal{S} \). Instead, we shall use its ground instantiation. Section 6 will show that this instantiation is a finite set of ground Datalog rules of exponential size. To construct these rules, we do not use \(T_\varphi \), but a simpler operator that can be thought of as the “ground instantiation” of \(T_\varphi \). Although the least fixpoint of this new operator is finite, it is conceptually different from the least fixpoint of \(T_\varphi \). Both fixpoints are sets of classical Horn rules. However, the least fixpoint of \(T_\varphi \) is the intended model of \(\mathcal{S} \), that is, a set of rules that the user had in mind. In contrast, the least fixpoint of the new operator changes each time the database changes, and thus does not behave like a user-specified rulebase. However, because this least fixpoint is finite, it provides a means of answering queries.

The development is divided into three parts. First, Section 5.1 shows that for a given database, a rulebase with substitution can be replaced by its ground instantiation. Then, Section 5.2 shows that the minimal model can be replaced by its ground instantiation. Finally, Section 5.3 shows that a simplified version of the T-operator will compute the instantiated minimal model. First, however, we define precisely what we mean by a ground instantiation, a notion used throughout this section.

Definition 5.1 (Ground Instantiations). Let \(\mathcal{C} \) be a finite set of constant symbols, let \(\rho \) be a rule with substitution, and let \(\mathcal{S} \) be a set of rules with substitution.

- The ground instantiation of \(\rho \) wrt \(\mathcal{C} \) is the set of ground instances of \(\rho \) derived by replacing each variable in \(\rho \) by a constant in \(\mathcal{C} \) in all possible ways. It is denoted \(\text{inst}_{\mathcal{C}}(\rho) \).
- The ground instantiation of \(\mathcal{S} \) wrt \(\mathcal{C} \) is the union of the ground instantiations wrt \(\mathcal{C} \) of each rule in \(\mathcal{S} \). It is denoted \(\text{inst}_{\mathcal{C}}(\mathcal{S}) \).

5.1. **Reduction to Ground Rulebases**

In classical logic, to answer a query about a given database, we can replace a Datalog rulebase by its ground instantiation. This subsection shows that Datalog rulebases with substitution enjoy the same property.

To formalize the classical case, let \(\mathcal{R} \) be a set of Datalog rules, let \(\mathcal{DB} \) be a database, and let \(\alpha \) be a ground atomic formula. Finally, let \(\mathcal{C} \) be a set of constant symbols including all constants that appear in \(\mathcal{R}, \mathcal{DB} \) and \(\alpha \). Then,

\[
\mathcal{R} \cup \mathcal{DB} \models_{\mathcal{C}} \alpha \iff \text{inst}_{\mathcal{C}}(\mathcal{R}) \cup \mathcal{DB} \models_{\mathcal{C}} \alpha.
\] \hspace{1cm} (15)

Of course, the instantiation of \(\mathcal{R} \) depends on the database and may need to be recomputed whenever the database changes.

To extend this result to rulebases with predicate substitution, we must first look more closely at \(\mathcal{S}^1 \). It turns out that in generating \(\mathcal{S}^1 \) from \(\mathcal{S} \), we can assume that predicate substitutions have a certain form. To see this, look at item 2 of Definition 2.4. This item generates rules of the form \(\beta \leftarrow \beta_1 \cdots \beta_n[\theta] \). Let \([P/Q](t_1 \cdots t_n) \) be the predicate substitution \([\theta] \). Each \(t_i \) is a term, i.e., variable or a constant.

However, no information is lost by assuming that each \(t_i \) is a variable. Some rules are lost, but they are simple instantiations of rules that remain. Likewise, we can assume that each \(t_i \) is a new variable, one that does not appear in the rule \(\beta \leftarrow \beta_1 \cdots \beta_n \). Rules that don’t satisfy this assumption are specializations of rules that do. The same is true of the predicate substitutions introduced by items 3 and 4 in Definition 2.4. We can therefore assume that each predicate substitution introduced in Definition 2.4 contains only new variables and no constants. We can thus replace \(\mathcal{S}^1 \) by a rule set that is smaller than that given by Definition 2.4, but which is logically equivalent to it. One consequence is that \(\mathcal{S}^1 \) now contains only those constants that appear in \(\mathcal{S} \). In addition, the following result is straightforward.

Lemma 5.2. Let \(\mathcal{S} \) be a set of Datalog rules with substitution, and let \(\mathcal{C} \) be a set of constant symbols. Then

\[
\text{inst}_{\mathcal{C}}([\text{inst}_{\mathcal{C}}(\mathcal{S})]^1) = \text{inst}_{\mathcal{C}}(\mathcal{S}^1).
\]

Proof. This lemma says that \(\mathcal{S}^1 \) and \((\text{inst}_{\mathcal{C}}(\mathcal{S}))^1 \) have identical instantiations. This is a straightforward consequence of Definitions 5.1 and 2.4. For instance, in Definition 2.4, the rules contributed by items 1, 3 and 4 have the same instantiations whether we are defining \(\mathcal{S}^1 \) or \((\text{inst}_{\mathcal{C}}(\mathcal{S}))^1 \). Item 2 is more subtle. Here, the lemma intuitively says that to instantiate the rule \(\beta \leftarrow \beta_1 \cdots \beta_n[\theta] \), we can first instantiate the variables in \(\beta \leftarrow \beta_1 \cdots \beta_n \), and then instantiate the variables in \([\theta] \). This is possible since by the above discussion, we can assume that the two sets of variables are disjoint.

Lemma 5.3. Let \(\mathcal{S} \) be a set of Datalog rules with substitution, let \(\mathcal{DB} \) be a database, and let \(\beta \) be a ground predicate with substitution. In addition, let \(\mathcal{C} \) be a set of constant symbols including all constants that appear in \(\mathcal{S}, \mathcal{DB} \) and \(\beta \). Then,

\[
\mathcal{S}, \mathcal{DB} \models \beta \iff \text{inst}_{\mathcal{C}}(\mathcal{S}), \mathcal{DB} \models \beta.
\]

Proof. By the discussion preceding Lemma 5.2, we can assume that \(\mathcal{S} \) and \(\mathcal{S}^1 \) both contain the same constant symbols. Thus, the constants in \(\mathcal{S}^1 \) are all in \(\mathcal{C} \). Likewise for \((\text{inst}_{\mathcal{C}}(\mathcal{S}))^1 \). Keeping this in mind,
\[\mathcal{S}, DB \models \gamma \]

iff \(\mathcal{S}' \cup DB \models \gamma \)
by Definition 2.5,

iff \(inst_{\mathcal{S}}(\mathcal{S}') \cup DB \models \gamma \)
by statement (15), using \(R = \mathcal{S}' \),

iff \(inst_{\mathcal{S}}(\mathcal{S}) \cup DB \models \gamma \)
by Lemma 5.2,

iff \((inst_{\mathcal{S}}(\mathcal{S}))^+ \cup DB \models \gamma \)
by statement (15), using \(R = (inst_{\mathcal{S}}(\mathcal{S}))^+ \),

iff \(inst_{\mathcal{S}}(\mathcal{S}), DB \models \gamma \)
by Definition 2.5.

Lemma 5.3 implies that we can use \(inst_{\mathcal{S}}(\mathcal{S}) \) instead of \(\mathcal{S} \) to answer queries. Thus, without loss of generality, we shall assume in the rest of this section that \(\mathcal{S} \) is ground. This assumption allows us to simplify the operator \(T_{\mathcal{S}} \). For instance, the term substitution, \(\sigma \), in Definition 4.3 now has no effect, since \(\alpha \) and \(\beta \) are ground. We can therefore remove \(\sigma \) from the definition of \(T_{\mathcal{S}} \), rewriting the definition as follows when \(\mathcal{S} \) is ground:

\[T_{\mathcal{S}}(R) = \{ \alpha \leftarrow \gamma \mid \text{for some rule } \alpha \leftarrow \beta_1 \cdots \beta_m \text{ in } \mathcal{S}, \ R^1 \models \beta_i \leftarrow \gamma \text{ for all } 1 \leq i \leq m \}. \] (16)

Note that although \(x \) and each \(\beta_i \) are ground (because they come from \(\mathcal{S} \), \(\gamma \) is not necessarily ground. Thus, a Datalog rulebase with substitution that is ground will have a minimal model that is non-ground. The following subsections deal with this issue.

5.2. A Ground Version of the Minimal Model

Statement (14) says that instead of using a rulebase with substitution to answer queries, we can use its minimal model. This subsection shows that we do not even need that. Instead, we only need the ground instantiation of the minimal model. Section 6 will show that this instantiation is a finite set of ground Datalog rules of exponential size. Unlike the minimal model, though, the rules in the ground instantiation depend on the database, and change as the database changes.

Even if a Datalog rulebase with substitution is ground and finite, its minimal model may be non-ground and infinite. This is because there are infinitely many values for \(\gamma \) in statement (16) above. \(\gamma \) is a finite set of atomic formulas, and there are infinitely many such sets. In fact, there are infinitely many atomic formulas, constructed from an infinite set of constants and variables. These constants and variables are introduced into \(T_{\mathcal{S}}(R) \) through \(\gamma \) in statement (16), and thence into the minimal model, \(T_{\mathcal{S}}(\{ \} \)). Fortunately, most of the constants are unnecessary and can be replaced by variables, as Lemma 5.4 and Corollary 5.5 show below. Corollary 5.6 then shows that the variables can be replaced by constants, taken from a finite set.

Lemma 5.4. Let \(\mathcal{S} \) be a set of ground Datalog rules with predicate substitution, and let \(R \) be a set of classical Datalog rules. Then, without affecting logical equivalence, we can assume that every constant symbol in \(T_{\mathcal{S}}(R) \) is in \(\mathcal{S} \) or in \(R \).

Proof. Let \(c \) be a “new” constant, that is, a constant not in \(\mathcal{S} \) or \(R \). Also, let \(\alpha \leftarrow \gamma \) be a rule that does not contain any new constants, but which does contain a variable, \(x \). Then by substituting \(c \) for \(x \), we get a new rule, \((\alpha \leftarrow \gamma)[x/c] \), which does contain a new constant. All rules containing new constants can be derived in this way, i.e., as specializations of rules that do not contain new constants. We shall show that if a rule like \((\alpha \leftarrow \gamma)[x/c] \) is in \(T_{\mathcal{S}}(R) \), then so is \(\alpha \leftarrow \gamma \). Thus, the former rule can be removed from \(T_{\mathcal{S}}(R) \) without affecting logical equivalence.

Using the notation of statement (16), let \(\alpha \leftarrow \beta_1 \cdots \beta_m \) be an arbitrary rule in \(\mathcal{S} \). This rule gives rise to a set of rules in \(T_{\mathcal{S}}(R) \) of the form \(\alpha \leftarrow \gamma \), where \(\gamma \) is a finite set of atomic formulas. Consider a \(\gamma \) that has no new constants, but which has a variable, \(x \). Observe that if \(c \) is a new constant, then \(c \) is not in \(\beta_i \) or \(\gamma \). Hence,

\[R^1 \models \beta_i \leftarrow \gamma \]

iff \(R^1 \models \forall x(\beta_i \leftarrow \gamma) \)

since \(x \) is universally quantified, implicitly,

iff \(R^1 \models (\beta_i \leftarrow \gamma)[x/c] \)
by observation (9) in Section 3.1.

iff \(R^1 \models \beta_i \leftarrow (\gamma[x/c]) \)
since \(\beta_i \) is ground.

Consequently,

\[\alpha \leftarrow \gamma \in T_{\mathcal{S}}(R) \]

iff \(\alpha \leftarrow (\gamma[x/c]) \in T_{\mathcal{S}}(R) \) by (16),

iff \((\alpha \leftarrow \gamma)[x/c] \in T_{\mathcal{S}}(R) \) since \(x \) is ground.

But the last rule, \((\alpha \leftarrow \gamma)[x/c] \), is a mere specialization of the first, \(\alpha \leftarrow \gamma \). Thus, we can remove it from \(T_{\mathcal{S}}(R) \) without affecting logical equivalence. Likewise we can remove any rule from \(T_{\mathcal{S}}(R) \) that contains constants not in \(\mathcal{S} \) or \(R \).

Corollary 5.5. Let \(\mathcal{S} \) be a set of ground Datalog rules with substitution. Then, without affecting logical equivalence, we can assume that the constants in \(T_{\mathcal{S}}(\{\}) \) or in \(T_{\mathcal{S}}(\{\}) \) are all in \(\mathcal{S} \).

Proof. For \(T_{\mathcal{S}}(\{\}) \), the result follows by Lemma 5.4 and a simple induction on \(i \). The result for \(T_{\mathcal{S}}(\{\}) \) then follows immediately from Definition 4.11.
Corollary 5.6. Let \mathcal{S} be a set of ground Datalog rules with substitution, let DB be a database, and let β be a ground predicate with substitution. In addition, let \mathcal{C} be a set of constant symbols including all constants that appear in \mathcal{S}, DB and β. Then,

$$\mathcal{S}, DB \models \beta \iff \text{inst}(T^\mathcal{S} \{\{\}\}), DB \models \beta.$$

Proof. Let $\mathcal{S}, DB \models \beta$.

- If $T^\mathcal{S} \{\{\}\}, DB \models \beta$, by statement (14),
- If $(T^\mathcal{S} \{\{\}\})^! \cup DB \models \beta$, by Definition 3.2, using $R = T^\mathcal{S} \{\{\}\}$,
- If $T^\mathcal{S} \{\{\}\}, DB \models \beta$, by Definition 2.5,
- If $\text{inst}(T^\mathcal{S} \{\{\}\}), DB \models \beta$, by Lemma 5.3,
- If $\text{inst}(T^\mathcal{S} \{\{\}\})^! \cup DB \models \beta$, by Definition 2.5,
- If $\text{inst}(T^\mathcal{S} \{\{\}\}), DB \models \beta$, by Definition 3.2.

5.3. A Ground Version of the T-Operator

The previous subsection showed that we can answer queries by using the ground instantiation of the minimal model, instead of the minimal model itself. However, we still need to construct this instantiated model, without constructing the entire model first. This subsection solves this problem by developing a new T-operator, $T_{\mathcal{S}, \mathcal{C}}$, that can be thought of as a ground version of the original T-operator, $T_{\mathcal{S}}$. The least fixpoint of the new operator is precisely the ground instantiation of the least fixpoint of the original operator. We can therefore use the new operator to construct the instantiated fixpoint directly. Unlike the original operator, the new operator has the property that if its input is ground and finite, then so is its output. The new operator can thus be used in computations.

Definition 5.7. If \mathcal{S} is a set of ground Datalog rules with substitution, and \mathcal{C} is a set of constant symbols, then $T_{\mathcal{S}, \mathcal{C}}$ is a mapping from Datalog rulebases to Datalog rulebases. In particular, for each Datalog rulebase, R,

$$T_{\mathcal{S}, \mathcal{C}}(R) = \{ \pi \models \gamma \mid \text{for some rule } \pi \models \beta_1 \cdots \beta_m \text{ in } \mathcal{S}, \ R^i \models \gamma \text{ for all } 1 \leqslant i \leqslant m \}$$

where each γ is a finite set of ground atomic formulas whose constants are in \mathcal{C}.

It is the restriction that γ be ground that distinguishes $T_{\mathcal{S}, \mathcal{C}}$ from $T_{\mathcal{S}}$. The following lemma states a basic relationship between these two operators. It motivates our description of $T_{\mathcal{S}, \mathcal{C}}$ as a “ground version” of $T_{\mathcal{S}}$.

Lemma 5.8. Let \mathcal{S} be a set of ground Datalog rules with substitution, and let R be a set of classical Datalog rules (not necessarily ground). If \mathcal{C} contains all the constants in \mathcal{S} and R, then

$$T_{\mathcal{S}, \mathcal{C}}(R) = \text{inst}(T_{\mathcal{S}}(R)).$$

Proof. Clearly $T_{\mathcal{S}, \mathcal{C}}(R)$ is ground and $T_{\mathcal{S}, \mathcal{C}}(R) \subseteq T_{\mathcal{S}}(R)$. Thus $T_{\mathcal{S}, \mathcal{C}}(R) = \text{inst}(T_{\mathcal{S}}(R)) \subseteq \text{inst}(T_{\mathcal{S}}(R)).$

To prove the reverse containment, first suppose that $\pi \models \gamma$ is a rule in $T_{\mathcal{S}, \mathcal{C}}(R)$. Then, by Lemma 5.4, γ only contains constants in \mathcal{S} or R, i.e., constants in \mathcal{C}. Thus, if $\pi \models \gamma$ is a rule in $\text{inst}(T_{\mathcal{S}}(R))$, then γ is a finite set of ground atomic formulas whose constants are in \mathcal{C}. It therefore satisfies the restrictions given in Definition 5.7. Thus $\pi \models \gamma$ is a rule in $T_{\mathcal{S}, \mathcal{C}}(R)$. Hence $\text{inst}(T_{\mathcal{S}}(R)) \subseteq T_{\mathcal{S}, \mathcal{C}}(R)$.

Observe that under the assumptions of Lemma 5.8, $T_{\mathcal{S}, \mathcal{C}}$ has the following closure property: if R is a set of ground Datalog rules whose constants are in \mathcal{C}, then so is $T_{\mathcal{S}, \mathcal{C}}(R)$. Using this property, we show in a series of lemmas that $T_{\mathcal{S}, \mathcal{C}}$ can be used to compute the ground instantiation of the minimal model of \mathcal{S}, and to answer queries.

Lemma 5.9. Let \mathcal{S} be a set of ground Datalog rules with substitution, let R be a set of classical Datalog rules (not necessarily ground), and let \mathcal{C} be a set of constant symbols including all constants that appear in \mathcal{S} or R. Then,

$$T_{\mathcal{S}, \mathcal{C}}(R) = T_{\mathcal{S}, \mathcal{C}}(\text{inst}(R)).$$

Proof. Using the notation of Definition 5.7, let β_i be a ground predicate with substitution whose constants are in \mathcal{C}, and let γ be a finite set of ground atomic formulas whose constants are in \mathcal{C}. Then,

$$R^i \models \gamma \models \gamma$$

if

- $R^i \models \gamma \models \gamma$, by the Deduction Theorem,
- $R, \gamma \models \beta_i$, by Definition 2.5, treating γ as a database,
- $\text{inst}(R), \gamma \models \beta_i$, by Lemma 5.3,
- $\text{inst}(R)^! \models \gamma \models \gamma$, by Definition 2.5,
- $\text{inst}(R)^! \models \gamma \models \gamma$, by the Deduction Theorem.

Hence, $T_{\mathcal{S}, \mathcal{C}}(R) = T_{\mathcal{S}, \mathcal{C}}(\text{inst}(R))$, by Definition 5.7.
We can now generalize Lemma 5.8.

Lemma 5.10. Let \(\mathcal{S} \) be a set of ground Datalog rules with substitution, and let \(\mathcal{C} \) be a set of constant symbols, including all constants in \(\mathcal{S} \). Then,

\[
T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \}) = \text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \})) \quad (17)
\]

\[
T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \}) = \text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \})) \quad (18)
\]

Proof. We prove statement (17) by induction. The basis step is easy:

\[
T_{\mathcal{S}_i, \mathcal{C}}^0(\{ \}) = \{ \} = \text{inst}_\mathcal{S}(\{ \}) = \text{inst}_\mathcal{S}(T^0(\{ \}))
\]

The inductive step follows from Lemma 5.9:

\[
T_{\mathcal{S}_i, \mathcal{C}}^{i+1}(\{ \}) = T_{\mathcal{S}_i, \mathcal{C}}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \}))
\]

\[
= T_{\mathcal{S}_i, \mathcal{C}}(\text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \})))
\]

by inductive hypothesis,

\[
= T_{\mathcal{S}_i, \mathcal{C}}(\text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \})))
\]

by Lemma 5.9, with \(R = T_{\mathcal{S}_i, \mathcal{C}}(\{ \}) \),

\[
= \text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \}))
\]

by Lemma 5.8,

\[
= \text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}^{i+1}(\{ \}))
\]

Statement (18) is now a straightforward corollary:

\[
\text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \})) = \text{inst}_\mathcal{S}(\bigcup_i T_{\mathcal{S}_i, \mathcal{C}}(\{ \})))
\]

by definition,

\[
= \bigcup_i \text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}(\{ \}))
\]

by statement (17),

\[
= T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \})
\]

by definition.

Like \(T_{\mathcal{S}_i} \), it is not hard to show that \(T_{\mathcal{S}_i, \mathcal{C}} \) is monotonic and continuous. Thus, it has a least fixpoint, and this fixpoint is precisely \(T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \}) \). It follows from Lemma 5.10 that the least fixpoint of \(T_{\mathcal{S}_i, \mathcal{C}} \) is just the ground instantiation of the least fixpoint of \(T_{\mathcal{S}_i} \). Using this idea, the following theorem shows that for given a database, the least fixpoint of \(T_{\mathcal{S}_i, \mathcal{C}} \) can be used to answer queries about \(\mathcal{S} \). This theorem is the main result of this section, and the starting point for the next section.

Theorem 5.11. Let \(\mathcal{S} \) be a set of ground Datalog rules with substitution, let \(\mathcal{D} \) be a database, and let \(\beta \) be a ground predicate with substitution. In addition, let \(\mathcal{C} \) be a set of constant symbols including all constants that appear in \(\mathcal{S} \), \(\mathcal{D} \) or \(\beta \). Then,

\[\mathcal{S}, \mathcal{D} \models \beta \iff T_{\mathcal{S}, \mathcal{C}}^*(\{ \}), \mathcal{D} \models \beta.\]

Proof.

\[\mathcal{S}, \mathcal{D} \models \beta \iff \text{inst}_\mathcal{S}(T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \})), \mathcal{D} \models \beta,\]

by Corollary 5.6,

\[\iff T_{\mathcal{S}_i, \mathcal{C}}^*(\{ \}), \mathcal{D} \models \beta,\]

by Lemma 5.10.

6. UPPER COMPLEXITY BOUNDS

This section shows that the data complexity of Datalog with predicate substitution is bounded above by \(\text{EXPTIME} \). The proof relies on the simplified fixpoint theory developed in Section 5. The next section will show that \(\text{EXPTIME} \) is also a lower complexity bound. Datalog with predicate substitution is therefore \(\text{EXPTIME} \)-complete. For the purpose of this paper, \(\text{EXPTIME} = \text{DTIME}[2^{O(n^2)}] \).

Theorem 6.1. The data complexity of Datalog with predicate substitution is in \(\text{EXPTIME} \).

To prove Theorem 6.1, suppose that \(\mathcal{S} \) is a finite set of Datalog rules with substitution, \(\mathcal{D} \) is a database, and \(\beta \) is a ground predicate with substitution. Let \(\mathcal{C} \) be any finite set of constant symbols, including all the constants in \(\mathcal{S} \), \(\mathcal{D} \) and \(\beta \). We show that for each \(\mathcal{S} \), there is a procedure that takes \(\mathcal{D} \) and \(\mathcal{C} \) as input, and determines in \(2^{O(n^2)} \) time whether \(\mathcal{S}, \mathcal{D} \models \beta \), where \(n \) is the size of \(\mathcal{C} \).

By Lemma 5.3, we can use \(\text{inst}_\mathcal{S}(\mathcal{S}) \) instead of \(\mathcal{S} \). This ground instantiation can be computed in polynomial time. To see this, let \(q \) be the maximum number of distinct variables in any rule in \(\mathcal{S} \). Each rule in \(\mathcal{S} \) then has \(O(n^q) \) ground instantiations. Thus, \(\text{inst}_\mathcal{S}(\mathcal{S}) \) has size \(O(n^q) \) or simply \(O(n^q) \). Thus, without loss of generality, we shall assume throughout this section that \(\mathcal{S} \) is ground. The operator \(T_{\mathcal{S}_i, \mathcal{C}} \) is therefore well defined. Our proof strategy is to show that the least fixpoint of this operator can be computed in \(2^{O(n^2)} \) time. According to Definition 5.7, the main task in applying this operator to a Datalog rulebase is to infer expressions of the form \(R^* \models \beta, \beta \models \gamma \). We therefore spend some time studying the complexity of such inferences.

Because we are dealing with data complexity, we can assume that our language contains only finitely many predicate symbols, each of a fixed arity \([5, 20]\). In this section, \(\mathcal{m} \) will usually denote the number of distinct predicate symbols, and \(k \) will usually denote an upper bound on their arity.

6.1. Inference from \(R^* \)

In this section, \(R \) is a finite set of classical Datalog rules, and we need to infer the logical consequences of \(R^* \). The main problem is that \(R^* \) is infinite. However, this subsection shows that we need only use a specific finite subset of \(R^* \).

The key idea is the degree of a predicate with substitution.
Definition 6.2 (Degree of Substitution). If \(\pi \) is an atomic formula, and \(\{ \theta_1 \} \cdots \{ \theta_n \} \) are predicate substitutions, then \(\pi[\theta_1 \cdots \theta_n] \) is a predicate with substitution of degree \(i \).

Thus, the atom \(A \) has degree 0, the predicate \(A[P/Q] \) has degree 1, the predicate \(A[P/Q][P/Q] \) has degree 2, etc.

In general, a rulebase with predicate substitution, \(\mathcal{S} \), may infer predicates of degree \(i \) from predicates of degree greater than \(i \). For example, the rule \(A \leftarrow B[P/Q] \) infers a predicate of degree 0 from a predicate of degree 1. Moreover, this rule gives rise to rules like \(A[R/S] \leftarrow B[P/Q][R/S] \) in \(\mathcal{S}^{+} \), which infers a predicate of degree 1 from a predicate of degree 2. This is not true for Horn rules, however, as the following lemma shows. This lemma is an immediate consequence of Definition 2.4.

Lemma 6.3. Let \(R \) be a set of classical Datalog rules. Then, in each rule of \(R \), the degree of each predicate in the body does not exceed the degree of the head predicate.

\(R \) is an infinite rule-set, because it defines predicates of unbounded degree, such as \(A[P/Q] \), \(A[P/Q][P/Q] \), \(A[P/Q][P/Q][P/Q] \), etc. To infer predicates of degree \(i \), however, we need only use a finite subset of \(R \), as the following definition and the subsequent lemma show.

Definition 6.4. Let \(\mathcal{S} \) be a set of Datalog rules with predicate substitution. The restriction of \(\mathcal{S}^{+} \) to degree \(i \), written \(\mathcal{S}^{+} \), is the set of rules in \(\mathcal{S}^{+} \) whose heads are predicates of degree at most \(i \).

Lemma 6.5. Let \(R \) be a set of classical Datalog rules, let \(DB \) be a database, and let \(\beta \) be a ground predicate with substitution of degree at most \(i \). Then \(R \cup DB \models \beta \) if and only if \(R \cup DB \models \beta \).

Proof. In this lemma, we are treating each predicate with substitution as an ordinary predicate of classical logic, and we are treating \(R \) and \(R^{+} \) as classical Datalog rulebases. The \(f \) direction is therefore trivial since \(R^{+} \models R \). To prove the \(\models \) direction, we use the classical Horn T-operator \(^5\) of the rulebase \(R \cup DB \). For brevity, we write \(T^{N} \) instead of \(T^{N}_{R \cup DB \cup \{ \} } \). Recall that \(R \cup DB \models \beta \) if \(\beta \in T^{N} \) for some \(N \). We show that if \(\beta \in T^{N} \) then \(R \cup DB \models T^{N} \beta \). The proof is by induction on \(N \). In this induction, \(\mathcal{S} \) is any set of constant symbols containing all the constants in \(R \), \(DB \), and \(\beta \).

Basis. Suppose that \(\beta \in T^{0} \). Then \(\beta \) is a ground instance of a unit rule in \(R \cup DB \). Thus, either \(\beta \in DB \) or \(\beta \in inst_{\pi}(R) \). In the latter case, \(\beta \) is also in \(inst_{\pi}(R^{+}) \), since \(\beta \) has degree at most \(i \). In either case, \(\beta \in inst_{\pi}(R^{+}) \cup DB \), and so \(R^{+} \cup DB \models \beta \).

Induction. Suppose the result is true for all ground predicates in \(T^{N} \) of degree at most \(i \). Suppose also that \(\beta \in T^{N+1} \). Then there is a rule in \(inst_{\pi}(R) \) that derives \(\beta \) from \(T^{N} \) in one step. This rule has the form \(\beta \leftarrow \beta_{1} \cdots \beta_{m} \), where each \(\beta_{j} \in T^{N} \). Since \(\beta \) has degree at most \(i \), so does each \(\beta_{j} \), by Lemma 6.3. Thus by induction hypothesis, \(R^{+} \cup DB \models \beta_{j} \) for \(1 \leq j \leq m \). Thus \(inst_{\pi}(R^{+}) \cup DB \models \beta \), by statement (15) in Section 5. Since the rule \(\beta \leftarrow \beta_{1} \cdots \beta_{m} \) is in \(inst_{\pi}(R) \), it is also in \(inst_{\pi}(R^{+}) \), since the head predicate, \(\beta \), has degree at most \(i \). We thus have the following:

\[
\text{inst}_{\pi}(R^{+}) \cup DB \models \beta \quad \text{for} \quad 1 \leq j \leq m
\]

and

\[
\beta \leftarrow \beta_{1} \cdots \beta_{m} \in \text{inst}_{\pi}(R^{+})
\]

6.2. The Complexity of Inference from \(R^{+} \)

This section shows that classical inference from \(R^{+} \) can be done in exponential time (exponential in the size of the data domain). The key steps are showing that the ground instantiation of \(R^{+} \) has exponential size, and that it can be constructed in exponential time.

Lemma 6.6. Let \(R \) be a finite set of classical Datalog rules, and let \(\mathcal{E} \) be a finite set of constant symbols, including all constants in \(R \). Then, there are at most \(2^{(k+1)} \) rules in \(\text{inst}_{\pi}(R^{+}) \), where \(n \) is the cardinality of \(\mathcal{E} \), \(k \) is an upper bound on the arity of predicate symbols, and \(a \) and \(b \) are constants independent of \(\mathcal{E} \) and \(R \).

Proof. Let \(m \) be the number of predicate symbols in our language. We bound the size of several sets, as follows:

- Each atomic formula in \(\text{inst}_{\pi}(R^{+}) \) is ground and has the form \(P(x_{1}, \ldots, x_{p}) \), where \(p \leq k \). There are \(m \) choices for \(P \) and at most \(n \) choices for each of the \(x \)'s, for a total of at most \(mn^{p} \) atomic formulas, or at most \(mn^{k} \).

- According to Definition 2.2, a predicate substitution has the form \(\{ P/Q \}|_{y_{1}, \ldots, y_{p}} \), where \(p \) is the difference in the arities of \(Q \) and \(P \). Thus \(p \) is no bigger than the maximum arity of any predicate symbol, i.e., \(p \leq k \). To bound the number ground predicate substitutions, note that there are \(m \) choices for \(P \), \(m \) choices for \(Q \), and at most \(n \) choices for each of the \(y \)'s, for a total of at most \(m^{n} \) choices, or at most \(mn^{k} \).

- Each predicate with substitution in \(\text{inst}_{\pi}(R^{+}) \) is ground and has the form \(\pi[\theta_{1}][\theta_{2} \cdots [\theta_{n}] \cdots] \), where \(\pi \) is a ground atomic formula. As shown above, there are at most \(mn^{k} \) choices for \(\pi \), and at most \(mn^{n} \) choices for each of
the predicate substitutions, $[\theta]$, for a total of at most $n^{m^a}(n^{m^a})^{-1}$ choices, that is, $m^{a(2^i-1)}n^{a^i}$. Thus, there are at most an^a ground predicate substitutions with substitution, where $a = m^{a(2^i-1)}$.

- Each rule in $inst_\theta(R^l_{\text{rules}})$ consists of a head and a body. The head is a ground predicate substitution, with which there are at most an^a choices. The body is a set of such predicates, of which there are at most $2an^a$ choices. Thus, the number of rules in $inst_\theta(R^l_{\text{rules}})$ is at most:

$$an^a(n^{m^a}) \leq a2^{n^a(n^{m^a})} = a2^{[(a+1)n^{a^i}]} = a2^{(\text{bin}^a)}$$

where $b = a + 1$ and $a = m^{a(2^i-1)}$. Note that a and b are independent of R and θ.

Corollary 6.7. Let R be a finite set of ground Datalog rules. Then there are at most $a2^{(\text{bin}^a)}$ rules in R where a is the number of distinct constant symbols in R, k is an upper bound on the arity of predicate symbols, and a and b are independent of R and θ.

Proof. Because R is Horn, every rule in R has degree 0, so $R = R^l_0$. Moreover, since R is ground, $R = inst_\theta(R) = inst_\theta(R^l_0)$, where θ is the set of constant substitutions in R. Thus, by Lemma 6.6, there are at most $a2^{(\text{bin}^a)}$ rules in R.

Lemma 6.8. Let R be a finite set of classical Datalog rules, and let θ be a finite set of constant symbols, including all constants in R, and θ and θ' are independent of R and θ.

Proof. Referring to Definition 2.4, $inst_\theta(R^l_{\text{rules}})$ can be constructed by the following procedure:

1. $R_0 := inst_\theta(R)$.
2. For j from 1 to $i-1$ do $R_j := \{ \}$.
3. Add the following rules to R_j:
 1. $P(\bar{a})[P,Q](\bar{b}) \leftarrow Q(\bar{a}, \bar{b})$, for every ground predicate substitution $[P,Q](\bar{b})$, and every ground atomic formula $P(\bar{a})$.
 2. $B(\bar{a})[P,Q](\bar{b}) \leftarrow B(\bar{a})$, for every ground predicate substitution $[P,Q](\bar{b})$, and every ground atomic formula $B(\bar{a})$, where B is a base predicate and $B \neq P$.
4. For j from 1 to $i-1$ do the following: Add the rule $[\theta][\theta] := [\beta_1[\theta]} \cdots \beta_n[\theta]$ to R_j, for each rule $\beta := \beta_1 \cdots \beta_n$ in R_{j-1}, and each ground predicate substitution θ.\(^6\)
5. Return $R_0 \cup R_1 \cup \cdots \cup R_{i-1}$.

To see that this procedure is correct, observe that because R is Horn, every rule in R has degree 0, so $R = R^l_0$. Thus $R_0 = inst_\theta(R^0_{\text{rules}}) = inst_\theta(R^l_0)$, so R_0 consists of those rules in $inst_\theta(R^l_0)$ of degree exactly 0. Likewise, for $j > 0$, R_j consists of those rules in $inst_\theta(R_j)$ of degree exactly j. The procedure thus returns all rules in $inst_\theta(R^l_0)$ of degree at most $i-1$. Thus, the procedure returns $inst_\theta(R^l_{\text{rules}})$ of degree exactly j.

To bound the running time of the procedure, observe that the procedure constructs each rule in $inst_\theta(R^l_{\text{rules}})$ exactly once. By Lemma 6.6, $inst_\theta(R^l_{\text{rules}})$ contains at most $a2^{(\text{bin}^a)}$ rules. The procedure thus runs in $2^{(\text{bin}^a)}$ time.

Lemma 6.9. Let R be a finite set of classical Datalog rules, let DB be a database, let β be a ground predicate with substitution of degree at most $i-1$, and let θ be a finite set of constant symbols, including all constants in R, DB and β. Then, there is a procedure that takes R, DB, β and θ as input, and determines whether $R \cup DB \vdash \beta$. Furthermore, this procedure runs in $2^{(\text{bin}^a)}$ time, where n is the cardinality of θ, and k is an upper bound on the arity of predicate symbols.

Proof. The main problem is that R^l_{rules} is infinite and contains variables. However, by Lemma 6.5, we can use R^l_{rules} instead. Moreover, by the discussion preceding Lemma 5.2, we can assume that every constant in R^l_{rules} is in R, and thus in θ. The same is therefore true of R^l_{rules}. Thus,

$$R^l_{\text{rules}} \cup DB \vdash \beta \iff R^l_{\text{rules}} \cup DB \vdash \beta$$

by Lemma 6.5,

$$\text{iff} \ inst_\theta(R^l_{\text{rules}}) \cup DB \vdash \beta$$

by statement (15) in Section 5.

We shall focus on the last of these three equivalent statements. First note that $inst_\theta(R^l_{\text{rules}})$ can be constructed in $2^{(\text{bin}^a)}$ time, by Lemma 6.8. Second, if we treat each ground predicate with substitution as a propositional atom, then inference becomes propositional. In general, inference from propositional Horn rulebases takes time that is polynomial in the size of the rulebase. That is, there is a procedure that takes a set of propositional Horn rules as input, and returns the set of propositional atoms entailed by the rules as output. Furthermore, this procedure runs in time that is polynomial in the size of the rule-set, where size is defined as the number of rules in the rulebase plus the number of distinct atoms. We can easily bound this size. The proof of Lemma 6.6 shows that DB has at most m^a ground atomic formulas, and that $inst_\theta(R^l_{\text{rules}})$ has at most $a2^{(\text{bin}^a)}$ rules, made from at most am^a ground predicates with substitution. Here, a, b and m are constants that are independent of the inputs, R, DB, β and θ. Thus, the size of the rule-set $inst_\theta(R^l_{\text{rules}}) \cup DB$ is at most $m^a + am^a + a2^{(\text{bin}^a)}$, or simply $2^{(\text{bin}^a)}$, since $i \geq 1$ and $k \geq 0$. The inference procedure

\(^6\) $[\theta]$ denotes any ground predicate substitution, i.e., substitutions of the form $[P,Q](\bar{b})$, as well as $[P,Q]$.
runs in time that is polynomial in this size, i.e., in time $2^{O(n^k)}$, where n is the size of the input. Thus, by Lemma 6.9, this takes $2^{O(n^k)}$ time. Because the operator is monotonic, the bottom-up evaluation is a 0-ary predicate. The important points are that the rulebase \mathcal{R} is independent of the input s, and that the data complexity is $2^{O(n^k)}$. Therefore, the query is \mathcal{R}-complete for Datalog.

Theorem 6.1. The data complexity of Datalog with basic predicate substitution is EXPTIME-hard.

To prove Theorem 7.1, we use Datalog with basic substitution to encode the computations of an alternating Turing machine [6]. Alternating machines are a generalization of non-deterministic machines. Like non-deterministic machines, they have many possible transitions at each point in a computation; but they may require that all transitions be successful, not just one. By encoding an arbitrary alternating Turing machine as a database $DB(M)$, we show that the data complexity is $2^{O(n^k)}$. Therefore, the query is \mathcal{R}-complete for Datalog.

Theorem 7.1. The data complexity of Datalog with basic predicate substitution is EXPTIME-hard.

To state the main result precisely, let M be an alternating Turing machine without loss of generality, we assume that M has a single tape. We encode this machine as a database $DB(M)$. Given an input string s, we encode it as another database $DB(s)$. Finally, we construct a Datalog rulebase with substitution \mathcal{R} that simulates the computations of M on input s. Formally,

$$\mathcal{R}, DB(M) + DB(s) \rightarrow ACCEPT$$

where $ACCEPT$ is a 0-ary predicate. The important points are that the rulebase \mathcal{R} is independent of the input s, and that the database $DB(s)$ can be constructed in polynomial time (polynomial in the size of s). From this, we conclude that the data complexity of Datalog with basic substitution is EXPTIME-hard. This result follows immediately by letting M be a machine that recognizes a \mathcal{R}-complete language. Examples of such languages are given in [6].
Section 7.2 describes the construction of $DB(M)$, $DB(s)$ and \mathcal{S}. First, however, Section 7.1 describes the view of computation upon which the construction are based.

7.1. Computation as Transformation

To encode the computations of a Turing machine, we view computation as a sequence of string transformations, where each string represents a machine configuration. A configuration records the contents of the machine tape and the position and state of the control head. We represent a configuration as a string in a standard way, and we represent the transition table of the machine as a (non-deterministic) string transformation. We choose this representation because it is easy to implement with Datalog rules and basic substitution.

There are many ways to encode a machine configuration as a string. We describe a standard encoding that is convenient for the purpose of this section. First, we encode the machine tape as a string in the obvious way, so that each tape cell is represented by one string character. Thus, a tape holding the characters s_1, s_2, \ldots, s_n is represented by the string $s_1s_2\ldots s_n$. Second, for technical reasons, we add a special character $\$\$ to each end of the string, to give the string $\$s_1s_2\ldots s_n\$$.

Third, for each tape character s_i and each control state q_j, we treat the ordered pair (s_i, q_j) as a compound character and add it to the string alphabet. We use these compound characters to encode the state and position of the control head. For example, if the control head is in state q_1 and is reading the character a, then write the character b move one square to the left, and go into state q_2. In this case, any string of the form "---wx$xy\langle a, q_1\rangle yz\cdots" is mapped onto the string "---wx$xy\langle a, q_1\rangle byz\cdots". The ternary function f thus satisfies the equations

$$f(w, x, \langle a, q_1\rangle) = \langle x, q_2\rangle$$

$$f(x, \langle a, q_1\rangle, y) = b$$

$$f(\langle a, q_1\rangle, y, z) = y$$

for any characters w, x, y and z. Of course, during any step of a computation, most characters in a configuration do not change. Thus $f(x, y, z) = y$ as long as x, y and z represent tape characters, not control states. This is an instance of the frame problem of Artificial Intelligence [10]. This problem does not concern us here however, since it is handled by the function f. Note in particular that f is finite and depends only on the machine M, not on the input s. We can therefore spend as much time as we like constructing f.

When f encodes the transition function of a deterministic PSPACE machine, we can use the corresponding string transformation, t, to simulate the machine’s computation. This transformation maps one configuration of the machine onto another character. Moreover, because computation is

Footnote: "Here, and in the rest of this section, the symbol n shall denote the length of a machine configuration, not the length of the machine’s input."
onto the next. Thus, if \(\bar{a} \) is a string representing the configuration of the machine at some point in a computation, then \(t(\bar{a}) \) represents the next configuration, \(t^2(\bar{a}) \) the next configuration after that, etc. If \(\bar{a} \) represents the initial configuration, then we can simulate the entire computation by generating one configuration after another. In this case, the machine accepts its input if and only if the finite control is in an accepting state for some configuration \(t^n(\bar{a}) \).

Alternating Computation

In alternating computations, each machine configuration can have many successors. We therefore need to view computation not as a sequence of configurations, but as a tree. Without loss of generality, we can assume the tree is binary; so each configuration has at most two successors. We can therefore represent the transition table of an alternating machine as two functions \(f_1 \) and \(f_2 \).

As in the deterministic case, these functions specify string transformations. Formally, a string \(a_1 \cdots a_n \) has two successors \(b^1_1 \cdots b^1_n \) and \(b^2_1 \cdots b^2_n \) where

\[
\begin{align*}
 b^1_i &= a_i \\
 b^2_n &= a_n \\
 b^j_i &= f_j(a_{i-1}, a_i, a_{i+1}) \quad \text{for } 1 < j < n.
\end{align*}
\]

As before, the end points of the string do not change, and the interior points are transformed by the functions \(f_1 \) and \(f_2 \). We use the symbols \(t_1 \) and \(t_2 \) to denote these two string transformations, where \(t_1(a_1 \cdots a_n) = b^1_1 \cdots b^1_n \). In general, \(t_i \) takes a string \(\bar{a} \) as input, and returns a string \(t_i(\bar{a}) \) of the same length as output. If \(\bar{a} \) encodes the initial configuration of an alternating PSPACE machine, then we can apply \(t_1 \) and \(t_2 \) recursively to generate a binary tree of configurations rooted at \(\bar{a} \) representing the computation tree of the machine. For example, \(t_1(\bar{a}) \) and \(t_2(\bar{a}) \) represent the two immediate successors of \(\bar{a} \). Likewise, \(t_1 t_1(\bar{a}) \) and \(t_2 t_2(\bar{a}) \) represent the two immediate successors of \(t_1(\bar{a}) \).

7.2. Encoding an Alternating PSPACE Machine

We implement the strings and transformations described above as a Datalog rulebase with basic substitution. We store the finite control and the initial configuration of the machine in the database, and we implement the transformations \(t_1 \) and \(t_2 \) as a set of Datalog rules. Starting from the initial configuration, we use predicate substitution to apply the transformations over-and-over again. The entire rulebase consists of twelve rules: nine non-recursive Datalog rules, and three mutually-recursive rules with substitution. This structure is enough to simulate any ASPACE machine and achieve \(\text{EXPTIME} \)-hardness.

The Machine

Here we specify the database \(DB(\bar{s}) \) in statement (19). This database encodes the machine's control states and the two ternary functions \(f_1 \) and \(f_2 \). To encode the two functions, we introduce two 4-ary predicates, \(F_1 \) and \(F_2 \). We add the formula \(F_1(a, b, c, d) \) to the database iff \(f_1(a, b, c) = d \). These formulas encode the transition table of the machine.

In addition, we must be able determine whether a computation is accepting. For alternating machines, acceptance is defined in terms of accepting configurations. Whether a configuration is accepting depends on its successor configurations and on the state of the finite control. An alternating machine has three kinds of state: accepting, universal and existential. Each configuration has exactly one control state, \(q \), and the configuration is accepting iff

- \(q \) is an accepting state,
- \(q \) is a universal state and all successor configurations are accepting, or
- \(q \) is an existential state and at least one successor configuration is accepting.

As an alternating machine accepts its input iff its initial configuration is accepting. To encode the control states, we use three unary predicates, \(\text{ACCEPTING} \), \(\text{UNIVERSAL} \) and \(\text{EXISTENTIAL} \). For each compound character \(\langle c, q \rangle \), we add the formula \(\text{EXISTENTIAL}(\langle c, q \rangle) \) to the database iff \(q \) is an existential state. Likewise for \(\text{ACCEPTING} \) and \(\text{UNIVERSAL} \).

The Initial Configuration

Here we specify the database \(DB(\bar{s}) \) in statement (19). This database encodes the machine's initial configuration. First, we need a counter to represent string positions. For this, we introduce three base predicates, \(\text{FIRST} \), \(\text{NEXT} \) and \(\text{LAST} \). For strings of length \(n \), we add the following formulas to the database:

\[
\begin{align*}
 \text{FIRST}(1), \quad \text{NEXT}(1, 2), \quad \text{NEXT}(2, 3) \cdots \\
 \text{NEXT}(n-1, n), \quad \text{LAST}(n).
\end{align*}
\]

Next, we introduce a binary predicate \(S \) to represent the characters in a string. The formula \(S(i, j) \) means that character \(c \) appears at position \(j \) in the string. If the initial configuration of the machine is given by the string \(\bar{a} = a_1 \cdots a_n \), then we add the following formulas to the database:

\[
\begin{align*}
 S(a_1, 1), \quad S(a_2, 2), \quad S(a_3, 3) \cdots S(a_n, n).
\end{align*}
\]

Recall that the machine input \(\bar{s} \) is encoded in the initial configuration \(\bar{a} \).
The Computation

Our final task is to encode the computation of an alternating Turing machine as a Datalog rulebase with predicate substitution, \mathcal{R}. This rulebase has two parts: (i) a set of Datalog rules that implement the string transformations t_1 and t_2, and (ii) rules with substitution that apply these transformations recursively, and that determine whether the machine accepts its input. These rules are described below.

String Transformations. To implement the string transformation t_1, we add the Datalog rules below to rulebase \mathcal{R}. These three rules correspond to the three conditions (20)–(22), respectively. Given a string \bar{a} stored in the predicate S, these rules derive the transformed string $t_1(\bar{a})$ and store it in the predicate S_i.

\[
S_i(x, j) \leftarrow FIRST(j), S(x, j).
\]

\[
S_i(x, j) \leftarrow LAST(j), S(x, j).
\]

\[
S_i(x_4, j_2) \leftarrow F(x_1, x_2, x_3, x_4), NEXT(j_1, j_2),
\]

\[
NEXT(j_2, j_3), S(x_1, j_1), S(x_2, j_2), S(x_3, j_3).
\]

Here all the j's and x's are variables. The first two rules ensure that the end points of the string do not change. The third rule implements the function f, that transforms the interior points of the string. We thus add six Datalog rules to the rulebase \mathcal{R}—three for S_1 and three for S_2. The Datalog rules defining S, represent a single application of the transformation t_1 to the string S encoded in the database. To apply the transformation more than once, we apply the predicate substitution $[S/S_1]$ to the rulebase. This substitution reuses and modifies the rules to produce another set of rules representing another application of t_1.

The order in which the two substitutions $[S/S_1]$ and $[S/S_2]$ are applied determines the order in which the transformations t_1 and t_2 are composed. For example, if the predicate $S(x, j)$ represents the string \bar{a}, then the following predicates with substitution represent the strings $t_1(\bar{a})$, $t_1t_2(\bar{a})$, $t_1t_2t_3(\bar{a})$ and $t_1t_2t_3t_4(\bar{a})$, respectively:

\[
S_i(x, j) \leftarrow [S/S_1].
\]

\[
S_i(x, j) \leftarrow [S/S_2].
\]

\[
S_i(x, j) \leftarrow [S/S_2][S/S_1].
\]

\[
S_i(x, j) \leftarrow [S/S_1][S/S_1][S/S_1].
\]

In general, the predicate with substitution $S_i(x, j)[S/S_1]$ $[S/S_1] \cdots [S/S_n]$ represents the string $t_1t_2t_3 \cdots t_n(\bar{a})$.

Accepting Configurations. Besides generating configurations, the rulebase must determine whether the machine accepts its input. The first step is to determine what kind of control state a configuration has. The following Datalog rules accomplish this:

\[
ACCEPT \leftarrow ACCEPTING(x), S(x, j).
\]

\[
UNIV \leftarrow UNIVERSAL(x), S(x, j).
\]

\[
EXIST \leftarrow EXISTENTIAL(x), S(x, j).
\]

Here x and j are variables. The predicate $EXIST$ is inferred if the configuration represented by S contains an existential control state. Likewise for the predicates $UNIV$ and $ACCEPT$. With these three rules, the rulebase \mathcal{R} now has a total of nine Datalog rules.

If the initial configuration has an accepting control state, then we are done. If not, then we can examine its successor configurations by using predicate substitution. In the simplest case, the predicates $ACCEPT[S/S_1]$ and $ACCEPT[S/S_2]$ ask whether the two immediate successor configurations have an accepting control state. By using multiple substitutions, we can examine more distant successors. For example, if the predicate $S(x, j)$ represents the configuration \bar{a}, then the successor configurations $t_1(\bar{a})$, $t_1t_2(\bar{a})$, $t_1t_2t_3(\bar{a})$ and $t_1t_2t_3t_4(\bar{a})$ have an accepting control state iff the following predicates with substitution are true, respectively:

\[
ACCEPT[S/S_1].
\]

\[
ACCEPT[S/S_2][S/S_1].
\]

\[
ACCEPT[S/S_1][S/S_1][S/S_1].
\]

\[
ACCEPT[S/S_1][S/S_1][S/S_1][S/S_1].
\]

In general, the configuration $t_1t_2t_3 \cdots t_n(\bar{a})$ has an accepting control state iff $ACCEPT[S/S_n][S/S_n] \cdots [S/S_n] \cdots [S/S_1]$ is true.

Even if a configuration does not have an accepting state, it may still be an accepting configuration, depending on its successors. We can specify this dependency by using recursion through substitution. The following rules, which we add to rulebase \mathcal{R}, do exactly this:

\[
ACCEPT \leftarrow UNIV, ACCEPT[S/S_1], ACCEPT[S/S_2].
\]

\[
ACCEPT \leftarrow EXIST, ACCEPT[S/S_1].
\]

\[
ACCEPT \leftarrow EXIST, ACCEPT[S/S_2].
\]

The first rule says that a universal configuration is accepting if both its successors are accepting. The second and third rules say that an existential configuration is accepting if at least one of its successors is accepting.

These three rules determine if a configuration, \bar{a}, is accepting by examining its two immediate successors, $t_1(\bar{a})$ and $t_2(\bar{a})$. However, we still need rules to determine whether these two successors are accepting. The copy-and-substitute mechanism automatically generates such rules. For
instance, by applying the substitution \([S/S_i]\), it generates the following three rules:

\[
\text{ACCEPT}[S/S_i] \leftarrow \text{UNIV}[S/S_i], \text{ACCEPT}[S/S_1][S/S_i], \text{ACCEPT}[S/S_2][S/S_i].
\]

\[
\text{ACCEPT}[S/S_i] \leftarrow \text{EXIST}[S/S_i], \text{ACCEPT}[S/S_1][S/S_i], \text{ACCEPT}[S/S_2][S/S_i].
\]

\[
\text{ACCEPT}[S/S_i] \leftarrow \text{EXIST}[S/S_i], \text{ACCEPT}[S/S_1][S/S_i], \text{ACCEPT}[S/S_2][S/S_i].
\]

These rules determine if the configuration \(t, t(\bar{a})\) is accepting by examining its two immediate successors, \(t_1t(\bar{a})\) and \(t_2t(\bar{a})\). As before, more rules may be needed to determine whether the two successors are accepting; and the copy-and-substitute mechanism generates them. This time, by applying the multiple substitution \([S/S_i][S/S_i]\), it generates the following three rules:

\[
\text{ACCEPT}[S/S_i][S/S_i] \leftarrow \text{UNIV}[S/S_i][S/S_i], \text{ACCEPT}[S/S_1][S/S_i][S/S_i], \text{ACCEPT}[S/S_2][S/S_i][S/S_i].
\]

\[
\text{ACCEPT}[S/S_i][S/S_i] \leftarrow \text{EXIST}[S/S_i][S/S_i], \text{ACCEPT}[S/S_i][S/S_i][S/S_i], \text{ACCEPT}[S/S_i][S/S_i][S/S_i].
\]

\[
\text{ACCEPT}[S/S_i][S/S_i] \leftarrow \text{EXIST}[S/S_i][S/S_i], \text{ACCEPT}[S/S_i][S/S_i][S/S_i], \text{ACCEPT}[S/S_i][S/S_i][S/S_i].
\]

These rules determine whether the configuration \(t, t(\bar{a})\) is accepting. In this way, the copy-and-substitute mechanism generates rules of acceptance for every machine configuration. These rules all belong to \(\mathcal{S}\), the closure of rulebase \(\mathcal{R}\).

\(\mathcal{S}\) thus consists of nine Datalog rules and three rules with substitution. Applied to the database \(DB(M) + DB(\bar{a})\) constructed above, this rulebase infers the atom ACCEPT iff the initial configuration is accepting, that is, if machine \(M\) accepts input \(\bar{a}\). This rulebase therefore satisfies condition (19), thus completing the proof of Theorem 7.1.

REFERENCES