Universal enveloping algebras and universal derivations of Poisson algebras

Ualbai Umirbaev ${ }^{\text {a,b,*, }}$
${ }^{\text {a }}$ Department of Mathematics, Eurasian National University, Astana, 010008, Kazakhstan
${ }^{\text {b }}$ Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

ARTICLE INFO

Article history:

Received 11 April 2011
Available online 13 January 2012
Communicated by Efim Zelmanov

MSC:

primary 17B63, 17B40
secondary 17A36, 16W20

Keywords:
Poisson algebras
Universal enveloping algebras
Left dependence
Automorphisms
Derivations

Abstract

Let k be an arbitrary field of characteristic 0 . It is shown that for any $n \geqslant 1$ the universal enveloping algebras of the Poisson symplectic algebra $P_{n}(k)$ and the Weyl algebra $A_{n}(k)$ are isomorphic and the canonical isomorphism between them easily leads to the Moyal product. A basis of the universal enveloping algebra P^{e} of a free Poisson algebra $P=k\left\{x_{1}, \ldots, x_{n}\right\}$ is constructed and it is proved that the left dependence of a finite number of elements of P^{e} over P^{e} is algorithmically recognizable. We describe the Poisson dependence of any two elements of a free Poisson algebra in characteristic 0 in the language of universal derivatives. The Fox derivatives on free Poisson algebras are defined and it is proved that an analogue of the Jacobian Conjecture for two generated free Poisson algebras is equivalent to the two-dimensional classical Jacobian Conjecture. A new proof of the tameness of automorphisms of two generated free Poisson algebras is also given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The main property of the universal (multiplicative) enveloping algebra $U_{\mathfrak{M}}(A)$ of an algebra A in a variety of algebras \mathfrak{M} is that the notion of an A-bimodule in \mathfrak{M} is equivalent to the notion of a left module over the associative algebra $U_{\mathfrak{M}}(A)$ (see, for example [12]). The universal enveloping algebra of a Poisson algebra was studied in [18]. A linear basis of the universal enveloping algebra is constructed in [19] for Poisson polynomial algebras, i.e. for Poisson brackets on the polynomial algebras

[^0]$k\left[x_{1}, \ldots, x_{n}\right]$. In general case the validity of an analogue of the Poincare-Birkhoff-Witt theorem is still open.

We study the universal enveloping algebras of Poisson symplectic algebras and free Poisson algebras. For any Poisson algebra P denote by P^{e} its universal enveloping algebra. Note that the universal enveloping algebra A^{e} of an associative algebra A in the variety of associative algebras is $A \otimes_{k} A^{o p}$ where $A^{o p}$ is an anti-isomorphic copy of A (see, for example [31,32]). It is proved that the universal enveloping algebras of the Poisson symplectic algebra P_{n} and the Weyl algebra A_{n} are isomorphic. The canonical isomorphism between P_{n}^{e} and A_{n}^{e} naturally leads to the Moyal product (Lemma 6).

It is well known that the universal enveloping algebras of free Lie algebras are free associative algebras. P. Cohn [8] proved that every left ideal of a free associative algebra is a free left module. In fact, it follows from this theorem [32] that subalgebras of free Lie algebras are free [24,33] and automorphisms of finitely generated free Lie algebras are tame [7].

Let $P=k\left\{x_{1}, \ldots, x_{n}\right\}$ be the free Poisson algebra in the variables x_{1}, \ldots, x_{n}. We construct a linear basis of the universal enveloping algebra P^{e}. Unfortunately left ideals of P^{e} are not free left P^{e}-modules, i.e., an analogue of Cohn's theorem [8] for free associative algebras is not true in this case. We prove a weaker result which says that the left dependence of a finite set of elements of P^{e} over P^{e} is algorithmically recognizable. It is well known [8] that any two elements of a free associative algebra either generate a free associative algebra in two variables or commute. An analogue of this for Poisson algebras in characteristic 0 was recently proved in [14]. We describe the Poisson dependence of any two elements of a free Poisson algebra over a field of characteristic 0 in the language of universal derivatives. It allows us to prove that an analogue of the Jacobian Conjecture for two generated free Poisson algebras is equivalent to the two-dimensional classical Jacobian Conjecture. A new proof of the tameness of automorphisms of two generated free Poisson algebras is also given.

This paper is organized as follows. In Section 2 we give the definition of Poisson modules and universal enveloping algebras of Poisson algebras by generators and defining relations. We define also the universal derivations of Poisson algebras. Section 3 is devoted to studying the universal enveloping algebras of P_{n} and A_{n}. In Section 4 we construct a linear basis of the universal enveloping algebra P^{e} of the free Poisson algebra $P=k\left\{x_{1}, \ldots, x_{n}\right\}$. We introduce a degree function on the universal enveloping algebra P^{e} and describe its associated graded algebra gr P^{e}. In Section 5 we consider the left dependence of elements over P^{e} and study in details the left dependence of two elements of a special type over $g r P^{e}$. Section 6 is devoted to studying the universal derivations and two generated subalgebras of free Poisson algebras. In Section 7 we give some comments and formulate some open problems.

All vector spaces are considered over an arbitrary fixed field k of characteristic 0 . In the statements of algorithmic character we assume that k is constructive.

2. Universal enveloping algebras

Recall that a vector space P over k endowed with two bilinear operations $x \cdot y$ (a multiplication) and $\{x, y\}$ (a Poisson bracket) is called a Poisson algebra if P is a commutative associative algebra under $x \cdot y, P$ is a Lie algebra under $\{x, y\}$, and P satisfies the following identity (the Leibniz identity):

$$
\{x, y \cdot z\}=\{x, y\} \cdot z+y \cdot\{x, z\} .
$$

Let P be a Poisson algebra over k. A vector space V over k is called a Poisson module over P (or Poisson P-module) if there are two bilinear maps

$$
P \times V \longrightarrow V \quad((x, v) \mapsto x \cdot v)
$$

and

$$
P \times V \longrightarrow V \quad((x, v) \mapsto\{x, v\})
$$

such that the relations

$$
\begin{gathered}
(x \cdot y) \cdot v=x \cdot(y \cdot v), \\
\{\{x, y\}, v\}=\{x,\{y, v\}\}-\{y,\{x, v\}\}, \\
\{x \cdot y, v\}=y \cdot\{x, v\}+x \cdot\{y, v\}, \\
\{x, y\} \cdot v=\{x, y \cdot v\}-y \cdot\{x, v\}
\end{gathered}
$$

hold for all $x, y \in P$ and $v \in V$.
The first relation means that every Poisson P-module is a usual (left) module over the associative and commutative algebra P. Sometimes we consider P as an associative and commutative algebra with $x \cdot y$ and a module over this algebra will be called a module over the commutative algebra P.

Let V be a Poisson module over a Poisson algebra P. For every $x \in P$ we denote by M_{x} the operator of multiplication by x acting on V, i.e., $M_{x}(v)=x \cdot v$ for any $v \in V$. For every $x \in P$ we define also the Hamiltonian operator H_{x} on V by $H_{x}(v)=\{x, v\}$. Then the Poisson module relations can be written as

$$
\begin{gathered}
M_{x y}=M_{x} M_{y} \\
H_{\{x, y\}}=H_{x} H_{y}-H_{y} H_{x} \\
H_{x y}=M_{y} H_{x}+M_{x} H_{y} \\
M_{\{x, y\}}=H_{x} M_{y}-M_{y} H_{x}
\end{gathered}
$$

respectively.
We consider only Poisson algebras with an identity element 1 and unitary modules over Poisson algebras, i.e. $M_{1}=i d$.

Now we give the definition of the universal (multiplicative) enveloping algebra P^{e} of a Poisson algebra P. Let $m_{P}=\left\{m_{a} \mid a \in P\right\}$ and $h_{P}=\left\{h_{a} \mid a \in P\right\}$ be two copies of the vector space P endowed with two linear isomorphisms $m: P \longrightarrow m_{P}\left(a \mapsto m_{a}\right)$ and $h: P \longrightarrow h_{P}\left(a \mapsto h_{a}\right)$. Then P^{e} is an associative algebra over k, with an identity 1 , generated by two linear spaces m_{P} and h_{P} and defined by the relations

$$
\begin{gathered}
m_{x y}=m_{x} m_{y}, \\
h_{\{x, y\}}=h_{x} h_{y}-h_{y} h_{x}, \\
h_{x y}=m_{y} h_{x}+m_{x} h_{y}, \\
m_{\{x, y\}}=h_{x} m_{y}-m_{y} h_{x}=\left[h_{x}, m_{y}\right], \\
m_{1}=1
\end{gathered}
$$

for all $x, y \in P$. The last relation comes from our agreement to consider only unitary P-modules. Note that $h_{1}=0$.

By the definition of the universal (multiplicative) enveloping algebras [12] the notion of a bimodule over an algebra is equivalent to the notion of a left module over its universal enveloping algebra. Let V be an arbitrary Poisson P-module. Then V becomes a left P^{e}-module under the action

$$
m_{x} v=x \cdot v, \quad h_{x} v=\{x, v\}
$$

for all $x \in P$ and $v \in V$. Conversely, if V is a left P^{e}-module then the same formulas turn V to a Poisson P-module.

Corollary 1. The category of unitary Poisson modules over a Poisson algebra P and the category of (left) unitary modules over the universal enveloping algebra P^{e} are equivalent.

The first example of a Poisson P-module is $V=P$ under the actions $x \cdot v$ and $\{x, v\}$. Since $1 \in P$ and $m_{x} 1=x$ it follows that the mapping

$$
m: P \longrightarrow P^{e} \quad\left(x \mapsto m_{x}\right)
$$

is an injection. Therefore we identify m_{x} with x. After this identification the essential part of the defining relations of P_{e} are

$$
\begin{gather*}
h_{\{x, y\}}=h_{x} h_{y}-h_{y} h_{x}, \tag{1}\\
h_{x y}=y h_{x}+x h_{y}, \tag{2}\\
\{x, y\}=h_{x} y-y h_{x}=\left[h_{x}, y\right], \tag{3}
\end{gather*}
$$

for all $x, y \in P$. From (3) it follows that

$$
\begin{equation*}
\left[h_{x}, y\right]=\left[x, h_{y}\right] \tag{4}
\end{equation*}
$$

Let Ω_{P} be the left ideal of P^{e} generated by all h_{x} where $x \in P$. Consider the mapping

$$
\Delta: P \longrightarrow \Omega_{P} \quad\left(x \mapsto h_{x}\right)
$$

It follows from (1) and (2) that Δ is a derivation of the Poisson algebra P with coefficients on the Poisson P-module Ω_{P}.

Lemma 1. Δ is the universal derivation of the Poisson algebra P and Ω_{P} is the universal differential module of P.

Proof. Recall that by the definition it means (see, for example [31,32]) that for any Poisson P-module V and for any derivation $d: P \rightarrow V$ there exists a unique homomorphism $\tau: \Omega_{P} \rightarrow V$ of Poisson P-modules such that $d=\tau \Delta$.

We follow the construction of the universal differential modules by generators and defining relations (see, for example [5]). Let \bar{P} be a copy of the vector space P. Consider the left P^{e}-module $V=P^{e} \otimes \bar{P}$. Denote by $\phi: P \rightarrow V$ the mapping defined by $\phi(x)=1 \otimes \bar{x}$ for all $x \in P$. Let W be a submodule of V generated by all $h_{x} \otimes \bar{y}-h_{y} \otimes \bar{x}-1 \otimes \overline{\{x, y\}}$ and $y \otimes \bar{x}+x \otimes \bar{y}-1 \otimes \overline{x y}$, where $x, y \in P$. Put $M=V / W$ and denote by $\psi: V \rightarrow M$ the natural homomorphism. It is well known that [5,31,32] the mapping $D=\psi \phi: P \rightarrow M$ is the universal derivation and M is the universal differential module of P.

Since V is a P^{e}-module freely generated by the vector space \bar{P} there exists a P^{e}-module homomorphism $\eta: V \rightarrow \Omega_{P}$ such that $\eta(\bar{x})=h_{x}$ for all $x \in P$. It follows from (1) and (2) that $W \subseteq \operatorname{Ker} \eta$. Consequently, η induces the homomorphism $\theta: M \rightarrow \Omega_{P}$. Note that from (1)-(3) it follows that Ω_{P} is a P^{e}-module generated by symbols h_{x} and defined by relations (1) and (2). Consequently, θ is an isomorphism.

3. Universal enveloping algebras of P_{n} and $\boldsymbol{A}_{\boldsymbol{n}}$

For an integer $n \geqslant 1$ the Poisson symplectic algebra P_{n} is the usual polynomial algebra $k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ endowed with the Poisson bracket defined by

$$
\left\{x_{i}, y_{j}\right\}=\delta_{i j}, \quad\left\{x_{i}, x_{j}\right\}=0, \quad\left\{y_{i}, y_{j}\right\}=0
$$

where $\delta_{i j}$ is the Kronecker symbol and $1 \leqslant i, j \leqslant n$.

By A_{n} we denote the Weyl algebra of index n, i.e., A_{n} is an associative algebra given by generators $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ and defined relations

$$
\left[X_{i}, Y_{j}\right]=\delta_{i j}, \quad\left[X_{i}, X_{j}\right]=0, \quad\left[Y_{i}, Y_{j}\right]=0,
$$

where $1 \leqslant i, j \leqslant n$.
Let $k\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ be the polynomial algebra in the variables $z_{1}, z_{2}, \ldots, z_{n}$. Denote by $\mathcal{D}\left(k\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ the algebra of polynomial differential operators on $k\left[z_{1}, z_{2}, \ldots, z_{n}\right]$. Note that A_{n} is isomorphic to $\mathcal{D}\left(k\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$:

$$
Y_{i} \mapsto z_{i}, \quad X_{i} \mapsto \partial_{i}=\frac{\partial}{\partial z_{i}}, \quad 1 \geqslant i \geqslant n .
$$

The statement of the next lemma was also mentioned in [18].
Lemma 2. $P_{n}^{e} \simeq \mathcal{D}\left(k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]\right) \simeq A_{2 n}$.
Proof. It follows directly from (1)-(4) that P_{n}^{e} is generated by $x_{i}, y_{i}, h_{x_{i}}, h_{y_{i}}$ and satisfies the relations

$$
\begin{gathered}
{\left[x_{i}, x_{j}\right]=\left[x_{i}, y_{j}\right]=\left[y_{i}, y_{j}\right]=0, \quad\left[h_{x_{i}}, h_{x_{j}}\right]=\left[h_{x_{i}}, h_{y_{j}}\right]=\left[h_{y_{i}}, h_{y_{j}}\right]=0,} \\
{\left[h_{x_{i}}, y_{i}\right]=\left\{x_{i}, y_{i}\right\}=1, \quad\left[h_{y_{i}}, x_{i}\right]=\left\{y_{i}, x_{i}\right\}=-1,}
\end{gathered}
$$

for all i, j.
The Weyl algebra $A_{2 n}$ is generated by $X_{1}, \ldots, X_{2 n}, Y_{1}, \ldots, Y_{2 n}$ and defined by the relations

$$
\left[X_{i}, Y_{j}\right]=\delta_{i j}, \quad\left[X_{i}, X_{j}\right]=0, \quad\left[Y_{i}, Y_{j}\right]=0,
$$

where $1 \leqslant i, j \leqslant 2 n$. Consequently, there exists a surjective homomorphism $\phi: A_{2 n} \longrightarrow P_{n}^{e}$ such that

$$
X_{i} \mapsto x_{i}, \quad X_{i+n} \mapsto y_{i}, \quad Y_{i} \mapsto h_{y_{i}}, \quad Y_{i+n} \mapsto-h_{x_{i}}
$$

for all $1 \leqslant i \leqslant n$. Since $A_{2 n}$ is simple it follows that ϕ is an isomorphism.
Now let A be an arbitrary associative algebra over k with an identity. Then the universal enveloping algebra A^{e} of A is $A \otimes_{k} A^{o p}$, where $A^{o p}$ is an algebra anti-isomorphic to A. Algebra $A^{o p}$ is considered together with an anti-isomorphism ${ }^{\prime}: A \longrightarrow A^{o p}$. In fact, each operator of the left multiplication l_{x} is represented by $x \otimes 1$ and each operator of the right multiplication r_{x} is represented by $1 \otimes x^{\prime}$ in $A \otimes_{k} A^{o p}$. Following the main property of the universal enveloping algebras (see [12]) we get that the category of associative unitary A-bimodules and the category of left unitary A^{e}-modules are equivalent.

Note that $A_{n}^{o p}$ is isomorphic to A_{n} again. An isomorphism, can be chosen, for example, as φ : $A_{n} \longrightarrow A_{n}^{o p}$ with $\varphi\left(X_{i}\right)=X_{i}^{\prime}, \varphi\left(Y_{i}\right)=-Y_{i}^{\prime}$ for all i. Then, $A_{n}^{e}=A_{n} \otimes_{k} A_{n}^{o p} \simeq A_{n} \otimes_{k} A_{n} \simeq A_{2 n}$ and consequently, $P_{n}^{e} \simeq A_{n}^{e}$. We proved

Theorem 1. For every integer $n \geqslant 1$ the universal enveloping algebras of the Poisson symplectic algebra P_{n} and the Weyl algebra A_{n} are isomorphic to the Weyl algebra $A_{2 n}$, i.e.

$$
P_{n}^{e} \simeq A_{n}^{e} \simeq A_{2 n}
$$

Corollary 2. The category of unitary Poisson modules over the Poisson symplectic algebra P_{n} and the category of unitary bimodules over the Weyl algebra A_{n} are equivalent.

The notion of bimodules in the case of Poisson algebras corresponds to the notion of Poisson modules, as follows from the commutativity and anti-commutativity of operations.

Therefore P_{n}^{e} is isomorphic to A_{n}^{e}. We use this isomorphism to get the Moyal product. In fact, there are many isomorphisms between A_{n}^{e} and P_{n}^{e}. We choose "the most canonical" one between them in the next lemma.

Lemma 3. There exists a unique isomorphism $\theta: A_{n}^{e} \longrightarrow P_{n}^{e}$ such that

$$
\begin{array}{ll}
\theta\left(X_{i} \otimes 1\right)=x_{i}+1 / 2 h_{x_{i}}, & \theta\left(1 \otimes X_{i}^{\prime}\right)=x_{i}-1 / 2 h_{x_{i}} \\
\theta\left(Y_{i} \otimes 1\right)=y_{i}+1 / 2 h_{y_{i}}, & \theta\left(1 \otimes Y_{i}^{\prime}\right)=y_{i}-1 / 2 h_{y_{i}}
\end{array}
$$

for all $1 \leqslant i \leqslant n$.
Proof. The existence of θ follows from (1)-(3). For example,

$$
\begin{aligned}
& {\left[\theta\left(X_{i} \otimes 1\right), \theta\left(Y_{i} \otimes 1\right)\right] }=\left[x_{i}+1 / 2 h_{x_{i}}, y_{i}+1 / 2 h_{y_{i}}\right] \\
&=1 / 2\left[x_{i}, h_{y_{i}}\right]+1 / 2\left[h_{x_{i}}, y_{i}\right]+1 / 4\left[h_{x_{i}}, h_{y_{i}}\right]=\left\{x_{i}, y_{i}\right\}=1, \\
& {\left[\theta\left(1 \otimes X_{i}^{\prime}\right), \theta\left(1 \otimes Y_{i}^{\prime}\right)\right]=} {\left[x_{i}-1 / 2 h_{x_{i}}, y_{i}-1 / 2 h_{y_{i}}\right] } \\
&=-1 / 2 {\left[x_{i}, h_{y_{i}}\right]-1 / 2\left[h_{x_{i}}, y_{i}\right]+1 / 4\left[h_{x_{i}}, h_{y_{i}}\right]=-\left\{x_{i}, y_{i}\right\}=-1, } \\
& {\left[\theta\left(X_{i} \otimes 1\right), \theta\left(X_{j} \otimes 1\right)\right]=} {\left[x_{i}+1 / 2 h_{x_{i}}, x_{j}+1 / 2 h_{x_{j}}\right] } \\
&=1 / 2\left[x_{i}, h_{x_{j}}\right]+1 / 2\left[h_{x_{i}}, x_{j}\right]+1 / 4\left[h_{x_{i}}, h_{x_{j}}\right]=0,
\end{aligned}
$$

if $i \neq j$. Obviously, θ is surjective. And it is also injective since A_{n}^{e} is simple.
Denote by L the linear space $k x_{1}+\cdots+k x_{n}+k y_{1}+\cdots+k y_{n}$. We define a linear bijection

$$
w: P_{n} \rightarrow A_{n}
$$

by

$$
w\left(l_{1} l_{2} \ldots l_{p}\right)=1 / p!\sum_{\pi \in S_{p}} l_{\pi(1)} l_{\pi(2)} \ldots l_{\pi(p)}
$$

for all $l_{1}, l_{2}, \ldots, l_{p} \in k x_{1}+\cdots+k x_{n}+k y_{1}+\cdots+k y_{n}$. This mapping is called the symmetrization [10].
Let us introduce some notations. Let \mathbb{Z}_{+}be the set of all nonnegative integers. For every $\alpha=$ $\left(i_{1}, i_{2}, \ldots, i_{t}\right) \in \mathbb{Z}_{+}^{t}$ we put $|\alpha|=i_{1}+i_{2}+\cdots+i_{t}$ and $\alpha!=i_{1}!i_{2}!\ldots i_{t}!$. If $b=\left(b_{1}, b_{2}, \ldots, b_{t}\right)$, where $b_{1}, b_{2}, \ldots, b_{t}$ is a subset of commuting elements of an algebra B, then we put

$$
b^{\alpha}=b_{1}^{i_{1}} b_{2}^{i_{2}} \ldots b_{t}^{i_{t}} .
$$

We set

$$
\begin{gathered}
\partial_{x}=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right), \quad \partial_{y}=\left(\frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial y_{2}}, \ldots, \frac{\partial}{\partial y_{n}}\right), \\
\partial=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}\right),
\end{gathered}
$$

$$
\begin{gathered}
h_{x}=\left(h_{x_{1}}, h_{x_{2}}, \ldots, h_{x_{n}}\right), \quad h_{y}=\left(h_{y_{1}}, h_{y_{2}}, \ldots, h_{y_{n}}\right), \\
h=\left(h_{x_{1}}, \ldots, h_{x_{n}}, h_{y_{1}}, \ldots, h_{y_{n}}\right),
\end{gathered}
$$

where $\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial y_{i}}$ are usual partial derivatives of P_{n}.
Lemma 4. If $f \in P_{n}$ then

$$
\theta(w(f) \otimes 1)=\sum_{\gamma \in \mathbb{Z}_{+}^{2 n}} \frac{1}{\gamma!2^{|\gamma|}} \partial^{\gamma}(f) h^{\gamma}=\sum_{\gamma \in \mathbb{Z}_{+}^{2 n}} \frac{1}{\gamma!2^{|\gamma|}} \partial^{\gamma}(f) h^{\gamma} .
$$

Proof. By the linearity, it is sufficient to prove the statement of the lemma only for elements of the form $f=l^{p}$, where $l \in k x_{1}+\cdots+k x_{n}+k y_{1}+\cdots+k y_{n}$. In this case $w(f)=w(l)^{p}$. Hence

$$
\theta(w(f) \otimes 1)=\theta\left(w(l)^{p} \otimes 1\right)=(\theta(w(l) \otimes 1))^{p}=\left(l+1 / 2 h_{l}\right)^{p} .
$$

Note that l and $h(l)$ commute. Consequently,

$$
\theta(w(f) \otimes 1)=\sum_{i=0}^{p}\binom{p}{i} \frac{1}{2^{i}}{ }^{p-i} h_{l}^{i}=\sum_{i=0}^{p} \frac{1}{i!2^{i}} \frac{\partial^{i} f}{\partial l^{i}} h_{l}^{i} .
$$

Let $l=a_{1} x_{1}+\cdots+a_{n} x_{n}+b_{1} y_{1}+\cdots+b_{n} y_{n}$ and put $c=\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$. The elements $h_{x_{1}}, \ldots, h_{x_{n}}, h_{y_{1}}, \ldots, h_{x_{n}}$ commute. Using multinomial coefficients we can write

$$
h_{l}^{i}=\sum_{\lambda \in \mathbb{Z}_{+}^{2 n},|\lambda|=i} \frac{i!}{\lambda!} c^{\lambda} h^{\lambda} .
$$

Note that $\partial^{\lambda}(f)=c^{\lambda} \frac{\partial^{i} f}{\partial l^{i}}$ if $|\lambda|=i$. Consequently,

$$
\theta(w(f) \otimes 1)=\sum_{\gamma \in \mathbb{Z}_{+}^{2 n}} \frac{1}{\gamma!2^{|\gamma|}} \partial^{\gamma}(f) h^{\gamma}
$$

The second equality of the lemma can be proved similarly.
If $\alpha=\left(i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}_{+}^{2 n}$ then we put $\alpha_{1}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $\alpha_{2}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}_{+}^{n}$. We often write $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and put $\alpha^{*}=\left(\alpha_{2}, \alpha_{1}\right)$.

Lemma 5. If $f \in P_{n}$ then

$$
\frac{1}{\gamma!} h^{\gamma} f=\sum_{\alpha+\beta=\gamma} \frac{(-1)^{\left|\alpha_{2}\right|}}{\alpha!\beta!} \partial^{\alpha^{*}}(f) h^{\beta}
$$

for all $\gamma \in \mathbb{Z}_{+}^{2 n}$.
Proof. Put $H_{a}(f)=\left[h_{a}, f\right]$ for all $a, f \in P$ and put also $H=\left(h_{x_{1}}, \ldots, h_{x_{n}}, h_{y_{1}}, \ldots, h_{y_{n}}\right)$. Using the relations

$$
h_{x_{i}} f=\left[h_{x_{i}}, f\right]+f h_{x_{i}}, \quad h_{y_{i}} f=\left[h_{y_{i}}, f\right]+f h_{y_{i}},
$$

and multinomial coefficients, we get

$$
\frac{1}{\gamma!} h^{\gamma} f=\sum_{\alpha+\beta=\gamma} \frac{1}{\alpha!\beta!} H^{\alpha}(f) h^{\beta} .
$$

Note that

$$
H_{x_{i}}(f)=\left[h_{x_{i}}, f\right]=\frac{\partial}{\partial y_{i}}(f), \quad H_{y_{i}}(f)=\left[h_{y_{i}}, f\right]=-\frac{\partial}{\partial x_{i}}(f)
$$

for all i. Consequently, $H^{\alpha}(f)=(-1)^{\left|\alpha_{2}\right|} \partial^{\alpha^{*}}(f)$.
Consider the mapping

$$
\rho_{w}: P_{n} \longrightarrow P_{n}^{e}, \quad f \mapsto w(f) \otimes 1, f \in P_{n} .
$$

Lemma 6. The product

$$
f *_{w} g=\rho_{w}^{-1}\left(\rho_{w}(f) \rho_{w}(g)\right)
$$

is the Moyal product on P_{n}, i.e.

$$
f *_{w} g=\sum_{\alpha \in \mathbb{Z}_{+}^{2 n}} \frac{(-1)^{\left|\alpha_{2}\right|}}{\alpha!2^{\mid \alpha}} \partial^{\alpha}(f) \partial^{\alpha^{*}}(g)
$$

Proof. A direct calculation gives

$$
\begin{aligned}
\theta(w(f) \otimes 1) \theta(w(g) \otimes 1) & =\sum_{\gamma, \delta \in \mathbb{Z}_{+}^{2 n}} \frac{1}{\gamma!\delta!2^{|\gamma+\delta|}} \partial^{\gamma}(f) h^{\gamma} \partial^{\delta}(g) h^{\delta} \\
& =\sum_{\gamma, \delta \in \mathbb{Z}_{+}^{2 n}} \sum_{\alpha+\beta=\gamma} \frac{(-1)^{\left|\alpha_{2}\right|}}{\alpha!\beta!\delta!2^{|\gamma+\delta|}} \partial^{\gamma}(f) \partial^{\alpha^{*}+\delta}(g) h^{\beta+\delta} \\
& =\sum_{\mu}\left(\sum_{\beta+\delta=\mu} \sum_{\alpha} \frac{(-1)^{\left|\alpha_{2}\right|}}{\alpha!\beta!\delta!2^{|\alpha+\beta+\delta|}} \partial^{\alpha+\beta}(f) \partial^{\alpha^{*}+\delta}(g)\right) h^{\mu} \\
& =\sum_{\mu} \frac{1}{\mu!2^{|\mu|}} \partial^{\mu}\left(\sum_{\alpha} \frac{(-1)^{\left|\alpha_{2}\right|}}{\alpha!2^{\mid \alpha}} \partial^{\alpha}(f) \partial^{\alpha^{*}}(g)\right) h^{\mu} \\
& =\sum_{\mu} \frac{1}{\mu!2^{|\mu|}} \partial^{\mu}\left(f *_{w} g\right) h^{\mu} .
\end{aligned}
$$

Consequently,

$$
\rho_{w}^{-1}\left(\rho_{w}(f) \rho_{w}(g)\right)=\rho_{w}^{-1}(\theta(w(f) \otimes 1) \theta(w(g) \otimes 1))=f *_{w} g
$$

for all $f, g \in P_{n}$.

4. Enveloping algebras of free Poisson algebras

Let g be a Lie algebra with a linear basis $e_{1}, e_{2}, \ldots, e_{k}, \ldots$ The Poisson symmetric algebra $P S(g)$ of g is the usual polynomial algebra $k\left[e_{1}, e_{2}, \ldots, e_{k}, \ldots\right]$ endowed with the Poisson bracket defined by

$$
\left\{e_{i}, e_{j}\right\}=\left[e_{i}, e_{j}\right]
$$

for all i, j, where $[x, y]$ is the multiplication in the Lie algebra g.
Denote by $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the free Poisson algebra over k in the variables $x_{1}, x_{2}, \ldots, x_{n}$. From now on let $g=\operatorname{Lie}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be the free Lie algebra with free (Lie) generators $x_{1}, x_{2}, \ldots, x_{n}$. It is well known (see, for example [22]) that the Poisson symmetric algebra $\operatorname{PS}(g)$ is the free Poisson algebra $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in the variables $x_{1}, x_{2}, \ldots, x_{n}$.

By deg we denote the standard degree function of the homogeneous algebra P, i.e. $\operatorname{deg}\left(x_{i}\right)=1$, where $1 \leqslant i \leqslant n$. Note that

$$
\operatorname{deg}\{f, g\}=\operatorname{deg} f+\operatorname{deg} g
$$

if f and g are homogeneous and $\{f, g\} \neq 0$. By $\operatorname{deg}_{x_{i}}$ we denote the degree function on P with respect to x_{i}. If f is homogeneous with respect to each $\operatorname{deg}_{x_{i}}$, where $1 \leqslant i \leqslant n$, then f is called multihomogeneous.

Let us choose a multihomogeneous linear basis

$$
x_{1}, x_{2}, \ldots, x_{n}, \quad\left[x_{1}, x_{2}\right], \ldots,\left[x_{1}, x_{n}\right], \ldots,\left[x_{n-1}, x_{n}\right], \quad\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots
$$

of a free Lie algebra g and denote the elements of this basis by

$$
\begin{equation*}
e_{1}, e_{2}, \ldots, e_{m}, \ldots \tag{5}
\end{equation*}
$$

The algebra $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ coincides with the polynomial algebra on the elements (5). Consequently, the set of all words of the form

$$
\begin{equation*}
u=e^{\alpha}=e_{1}^{i_{1}} e_{2}^{i_{2}} \ldots e_{m}^{i_{m}} \tag{6}
\end{equation*}
$$

where $0 \leqslant i_{k}, 1 \leqslant k \leqslant m$, and $m \geqslant 0$, forms a linear basis of P. The basis (6) is multihomogeneous since so is (5).

Let $k\left\{x_{1}, x_{2}, \ldots, x_{n}, y\right\}$ be the free Poisson algebra in the variables $x_{1}, x_{2}, \ldots, x_{n}, y$. Denote by W the set of all homogeneous of degree one with respect to y elements of $k\left\{x_{1}, x_{2}, \ldots, x_{n}, y\right\}$.

Theorem 2. Let $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the free Poisson algebra over a field k in the variables $x_{1}, x_{2}, \ldots, x_{n}$ and let P^{e} be its universal enveloping algebra. Then the following statements are true:
(i) The subalgebra A (with identity) of P^{e} generated by $h_{x_{1}}, h_{x_{2}}, \ldots, h_{x_{n}}$ is the free associative algebra in the variables $h_{x_{1}}, h_{x_{2}}, \ldots, h_{x_{n}}$;
(ii) The left commutative P-module P^{e} is isomorphic to the left commutative P-module $P \otimes_{k} A$.

Proof. Recall that $P\left\{x_{1}, x_{2}, \ldots, x_{n}, y\right\}$ is the Poisson symmetric algebra of the free Lie algebra Lie $\left\langle x_{1}, x_{2}, \ldots, x_{n}, y\right\rangle$. The elements of the form

$$
\left\{x_{i_{1}},\left\{x_{i_{2}}, \ldots,\left\{x_{i_{k}}, y\right\} \ldots\right\}\right\}=h_{x_{i_{1}}} h_{x_{i_{2}}} \ldots h_{x_{i_{k}}}(y)
$$

are linearly independent in the free Lie algebra $\operatorname{Lie}\left\langle x_{1}, x_{2}, \ldots, x_{n}, y\right\rangle$. Consequently, the elements of the form

$$
\begin{equation*}
h_{x_{i_{1}}} h_{x_{i_{2}}} \ldots h_{x_{i_{k}}} \tag{7}
\end{equation*}
$$

are linearly independent in P^{e}.

Using (1)-(4), it can be easily shown that every element of P^{e} can be written as a linear combination of elements $p w$, where $p \in P$ and w is an element of the form (7).

Let B_{1} be the linear basis (5) of the free Lie algebra $g=\operatorname{Lie}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. Denote by B_{2} the set of all elements of the form $w y$, where w is an element of the form (7). Note that the set of elements $B_{1} \cup B_{2}$ is linearly independent. We can choose a set of elements B_{3} of degree $\geqslant 2$ in y such that $B_{1} \cup B_{2} \cup B_{3}$ is a linear basis of $\operatorname{Lie}\left\langle x_{1}, x_{2}, \ldots, x_{n}, y\right\rangle$. Then $P\left\{x_{1}, x_{2}, \ldots, x_{n}, y\right\}$ is a polynomial algebra in the set of variables $B_{1} \cup B_{2} \cup B_{3}$. Consequently, W is a free left module over the polynomial algebra $k\left[B_{1}\right]$ and B_{2} is a set of free generators. Note that $P=k\left[B_{1}\right]$.

Corollary 3. Every nonzero element u of the universal enveloping algebra P^{e} can be uniquely written in the form

$$
\begin{equation*}
u=\sum_{i=1}^{k} p_{i} w_{i} \tag{8}
\end{equation*}
$$

where $0 \neq p_{i} \in P$ for all i and $w_{1}, w_{2}, \ldots, w_{k}$ are different elements of the form (7).
Put $h_{x_{i}}<h_{x_{j}}$ if $i<j$. Let u, v be two elements of the form (7). Then put $u<v$ if $\operatorname{deg} u<\operatorname{deg} v$ or $\operatorname{deg} u=\operatorname{deg} v$ and u precedes v in the lexicographical order. We can assume $w_{1}<w_{2}<\cdots<w_{k}$ in (8). Then w_{k} is called the leading monomial of u and p_{k} is called the leading coefficient of u. We will write $w_{k}=\operatorname{ldm}(u)$ and $p_{k}=\operatorname{ldc}(u)$. The leading term of u is defined by $\operatorname{ldt}(u)=\operatorname{ldc}(u) \operatorname{ldm}(u)$.

Lemma 7. If u and v are arbitrary nonzero elements of P^{e} then $\operatorname{ldc}(u v)=\operatorname{ldc}(u) \operatorname{ldc}(v)$ and $\operatorname{ldm}(u v)=$ $\operatorname{ldm}(u) \operatorname{ldm}(v)$.

Proof. Note that if u and v are two elements of the form (8) then to put the product $u v$ into the form (8) again we need to use only the relations (3). This means that $h_{x_{i}}$ and $y \in P$ commute modulo terms of smaller degrees in the variables $h_{x_{1}}, h_{x_{2}}, \ldots, h_{x_{n}}$. Consequently, we can put $u v$ into the form (8) with the leading monomial $\operatorname{ldm}(u) \operatorname{ldm}(v)$ and the leading coefficient $\operatorname{ldc}(u) \operatorname{ldc}(v)$.

Now we introduce a degree function hdeg (or h-degree function) on P^{e}. Let u be an element of P^{e} written in the form (8). Then we put $h \operatorname{deg} u=\max _{i=1}^{k} \operatorname{deg} w_{i}$ and $h \operatorname{deg} 0=-\infty$. We say that u is homogeneous with respect to $h d e g$ if $\operatorname{deg} w_{1}=\operatorname{deg} w_{2}=\cdots=\operatorname{deg} w_{k}$. It follows directly from Lemma 6 and (3) that

$$
h d e g u v=h \operatorname{deg} u+h d \operatorname{eg} v
$$

for every u and v from P^{e}, i.e., $h d e g$ is a degree function on P^{e}. Denote by \bar{u} the highest homogeneous part of u with respect to hdeg.

Denote by U_{i} the subset of all elements u of P^{e} with $h \operatorname{deg} u \leqslant i$. Then,

$$
P=U_{0} \subset U_{1} \subset U_{2} \subset \cdots \subset U_{k} \subset \cdots
$$

is a filtration of P^{e}, i.e., $U_{i} U_{j} \subseteq U_{i+j}$ for all $i, j \geqslant 0$. Put also

$$
g r P^{e}=g r U_{0} \oplus g r U_{1} \oplus g r U_{2} \oplus \cdots \oplus g r U_{k} \oplus \cdots
$$

where $\operatorname{gr} U_{0}=P$ and $\operatorname{gr} U_{i}=U_{i} / U_{i-1}$ for all $i \geqslant 1$. Denote by $\varphi_{i}: U_{i} \rightarrow \operatorname{gr} U_{i}$ the natural projection for every $i \geqslant 1$ and put $\varphi_{0}=i d: P \rightarrow P$. We define also

$$
\begin{equation*}
\varphi=\left\{\varphi_{i}\right\}_{i \geqslant 0}: P^{e} \rightarrow g r P^{e} \tag{9}
\end{equation*}
$$

by $\varphi(u)=\varphi_{i}(u)$ if $u \in U_{i} \backslash U_{i-1}$ for every $i \geqslant 1$ and $\varphi(u)=u$ if $u \in P$.

The multiplication of P^{e} induces a multiplication on $g r P^{e}$ and the graded vector space $g r P^{e}$ becomes an algebra.

Consider $B=P \otimes_{k} A$ as a tensor product of associative algebras. Then B is a free associative algebra over P in the variables $h_{x_{1}}, h_{x_{2}}, \ldots, h_{\chi_{n}}$.

Theorem 3. The graded algebra gr P^{e} is isomorphic to $B=P \otimes_{k} A$.
Proof. By (3), P is in the center of the algebra $g r P^{e}$ and $g r P^{e}$ is generated by $\varphi\left(h_{\chi_{1}}\right), \varphi\left(h_{\chi_{2}}\right), \ldots$, $\varphi\left(h_{x_{n}}\right)$ as an algebra over P. Note that $B=P \otimes_{k} A$ is a free associative algebra over P. Then there is a P-algebra homomorphism $\psi: B \rightarrow g r P^{e}$ such that $\psi\left(h_{x_{i}}\right)=\varphi\left(h_{x_{i}}\right)$ for all i.

Let T_{s} be the space of homogeneous with respect to hdeg elements of P^{e} of degree $s \geqslant 1$ and let B_{s} be the space of homogeneous of degree s elements of B. There is an obvious isomorphism between the spaces T_{s} and A_{s} established by the P-module homomorphism in Theorem 2. Note that $U_{s}=U_{s-1}+T_{s}, U_{s} / U_{s-1} \simeq T_{s} \simeq B_{s}$, and $\psi_{\mid B_{s}}: B_{s} \rightarrow g r U_{s}$ is an isomorphism of P-modules. Consequently, $\operatorname{Ker}(\psi)=0$ and ψ is an isomorphism of algebras.

5. The left dependence

We use the notations of Section 4.
Lemma 8. Let $u \in P^{e}$ and $h \operatorname{deg} u=m$. Then there exists $v \in P^{e}$ such that $\lambda^{m+1} u=v \lambda$.
Proof. By (3), $\lambda u=u \lambda+u_{1}$, where u_{1} has degree less than m. Consequently, $\lambda^{m+1} u=w \lambda$ by induction on m.

Let u and v be two elements of the form (7). We write $u \ll v$ if u is a left divisor of v, i.e., $v=t u$ for some t of the form (7).

Definition 1. Let u and v be nonzero elements of p^{e} such that $\operatorname{ldm}(u)=\operatorname{ldm}(v)$. Let $r=$ $\operatorname{gcd}(\operatorname{ldc}(u), \operatorname{ldc}(v))$ be the greatest common divisor of $\operatorname{ldc}(u)$ and $\operatorname{ldc}(v)$. Then put

$$
(u, v)_{c}=(\operatorname{ldc}(v) / r) u-(\operatorname{ldc}(u) / r) v .
$$

Note that $(u, v)_{c}=0$ or $\operatorname{ldm}\left((u, v)_{c}\right)<\operatorname{ldm}(u)=\operatorname{ldm}(v)$.
Lemma 9. Let $s_{1}, s_{2}, \ldots, s_{k}$ be a finite set of nonzero elements of $P^{e} . \operatorname{If} \operatorname{ldm}\left(s_{i}\right)$ and $\operatorname{ldm}\left(s_{j}\right)$ are not comparable with respect to \ll for every $i \neq j$ then the elements $s_{1}, s_{2}, \ldots, s_{k}$ are left independent over P^{e}.

Proof. Suppose that

$$
\begin{equation*}
\sum_{r=1}^{k} u_{r} s_{r}=0 \tag{10}
\end{equation*}
$$

By Lemma 7, $\operatorname{ldm}\left(u_{r} s_{r}\right)=\operatorname{ldm}\left(u_{r}\right) \operatorname{ldm}\left(s_{r}\right)$ for every r. Suppose that Eq. (10) is not trivial, i.e., at least one of the coefficients u_{r} is nonzero. Then, comparing the leading monomials of the summands, we conclude that $\operatorname{ldm}\left(u_{i}\right) \operatorname{ldm}\left(s_{i}\right)=\operatorname{ldm}\left(u_{j}\right) \operatorname{ldm}\left(s_{j}\right) \neq 0$ for some $i \neq j$. It is possible if and only if $\operatorname{ldm}\left(s_{i}\right) \ll \operatorname{ldm}\left(s_{j}\right)$ or $\operatorname{ldm}\left(s_{i}\right) \gg \operatorname{ldm}\left(s_{j}\right)$. This contradicts the condition of the lemma.

Lemma 10. Let $s_{1}, s_{2}, \ldots, s_{k}$ be a finite set of nonzero elements of P^{e}. Suppose that $\operatorname{ldm}\left(s_{i}\right) \gg \operatorname{ldm}\left(s_{j}\right)$ and $\operatorname{ldm}\left(s_{i}\right)=t \cdot \operatorname{ldm}\left(s_{j}\right)$. Put $s_{i}^{\prime}=\left(s_{i}, s_{j}\right)_{c}$. Then the elements $s_{1}, s_{2}, \ldots, s_{k}$ are left dependent over P^{e} if and only if the elements $s_{1}, s_{2}, \ldots, s_{i-1}, s_{i}^{\prime}, s_{i+1}, \ldots, s_{k}$ are left dependent over P^{e}.

Proof. Consider Eq. (10). By Lemma 8, there exists a number m such that $\lambda^{m} u_{i}=v_{i} \lambda$ for every $\lambda \in P$ and i. We choose

$$
\lambda=\operatorname{ldc}\left(s_{j}\right) / \mu_{i j}
$$

where $\mu_{i j}=\operatorname{gcd}\left(\operatorname{ldc}\left(s_{i}\right), \operatorname{ldc}\left(s_{j}\right)\right)$.
Note that

$$
\lambda s_{i}=s_{i}^{\prime}+\left(\operatorname{ldc}\left(s_{i}\right) / \mu_{i j}\right) s_{j}
$$

Then (10) is equivalent to

$$
\sum_{r=1}^{k} v_{r} \lambda s_{r}=\sum_{r \neq i, j} v_{r} \lambda s_{r}+v_{i} s_{i}^{\prime}+\left(v_{j} \lambda+v_{i}\left(\operatorname{ldc}\left(s_{i}\right) / \mu_{i j}\right)\right) s_{j}=0
$$

Obviously, this relation is trivial if and only if (10) is trivial.

Theorem 4. In the universal enveloping algebra P^{e} of the free Poisson algebra $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the left dependence of a finite system of elements is algorithmically recognizable.

Proof. Let $s_{1}, s_{2}, \ldots, s_{k}$ be a finite set of nonzero elements of P^{e}. If $\operatorname{ldm}\left(s_{i}\right)$ and $\operatorname{ldm}\left(s_{j}\right)$ are not comparable with respect to \ll for every $i \neq j$ then the elements $s_{1}, s_{2}, \ldots, s_{k}$ are left independent over P^{e} by Lemma 9.

If $\operatorname{ldm}\left(s_{i}\right) \gg \operatorname{ldm}\left(s_{j}\right)$ for some $i \neq j$ then we can change s_{i} by s_{i}^{\prime}, according to Lemma 10 . Note that $\operatorname{ldm}\left(s_{i}\right)>\operatorname{ldm}\left(s_{i}^{\prime}\right)$. If $s_{i}^{\prime}=0$ then the elements $s_{1}, s_{2}, \ldots, s_{k}$ are left dependent. If $s_{i}^{\prime} \neq 0$ then we will apply the same discussions to the new system of elements $s_{1}, s_{2}, \ldots, s_{i-1}, s_{i}^{\prime}, s_{i+1}, \ldots, s_{k}$. This process stabilizes after a finite number of steps since the set of all leading monomials is well ordered.

Recall that $B=P \otimes_{k} A$ is the free associative algebra over P in the variables $y_{1}=h_{\chi_{1}}, y_{2}=$ $h_{x_{2}}, \ldots, y_{n}=h_{x_{n}}$. Considering B as an algebra over P, we define a degree function Deg on B by Deg $y_{i}=1$, where $1 \leqslant i \leqslant n$.

Denote by L the Lie subalgebra of the Lie algebra $A^{(-)}$generated by $y_{1}, y_{2}, \ldots, y_{n}$. Then L is a free Lie algebra and $y_{1}, y_{2}, \ldots, y_{n}$ are free generators of L. We need the next purely Lie-theoretical statement.

Lemma 11. Let f be a homogeneous nonlinear element of L such that $f=f_{1} y_{1}+f_{2} y_{2}+\cdots+f_{n} y_{n}$ and $f_{n} \neq 0$ in A. Then there exists $i \leqslant n-1$ such that $\operatorname{ldm}\left(f_{i}\right)>\operatorname{ldm}\left(f_{n}\right)$.

Proof. Recall that a nonempty associative word u in the alphabet $y_{1}, y_{2}, \ldots, y_{n}$ is called a LindonShirshov word (see, for example [6]) if for every nonempty words v and w the equality $u=v w$ implies $v w>w v$. It is well known that if $f \in L$ then $\operatorname{ldm}(f)$ is a Lindon-Shirshov word [6].

Suppose that for every nonzero f_{i}, where $i \leqslant n-1, \operatorname{ldm}\left(f_{i}\right) \leqslant \operatorname{ldm}\left(f_{n}\right)$, then $\operatorname{ldm}(f)=\operatorname{ldm}\left(f_{n}\right) y_{n}=u$ and u is a Lindon-Shirshov word. Put $v=\operatorname{ldm}\left(f_{n}\right)$, then $v y_{n}>y_{n} v$. Since y_{n} is the greatest symbol of the alphabet it follows that $v=y_{n} w$ and $w y_{n}>y_{n} w$. Continuing the same discussions we can get that $u=y_{n}^{s}$ for some $s \geqslant 2$. Note that y_{n}^{s} is not a Lindon-Shirshov word.

Lemma 12. Let f and g be nonzero homogeneous with respect to Deg elements of $P \otimes_{k} L \subseteq P \otimes_{k} A=B$. If f and g are left dependent over B then $\operatorname{Deg} f=\operatorname{Deg} g$.

Proof. Suppose that $\operatorname{Deg} f \geqslant \operatorname{Deg} g$. The elements f and g are left dependent in a free associative algebra over P. Then there exist a nonzero $\lambda \in P$ and a homogeneous of degree $\operatorname{Deg} f-\operatorname{Deg} g$ element $T \in B$ such that $\lambda f=T g$. Changing f by λf we may assume that

$$
\begin{equation*}
f=T g . \tag{11}
\end{equation*}
$$

Every nonzero homogeneous element $b \in B$ can be represented as

$$
b=\beta_{1} \otimes a_{1}+\beta_{2} \otimes a_{2}+\cdots+\beta_{s} \otimes a_{s}
$$

with the least possible $s, \operatorname{ldm}\left(a_{1}\right)<\operatorname{ldm}\left(a_{2}\right)<\cdots<\operatorname{ldm}\left(a_{s}\right)$, and $\operatorname{ldc}\left(a_{1}\right)=\operatorname{ldc}\left(a_{2}\right)=\cdots=\operatorname{ldc}\left(a_{s}\right)=1$. We call this representation of b a short representation. From the minimality of s it follows that $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ are linearly independent elements of P and $a_{1}, a_{2}, \ldots, a_{s}$ are linearly independent elements of A. If $b \in P \otimes_{k} L$ then we can easily find a short representation of b with an additional condition $a_{i} \in L$ for all i. Let

$$
\begin{gathered}
f=\alpha_{1} \otimes l_{1}+\alpha_{2} \otimes l_{2}+\cdots+\alpha_{s} \otimes l_{s} \\
g=\beta_{1} \otimes m_{1}+\beta_{2} \otimes m_{2}+\cdots+\beta_{t} \otimes m_{t} \\
T=\gamma_{1} \otimes W_{1}+\gamma_{2} \otimes W_{2}+\cdots+\gamma_{r} \otimes W_{r}
\end{gathered}
$$

be short representations of f, g, T such that $l_{i}, m_{j} \in L$ for all i, j. Then,

$$
f=\sum_{i, j} \gamma_{i} \beta_{j} W_{i} m_{j}
$$

From this representation of f we can get every other short representation of f by linear transformations over k. Consequently, l_{i} belongs to the left ideal of A generated by $m_{1}, m_{2}, \ldots, m_{t}$ for all i. It follows from (11) that $\alpha_{s}=\gamma_{r} \beta_{t}$ and $\operatorname{ldm}\left(l_{s}\right)=\operatorname{ldm}\left(W_{r}\right) \operatorname{ldm}\left(m_{t}\right)$. Consequently,

$$
l_{s}=g_{1} m_{1}+g_{2} m_{2}+\cdots+g_{t} m_{t}
$$

and $\operatorname{ldm}\left(g_{1}\right), \operatorname{ldm}\left(g_{2}\right), \ldots, \operatorname{ldm}\left(g_{t-1}\right) \leqslant \operatorname{ldm}\left(g_{t}\right)=W_{r}$.
It follows from $[28,29]$ that l_{s} belongs to the Lie subalgebra generated by $m_{1}, m_{2}, \ldots, m_{t}$. We fix $h \in \operatorname{Lie}\left\langle z_{1}, z_{2}, \ldots, z_{t}\right\rangle$ such that $l_{s}=h\left(m_{1}, m_{2}, \ldots, m_{t}\right)$. We may assume that h is homogeneous since $m_{1}, m_{2}, \ldots, m_{t}$ are homogeneous and have the same degrees. In this case their linear independence implies [32] their freeness in the Lie algebra L. Hence the left A-submodule generated by these elements is free with the same free generators [32]. If $h=h_{1} z_{1}+h_{2} z_{2}+\cdots+h_{t} z_{t}$ then $h_{i}\left(m_{1}, m_{2}, \ldots, m_{t}\right)=g_{i}$ for all i. Put $z_{1}<z_{2}<\cdots<z_{t}$. Note that

$$
\operatorname{ldm}\left(h_{i}\left(m_{1}, m_{2}, \ldots, m_{t}\right)\right)=\operatorname{ldm}\left(h_{i}\right)\left(\operatorname{ldm}\left(m_{1}\right), \operatorname{ldm}\left(m_{2}\right), \ldots, \operatorname{ldm}\left(m_{t}\right)\right)
$$

since $\operatorname{ldm}\left(m_{1}\right)<\operatorname{ldm}\left(m_{2}\right)<\cdots<\operatorname{ldm}\left(m_{t}\right)$ and have one and the same degrees. The same idea gives $\operatorname{ldm}\left(h_{i}\right)<\operatorname{ldm}\left(h_{j}\right)$ if and only if $\operatorname{ldm}\left(g_{i}\right)<\operatorname{ldm}\left(g_{j}\right)$. Then,

$$
\operatorname{ldm}\left(h_{1}\right), \operatorname{ldm}\left(h_{2}\right), \ldots, \operatorname{ldm}\left(h_{t-1}\right) \leqslant \operatorname{ldm}\left(h_{t}\right) .
$$

If h is not linear then this contradicts Lemma 11, therefore h is linear. It is possible if and only if $\operatorname{Deg} T=0$, hence $\operatorname{Deg} f=\operatorname{Deg} g$.

6. Universal derivations

As before, $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the free Poisson algebra in the variables $x_{1}, x_{2}, \ldots, x_{n}$. Denote by Ω_{P} the left ideal of P^{e} generated by $h_{x_{1}}, h_{x_{2}}, \ldots, h_{x_{n}}$. By Theorem 2 ,

$$
\Omega_{P}=P^{e} h_{x_{1}} \oplus P^{e} h_{x_{2}} \oplus \cdots \oplus P^{e} h_{x_{n}},
$$

i.e., Ω_{P} is a free left P^{e}-module. Note that

$$
P^{e}=P \oplus \Omega_{P}
$$

Consider

$$
H: P \rightarrow \Omega_{P}
$$

such that $H(p)=h_{p}$ for all $p \in P$. By Lemma $1, H$ is the universal derivation of P and Ω_{P} its universal differential module.

Recall that a set of elements $f_{1}, f_{2}, \ldots, f_{k}$ of the free Poisson algebra P is called Poisson free or Poisson independent if the Poisson subalgebra of P generated by these elements is the free Poisson algebra with free generators $f_{1}, f_{2}, \ldots, f_{k}$. Otherwise these elements are called Poisson dependent.

Lemma 13. Let $f_{1}, f_{2}, \ldots, f_{k}$ be arbitrary elements of the free Poisson algebra P over a field k of characteristic 0 . If the elements $f_{1}, f_{2}, \ldots, f_{k}$ are Poisson dependent then the elements $H\left(f_{1}\right), H\left(f_{2}\right), \ldots, H\left(f_{k}\right)$ are left dependent over P^{e}.

Proof. Let $F=F\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ be a nonzero element of $T=k\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ with the minimal degree such that $F\left(f_{1}, f_{2}, \ldots, f_{k}\right)=0$. Suppose that

$$
H(F)=u_{1} H\left(z_{1}\right)+u_{2} H\left(z_{2}\right)+\cdots+u_{k} H\left(z_{k}\right)
$$

in Ω_{T}. We may assume that $u_{1}=u_{1}\left(z_{1}, z_{2}, \ldots, z_{k}\right) \neq 0$. Note that $\operatorname{deg} u_{1}<\operatorname{deg} F$. Consequently,

$$
0=H\left(F\left(f_{1}, f_{2}, \ldots, f_{k}\right)\right)=u_{1}^{\prime} H\left(f_{1}\right)+u_{2}^{\prime} H\left(f_{2}\right)+\cdots+u_{k}^{\prime} H\left(f_{k}\right),
$$

where $u_{i}^{\prime}=u_{i}\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ for all i. If $u_{1}^{\prime} \neq 0$ then the last equation gives a nontrivial dependence of $H\left(f_{1}\right), H\left(f_{2}\right), \ldots, H\left(f_{k}\right)$.

Suppose that $u_{1}^{\prime}=0$. Note that $u_{1}=t+w$, where $t \in T$ and $w \in \Omega_{T}$, since $U(T)=T \oplus \Omega_{T}$. Obviously, $t\left(f_{1}, f_{2}, \ldots, f_{k}\right) \in P$ and it easily follows from (1)-(2) that $w\left(f_{1}, f_{2}, \ldots, f_{k}\right) \in \Omega_{p}$. Then, $t\left(f_{1}, f_{2}, \ldots, f_{k}\right)=0$ and $w\left(f_{1}, f_{2}, \ldots, f_{k}\right)=0$ since $0=u_{1}^{\prime}=t\left(f_{1}, f_{2}, \ldots, f_{k}\right)+w\left(f_{1}, f_{2}, \ldots, f_{k}\right) \in$ $P \oplus \Omega_{P}$. If $t \neq 0$ then this contradicts the minimality of $\operatorname{deg} F$ since $\operatorname{deg} t \leqslant \operatorname{deg} u_{1}<\operatorname{deg} F$. If $w \neq 0$ then, continuing the same discussions, we get a nontrivial dependence of $H\left(f_{1}\right), H\left(f_{2}\right), \ldots, H\left(f_{k}\right)$ over P^{e}.

Theorem 5. Let f and g be arbitrary elements of the free Poisson algebra $P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in the variables $x_{1}, x_{2}, \ldots, x_{n}$ over a field k of characteristic zero. Then the following conditions are equivalent:
(i) f and g are Poisson dependent;
(ii) $H(f)$ and $H(g)$ are left dependent over P^{e};
(iii) f and g are polynomially dependent, i.e., they are algebraically dependent in the polynomial algebra P;
(iv) there exists $a \in P$ such that $f, g \in k[a]$;
(v) $\{f, g\}=0$ in P.

Proof. By Lemma 12, (i) implies (ii). The conditions (iii), (iv), and (v) are equivalent [16,35]. Obviously, (iii) implies (i).

To prove the theorem it is sufficient to show that (ii) implies (iii). Note that $f=0$ if and only if $H(f)=0$. Suppose that $(H(f), H(g)) \neq 0$ and

$$
u H(f)+v H(g)=0, \quad(u, v) \neq 0
$$

Then obviously

$$
\overline{\bar{u} \overline{H(f)}+\bar{v} \overline{H(g)}}=0, \quad(\bar{u}, \bar{v}) \neq 0,
$$

or equivalently,

$$
\varphi(u) \varphi(H(f))+\varphi(v) \varphi(H(g))=0, \quad(\varphi(u), \varphi(v)) \neq 0
$$

in the algebra $B=P \otimes_{k} A$, where $\varphi: P^{e} \rightarrow g r P^{e}$ is the gradation mapping (9). So, $\varphi(H(f))$ and $\varphi(H(g))$ are left dependent over B.

Let $l=l\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an arbitrary element of the free Lie algebra $g=\operatorname{Lie}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. Then, $H_{l}=h_{l}=l\left(h_{x_{1}}, h_{x_{2}}, \ldots, h_{x_{n}}\right)$ by (1). Hence $H_{l}=l\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in L$. For every $i \geqslant 1$ denote by $\partial_{e_{i}}$ the usual partial derivation of the polynomial algebra P in the variables (5). It can be easily checked that

$$
H(a)=\sum_{i \geqslant 1} \partial_{e_{i}}(a) H\left(e_{i}\right) \in P L
$$

for every $a \in P$. Consequently, $\varphi(H(f)), \varphi(H(g)) \in P \otimes_{k} L$.
So, the homogeneous nonzero elements $\varphi(H(f))$ and $\varphi(H(g))$ of $P \otimes_{k} L$ are left dependent over B. Then $\operatorname{Deg} \varphi(H(f))=\operatorname{Deg} \varphi(H(g))$ by Lemma 11. Recall that B is a free associative algebra over P. Hence there exist nonzero elements $\lambda, \mu \in P$ such that $\lambda \varphi(H(f))=\mu \varphi(H(g))$ or equivalently, $\lambda \overline{H(f)}=\mu \overline{H(g)}$ and $h \operatorname{deg}(\lambda H(f)-\mu H(g))<h \operatorname{deg} H(f)=h \operatorname{deg} H(f)$.

Using Lemma 7, it is easy to show that $H(f)$ and $\lambda H(f)-\mu H(g)$ are left dependent over P^{e} again. If $\lambda H(f)-\mu H(g) \neq 0$ then $\varphi(H(f))$ and $\varphi(\lambda H(f)-\mu H(g))$ are homogeneous nonzero elements of $P \otimes_{k} L$ left dependent over B. This contradicts the statement of Lemma 11 since $\operatorname{Deg} \varphi(\lambda H(f)-$ $\mu H(g))<\operatorname{Deg} \varphi(H(f))$. Consequently, $\lambda H(f)-\mu H(g)=0$. Then,

$$
\sum_{i \geqslant 1}\left(\lambda \partial_{e_{i}}(f)-\mu \partial_{e_{i}}(g)\right) H\left(e_{i}\right)=0
$$

and hence

$$
\lambda \partial_{e_{i}}(f)-\mu \partial_{e_{i}}(g)=0
$$

for all $i \geqslant 1$. It is well known (see, for example [23]) that in this case f and g are algebraically dependent in the polynomial algebra P.

The equivalence of the conditions (i) and (iii) of Theorem 5 was proved recently in [14]. The condition (ii) plays a central role in the given proof as well as in further proofs.

For every $p \in P=k\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the Fox derivatives $\frac{\partial p}{\partial x_{i}}$ (see [31,32]) are uniquely defined by

$$
H(p)=\frac{\partial p}{\partial x_{i}} h_{x_{1}}+\frac{\partial p}{\partial x_{i}} h_{x_{2}}+\cdots+\frac{\partial p}{\partial x_{i}} h_{x_{n}}, \quad \frac{\partial p}{\partial x_{i}} \in P^{e},
$$

for all $1 \leqslant i \leqslant n$. For every endomorphism ψ of the free Poisson algebra P we define the Jacobian matrix $J(\psi)=\left[u_{i j}\right]$ with $u_{i j}=\frac{\partial \psi\left(x_{i}\right)}{\partial x_{j}}$ for all $1 \leqslant i, j \leqslant n$. It is easy to show [31] that $J(\psi)$ is invertible over P^{e} if ψ is an automorphism. The reverse statement is an analogue of the classical Jacobian Conjecture [11] for free Poisson algebras.

Theorem 6. Let ψ be an endomorphism of the free Poisson algebra $P=k\{x, y\}$ in the variables x, y over a field k of characteristic 0 . If $J(\psi)$ is invertible over P^{e} then $\psi(x), \psi(y) \in k[x, y]$.

Proof. Put $\psi(x)=f$ and $\psi(y)=g$. Note that $J(\psi)$ is invertible over P^{e} if and only if Ω_{P} is the free p^{e} module with basis $H(f)$ and $H(g)$. It is sufficient to prove that $h \operatorname{deg}(H(f))=h \operatorname{deg}(H(g))=1$.

Suppose that $\operatorname{hdeg} H(f)+\operatorname{hdeg} H(g) \geqslant 3$. Note that $\Omega_{P}=P^{e} H(f)+P^{e} H(g)=P^{e} h_{x}+P^{e} h_{y}$. Consequently, $P^{e} H(f)+P^{e} H(g)$ contains two elements h_{x} and h_{y} of h-degree 1 . Hence there exists ($u, v) \neq 0$ such that

$$
\overline{u \overline{H(f)}+v \overline{H(g)}}=0 .
$$

As in the proof of Theorem $5, h \operatorname{deg} H(f)=h \operatorname{deg} H(g)$ and there exist $0 \neq \lambda, \mu \in P$ such that $\operatorname{hdeg}(\lambda H(f)-\mu H(g))<\operatorname{hdeg} H(f)$. Put $T=\lambda H(f)-\mu H(g)$. Note that $\operatorname{hdeg} H(f)+h \operatorname{deg} T \geqslant 3$. By Lemma 8, it is not difficult to find a nonzero $\eta \in P$ such that $\eta h_{x}, \eta h_{y} \in P^{e} H(f)+P^{e} T$. Again, as in the proof of Theorem 5, we get $h d e g H(f)=h d e g ~ T$. This is a contradiction.

Using Jung's theorem [13] and Theorem 6 we get
Corollary 4. Automorphisms of free Poisson algebras in two variables over a field of characteristic zero are tame.

The first proof of this result was given in [15] and the other two proofs recently appeared also in [17,14].

Corollary 5. The two-dimensional Jacobian Conjecture for free Poisson algebras is equivalent to the twodimensional Jacobian Conjecture for polynomial algebras in characteristic zero.

An analogue of the Jacobian Conjecture is true for free Lie algebras [20,25,29,36], for free associative algebras [9,21], and for free nonassociative algebras [31,34].

7. Comments and problems

In Section 3 we proved that the universal enveloping algebras of the Poisson symplectic algebra P_{n} and the Weyl algebra A_{n} are isomorphic. It is not difficult to show that this result is true also for fields of positive characteristic. A. Belov-Kanel and M. Kontsevich [3] formulated the next problem.

Problem 1. The automorphism group of the Weyl algebra of index n is isomorphic to the group of polynomial symplectomorphisms of a $2 n$-dimensional affine space, i.e.,

$$
\text { Aut } A_{n} \simeq \text { Aut } P_{n}
$$

This problem was posed in [3] for fields of characteristic zero but it makes sense in positive characteristic also [1,4,26,27].

Every automorphism φ of P_{n} can be uniquely extended to an automorphism φ^{*} of the universal enveloping algebra P_{n}^{e} by $x \mapsto \varphi(x), h_{x} \mapsto h_{\varphi(x)}$ for all $x \in P_{n}$. Similarly, every automorphism ψ of A_{n} can be uniquely extended to an automorphism ψ° of the universal enveloping algebra A_{n}^{e} by $x \otimes 1 \mapsto$ $\psi(x) \otimes 1,1 \otimes x^{\prime} \mapsto 1 \otimes \psi(x)^{\prime}$ for all $x \in A_{n}$. By means of $\varphi \mapsto \varphi^{*}$ and $\psi \mapsto \psi^{\circ}$ we can identify the
groups of automorphisms Aut P_{n} and Aut A_{n} with the corresponding subgroups of Aut P_{n}^{e} and Aut A_{n}^{e}, respectively. By means of the canonical isomorphism θ from Section 3 we can identify P_{n}^{e} and A_{n}^{e} and consider Aut P_{n} and Aut A_{n} as subgroups of Aut $A_{2 n}$.

Problem 2. Is it true that Aut P_{n} and Aut A_{n} are conjugate?
First of all it is interesting to know the answer to the question: Are Aut P_{n} and Aut A_{n} conjugate in Aut $A_{2 n}$? It seems the structure of an isomorphism between Aut P_{n} and Aut A_{n} is very complicated if it exists.

We say that the subalgebra membership problem is decidable for an algebra A if there is an effective procedure that defines for any element $a \in A$ and for any finitely generated subalgebra B of A whether a belong to B or not. Some relations between the distortion of subalgebras and the subalgebra membership problem were established in [2] for polynomial, free associative, and free Lie algebras. It can be easily derived from $[24,33]$ that the subalgebra membership problem is decidable for free Lie algebras. Moreover, finitely generated subalgebras of free Lie algebras are residually finite [28]. The subalgebra membership problem is still open in the case of free Poisson algebras.

Problem 3. Is the subalgebra membership problem decidable for free Poisson algebras?
The subalgebra membership problem for free associative algebras is undecidable [30]. In fact, if $A=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a free associative algebra, then the structure of the left ideals of the universal enveloping algebra $A^{e}=A \otimes_{k} A^{o p}$ is very difficult [30]. The left ideal membership problem is algorithmically undecidable and the left dependence of a finite set of elements of A^{e} is algorithmically unrecognizable [30]. The next problem is closely related to Problem 3.

Problem 4. Is the left ideal membership problem decidable over the universal enveloping algebras of free Poisson algebras?

By Theorem 4, the left dependence of a finite set of elements over the universal enveloping algebras of free Poisson algebras is algorithmically recognizable. This is a positive result in the direction of solving Problems 3 and 4 . These problems are also related to the next problem.

Problem 5. Is the freeness of a finite set of elements of free Poisson algebras algorithmically recognizable?

Recall that the freeness of a finite set of elements is algorithmically recognizable in the case of free Lie algebras (see, for example [29]) and unrecognizable in the case of free associative algebras [30]. In Lemma 13 we proved that the Poisson dependence implies the left dependence of universal derivatives.

Problem 6. Let $f_{1}, f_{2}, \ldots, f_{k}$ be arbitrary elements of the free Poisson algebra P over a field k of characteristic 0 . Is it true that the left dependence of $H\left(f_{1}\right), H\left(f_{2}\right), \ldots, H\left(f_{k}\right)$ over P^{e} implies the Poisson dependence of $f_{1}, f_{2}, \ldots, f_{k}$.

Acknowledgments

I am grateful to Max-Planck Institute für Mathematik for hospitality and excellent working conditions, where part of this work has been done. I am also grateful to V. Gorbounov, L. Makar-Limanov, and I. Shestakov for very helpful discussions and comments.

References

[1] P.K. Adjamagbo, A. van den Essen, A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures, Acta Math. Vietnam. 32 (2-3) (2007) 205-214.
[2] Yu. Bahturin, A. Olshanskii, Filtrations and distortion in infinite-dimensional algebras, arXiv:1002.0015v1 [math.RA], 29 January 2010, 62 pp .
[3] A. Belov-Kanel, M. Kontsevich, Automorphisms of the Weyl algebra, Lett. Math. Phys. 74 (2) (2005) 181-199.
[4] A. Belov-Kanel, M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier conjecture, Mosc. Math. J. 7 (2) (2007) 209-218.
[5] G.M. Bergman, W. Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (2) (1978) $293-337$.
[6] L.A. Bokut, Yu. Chen, Grobner-Shirshov bases for Lie algebras: after A.I. Shirshov, Southeast Asian Bull. Math. 31 (2007) 1057-1076.
[7] P.M. Cohn, Subalgebras of free associative algebras, Proc. London Math. Soc. 56 (1964) 618-632.
[8] P.M. Cohn, Free Ideal Rings and Localization in General Rings, New Math. Monogr., vol. 3, Cambridge University Press, Cambridge, 2006.
[9] W. Dicks, J. Lewin, A Jacobian conjecture for free associative algebras, Comm. Algebra 10 (12) (1982) 1285-1306.
[10] J. Dixmier, Enveloping Algebras, revised reprint of the 1977 translation, Grad. Stud. Math., vol. 11, Amer. Math. Soc., Providence, RI, 1996.
[11] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math., vol. 190, Birkhäuser Verlag, Basel, 2000.
[12] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc., Providence, RI, 1968.
[13] H.W.E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942) 161-174.
[14] L. Makar-Limanov, I. Shestakov, Polynomial and Poisson dependence in free Poisson algebras and free Poisson fields, J. Algebra 349 (2012) 372-379.
[15] L. Makar-Limanov, U. Turusbekova, U. Umirbaev, Automorphisms and derivations of free Poisson algebras in two variables, J. Algebra 322 (2009) 3318-3330.
[16] L. Makar-Limanov, U. Umirbaev, Centralizers in free Poisson algebras, Proc. Amer. Math. Soc. 135 (7) (2007) 1969-1975.
[17] L. Makar-Limanov, U. Umirbaev, The Freiheitssatz for Poisson algebras, J. Algebra 328 (2011) 495-503.
[18] S.-Q. Oh, Poisson enveloping algebras, Comm. Algebra 27 (5) (1999) 2181-2186.
[19] S.-Q. Oh, C.-G. Park, Y.-Y. Shin, A Poincare-Birkhoff-Witt theorem for Poisson enveloping algebras, Comm. Algebra 30 (10) (2002) 4867-4887.
[20] C. Reutenauer, Applications of a noncommutative Jacobian matrix, J. Pure Appl. Algebra 77 (2) (1992) 169-181.
[21] A.H. Schofield, Representation of Rings over Skew Fields, London Math. Soc. Lecture Note Ser., vol. 92, Cambridge University Press, Cambridge, 1985.
[22] I.P. Shestakov, Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras, Algebra Logic 32 (5) (1993) 309-317.
[23] I.P. Shestakov, U.U. Umirbaev, Poisson brackets and two generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004) 181-196.
[24] A.I. Shirshov, Subalgebras of free Lie algebras, Mat. Sb. 33 (75) (1953) 441-452.
[25] V. Shpilrain, Generators of L / R^{2} Lie algebras, Proc. Amer. Math. Soc. 119 (4) (1993) 1039-1043.
[26] Y. Tsuchimoto, Preliminaries on Dixmier conjecture, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 24 (2003) 43-59.
[27] Y. Tsuchimoto, Endomorphisms of Weyl algebra and p-curvatures, Osaka J. Math. 42 (2) (2005) 435-452.
[28] U.U. Umirbaev, On the approximation of free Lie algebras with respect to entry, in: Monoids, Rings and Algebras, Tartu, Tartuskij Universitet, Tartu Uelik. Toim., Mat.-Meh.-Alaseid Toeid 878 (1990) 147-152.
[29] U.U. Umirbaev, Partial derivations and endomorphisms of some relatively free Lie algebras, Sib. Math. J. 34 (6) (1993) 1161-1170.
[30] U.U. Umirbaev, Algorithmic problems in associative algebras, Algebra Logic 32 (1993) 244-255.
[31] U.U. Umirbaev, On Schreier varieties of algebras, Algebra Logic 33 (3) (1994) 180-193.
[32] U.U. Umirbaev, Universal derivations and subalgebras of free algebras, in: Proc. 3rd Internat. Conf. Algebra, Krasnoyarsk, Russia, Walter de Gruyter, Berlin, 1996, pp. 255-271.
[33] E. Witt, Die Unterringe der freien Lieschen Ringe, Math. Z. 64 (1956) 195-216.
[34] A.V. Yagzhev, On endomorphisms of free algebras, Sibirsk. Mat. Zh. 21 (1) (1980) 181-192.
[35] A. Zaks, Dedekind subrings of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ are rings of polynomials, Israel J. Math. 9 (1971) 285-289.
[36] A.A. Zolotykh, A.A. Mikhalev, Endomorphisms of free associative algebras over commutative rings, and their Jacobians, Fundam. Prikl. Mat. 1 (1) (1995) 177-189.

[^0]: * Correspondence to: Department of Mathematics, Wayne State University, Detroit, MI 48202, USA. E-mail address: umirbaev@math.wayne.edu.
 ${ }^{1}$ Supported by an NSF grant DMS-0904713 and by a grant of Kazakhstan.

