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Abstract

We demonstrate the calculation of the coupling constants and form factors required by effective hadron Lagrangians using the quark model.
These relations follow from equating expressions for strong transition amplitudes in the two approaches. As examples we derive the NNm

nucleon–meson coupling constants and form factors for m = π,η,η′, σ, a0,ω and ρ, using harmonic oscillator quark model meson and baryon
wavefunctions and the 3P0 decay model; these results are relevant to quark-based descriptions of the NN force. This technique should be useful in
the application of effective Lagrangians to processes in which the lack of data precludes the direct determination of coupling constants and form
factors from experiment.
© 2006 Published by Elsevier B.V.
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1. Introduction

Effective hadronic Lagrangians are widely used in the de-
scription of the interactions of hadrons. In this method a dis-
tinct quantum field is introduced for each relevant hadronic
species, and interactions are assumed for these fields that are
consistent with known symmetries and conservation laws. Al-
though a more physically justified description of hadron scatter-
ing amplitudes would employ momentum-dependent coupling
constants (form factors), it often suffices near threshold to as-
sume pointlike “hard” hadronic vertices with fixed coupling
constants. This approximation may be relaxed by incorporating
hadronic form factors as a power series of gradient interactions.
Unfortunately, this leads to non-renormalizable ultraviolet di-
vergences, which requires the determination of many coupling
constants from experiment.
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When using effective Lagrangians one typically ignores the
existence of hadronic substructure (quarks and gluons), and de-
termines each coupling constant in the effective Lagrangian
from experiment. Although this procedure is feasible in exper-
imentally highly constrained problems such as the NN interac-
tion, in other processes with little data the coupling constants
are simply assigned plausible values. In such cases it would be
very useful to have numerical estimates of the coupling con-
stants. Since these coupling constants and form factors are de-
termined by the underlying QCD degrees of freedom, one may
evaluate them directly in terms of the interactions of quarks and
gluons and the substructure of the hadronic bound states.

In this Letter we will investigate this relation between effec-
tive Lagrangian couplings and quark model bound state hadron
wavefunctions. The specific cases we consider are the meson–
nucleon couplings, which are usually fitted to data in meson ex-
change models of the NN force. These NNm vertices are chosen
as our initial examples in part because they are among the most
important hadronic couplings for nuclear physics applications,
and also because the NNπ coupling constant gNNπ ≈ 13.5 is
the best determined strong coupling in hadron physics. It is
clearly of interest to determine whether this experimental cou-
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pling constant is consistent with the value predicted using quark
model hadron wavefunctions.

The results presented here are also relevant to composite
models of the NN force that are based on both quark and me-
son degrees of freedom. In this type of model the short ranged
NN interactions are attributed to quark–gluon forces encoun-
tered by overlapping nucleon quark wavefunctions, whereas the
long ranged NN interactions are described by t -channel meson
exchange. The associated meson–nucleon couplings and form
factors, which we compute here, are determined by the convo-
lution of meson and nucleon wavefunctions with a quark pair
creation operator.

2. Technique

Our method for defining effective hadronic coupling con-
stants and form factors is to equate specific hadron emission
amplitudes predicted by the effective hadron Lagrangian to the
corresponding decay amplitude in the quark model. Applied to
NNm couplings in particular, we require that

(1)〈Nm|Heff|N〉 = 〈
N

(
q3)m(qq̄)

∣∣Hdecay
∣∣N(

q3)〉.
This general approach was used previously by the Orsay group
of Le Yaouanc et al. [1], who considered ρππ , NNπ and
NNρ couplings; the relation between this earlier reference and
our results will be discussed. A similar quark model approach
was more recently applied to the determination of HQET elec-
troweak form factors by Isgur et al. [2].

Ideally one would impose this relation using a relativistic
quark model, in which case there would be no difficulty in iden-
tifying the effective Lagrangian matrix element with the quark
model result. As the non-relativistic quark model formalism is
much better established, we will instead use non-relativistic
quark model wavefunctions, and apply our defining relation
Eq. (1) between matrix elements near threshold. Since the quark
model wavefunctions we use are non-relativistic, the form fac-
tors we extract by equating quark model and (relativistic) field
theory matrix elements have an ambiguity in how we relate re-
sults in different frames. In this initial study we will simply
assume a particular frame, the “decay frame” of a rest initial
hadron, as in the earlier work of the Orsay group [1]. The com-
plication of implicit frame dependence will be investigated in
detail a subsequent study.

It is important to note that these frame ambiguities are re-
solved in the weak binding and non-relativistic limits, in which
the quark model states approach the transformation properties
specified by the Lorentz group. Thus our quark model predic-
tions of form factors are best justified at zero three-momentum,
where we define the coupling constants. Of course the model
assumption is that the predicted form factors remain useful es-
timates at moderate non-zero momentum.

The specific quark model strong decay Hamiltonian we use
is the 3P0 model [1,3,4], which has seen very wide application,
and is known to give reasonably accurate numerical results for
both meson [5–7] and baryon [8] strong decays.
2.1. NNπ , NNη and NNη′

As a first example we consider the NNπ coupling. We as-
sume the standard pseudoscalar effective Lagrangian

(2)LNNπ = −igNNπ Ψ̄ γ5 �τΨ · �φπ ,

where Ψ = [ψp,ψn] is an isodoublet of Dirac nucleon fields,
the �τ are isospin Pauli matrices, and �φπ is an isotriplet of
pion fields, [φπ+ , φπ0 , φπ−]. Specializing to the transition
p(+1/2) → p(+1/2)π0 (an initial spin-up proton at rest go-
ing to a spin-up proton with momentum −�P and a recoiling π0

with momentum +�P), we find the matrix element
〈
pπ0

∣∣Heff|p〉/δ(�Pf − �Pi )

≡ hf i

(3)= igNNπ

Mp

Ep

1√
(2π)32Eπ

[
P cos(θ)√

2Mp(Ep + Mp)

]
.

We similarly evaluate the quark model matrix element of the
3P0 decay model Hamiltonian for p(+1/2) → p(+1/2)π0, us-
ing the techniques and Gaussian baryon and meson wavefunc-
tions given in Refs. [4,9]. The result is
〈
p
(
q3)π0(qq̄)

∣∣Hdecay
∣∣p(

q3)〉/δ(�Pf − �Pi )

≡ hf i

= −γ
10

9π3/4

(1 + r2/4)r3/2

(1 + r2/3)5/2

P cos(θ)

α3/2

(4)× exp

{
−1

6

(1 + 5r2/12)

(1 + r2/3)

(
P

α

)2}
,

where α and β = α/r are the baryon and meson Gaussian quark
wavefunction inverse length scales, and γ is the dimensionless
3P0 model qq̄ pair production amplitude. This result is consis-
tent with the earlier result of Le Yaouanc et al. [1], given the pa-
rameter relations between that reference and the current work,
RN = 1/α, Rπ = 1/β and γLeY = √

24πγ . Typical values for
these parameters found in the literature are α = 0.25–0.4 GeV,
β = 0.3–0.4 GeV, and γ = 0.4–0.5. Here we fix γ = 0.4 (taken
from our extensive studies of light and charmed meson strong
decays [4–7]), and show numerical results for this range of α

and β .
The NNπ coupling constant we find by equating these ex-

pressions at threshold is

(5)gNNπ = γ
24 · 5

32
π3/4 (1 + r2/4)r3/2

(1 + r2/3)5/2

Mpm
1/2
π

α3/2
.

(We have suppressed an overall phase factor of +i, which is
normalization convention dependent.) The numerical value of
this coupling constant as a function of α and β is shown in
Fig. 1. Evidently the range of typical wavefunction length scale
parameters α and β leads to a factor of two variation in the
theoretical gNNπ ; it ranges between 7.0–12.2 for the parameters
shown in the figure. The experimental value of ≈ 13.5 evidently
corresponds to values of α and β near the lower end of their
respective ranges, provided that we fix the qq̄ pair production
amplitude at the meson decay value of γ = 0.4.
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Fig. 1. The theoretical pion–nucleon coupling constant gNNπ (Eq. (5)) as a
function of the quark model Gaussian wavefunction length scales α (baryons)
and β (mesons). The range of values of α and β typically found in the quark
model literature is indicated (see text). The 3P0 model qq̄ pair production am-
plitude γ = 0.4 was taken from studies of meson decays. The experimental
gNNπ ≈ 13.5 is also shown.

Since the “experimental” value of gNNπ is not actually
based on a direct observation of pion emission, it is prudent
to carry out an independent calculation of a closely related de-
cay process that does involve a detected pion in the final state.
The transitions Δ → Nπ are useful in this regard because the
matrix elements are related to the NNπ coupling by SU(6) sym-
metry, assuming identical spatial wavefunctions. Specializing
to Δ++ → pπ+, the quark model result for the total width is

Γ (Δ++ → pπ+)

= γ 2π1/2 28

33
r3 (1 + r2/4)2

(1 + r2/3)5

EpEπ

MΔ

(
P

α

)3

(6)× exp

{
−1

3

(1 + 5r2/12)

(1 + r2/3)

(
P

α

)2}
.

This theoretical quark model decay rate is shown in Fig. 2 for
the same range of wavefunction parameters α,β as gNNπ in
Fig. 1, and the experimental width of 110 MeV is also shown.
Evidently the parameter constraints due to gNNπ and Γ (Δ →
Nπ) are approximately consistent.

Alternatively, since the dimensionless pair production am-
plitude γ represents poorly understood non-perturbative physics,
it may have a different strength in baryon decays than in
meson decays. In Fig. 3 we show the ratio of theory to ex-
periment for Γ (Δ++ → pπ+) and gNNπ for our “standard”
quark model baryon and meson wavefunction length scales
α = β = 0.4 GeV, varying the pair production amplitude γ . Ev-
idently with these wavefunctions a value of γ ≈ 0.7 is favored
for pion emission from light baryons, whereas γ ≈ 0.4–0.5
gives the best description of light meson decays.

Nucleon couplings to the other ground state pseudoscalars
(η and η′) are simply related to gNNπ , provided that we assume
identical spatial wavefunctions and pure qq̄ states. Given the
effective Lagrangian

(7)LNNη(′) = −igNNη(′)Ψ̄ γ5Ψ φη(′),
Fig. 2. The theoretical 3P0 quark model Γ (Δ++ → pπ+) width (Eq. (6)) as
a function of the wavefunction length scales α and β , for a pair production
amplitude of γ = 0.4. The experimental width is also shown.

Fig. 3. The ratio of theory and experiment for Γ (Δ++ → pπ+) and gNNπ

given our standard quark model wavefunction length scales α = β = 0.4 GeV,
but with the pair production amplitude γ variable.

and taking the |η〉 and |η′〉 flavor states to be the maximally
mixed linear combinations (|nn̄〉 ± |ss̄〉)/√2, the NNη(′) cou-
pling constants and form factors are related to the NNπ results
by

(8)gNNη(′) = 3

21/2 · 5

(
mη(′)
mπ

)1/2

gNNπ .

If we use gNNπ = 13.5 as input, this gives gNNη = 11.5 and
gNNη′ = 15.3. Although these appear to be rather large NNη(′)
couplings, their effect on NN scattering is suppressed by the
larger η and η′ masses in propagators and in the 1/

√
2E exter-

nal line normalizations.

2.2. NNσ

The NNσ coupling may be the most important nucleon–
meson coupling in all of nuclear physics. In meson exchange
models the exchange of a light scalar I = 0 “sigma” meson is
held to be the dominant mechanism underlying the intermediate
ranged attraction, which is responsible for nuclear binding. The
balance between this attraction and the short distance repul-
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sion in the nuclear core determines the equilibrium density of
n0 ≈ 0.16 nucleons/fm3 in bulk nuclear matter. (Although pi-
ons are lighter and hence longer-ranged, and the gNNπ coupling
constant is quite large, the fact that pions are emitted in a rela-
tive P-wave suppresses their contribution to the near-threshold
interactions of nucleons.)

Although the intermediate ranged attraction plays a crucial
role in nuclear physics, the σ meson itself is a dubious con-
cept in meson spectroscopy. In I = 0 ππ S-wave scattering one
sees a very broad positive (attractive) phase shift, which if in-
terpreted as an s-channel resonance would imply a mass of ca.
1 GeV and a comparably large width. There are arguments from
the quark model against a qq̄ state with these properties; for
example, an I = 0 0++ nn̄ resonance (n = u,d) at this mass
would have a rather large two-photon width of Γγγ ≈ 2 keV,
and no such state is evident in γ γ → π0π0. There is instead
evidence in this reaction for a moderately broad scalar enhance-
ment near 1.3 GeV, with about the expected two-photon width
[10]1; this broad f0(≈ 1300) is often identified with the I = 0
0++ nn̄ quark model state.

The explicit σ meson included in meson exchange models
has been explained as a parametrization of “correlated two-pion
exchange”, so that its fitted strong coupling to NN and low mass
need not correspond to the properties of a physical P-wave nn̄

meson. The picture of the “sigma meson” as a strongly mixed
(nn̄)–ππ state is supported by the large coupling predicted be-
tween these channels in the 3P0 model; the analogous S-wave
kaon system is discussed in Ref. [11].

We can test the plausibility of sigma meson exchange mod-
els of the intermediate ranged NN attraction by calculating the
NNσ coupling for a pure nn̄ σ meson, using the same tech-
niques we applied above to the NNπ system. If the sigma is
dominantly a physical nn̄ scalar meson, we would expect ap-
proximate agreement between the calculated and fitted gNNσ

coupling constants. If the sigma is instead a parametrization of
two-pion exchange, agreement between the theoretical and fit-
ted coupling constants would be fortuitous.

The calculation of the NNσ coupling differs from the NNπ

case through the meson spin, space and isospin wavefunctions
and the effective Lagrangian. We assume the form

(9)LNNσ = −gNNσ Ψ̄ Ψ φσ .

In our quark model description the |σ 〉 is the usual I = 0 |nn̄〉
flavor state (|uū〉+ |dd̄〉)/√2 times the |J,L,S〉 = |0,1,1〉 an-
gular momentum state

1√
3

(|1,+1〉|1,−1〉 − |1,0〉|1,0〉 + |1,−1〉|1,+1〉)

where the basis states are |L,Lz〉|S,Sz〉. The P-wave momen-
tum space qq̄ wavefunctions are given in Ref. [4]. On equating
the effective Lagrangian and quark model hf i = 〈pσ |H |p〉 ma-

1 Rather surprisingly, the PDG has chosen to report the γ γ → f0(1300) →
π0π0 coupling under the entry for the broad f0(600), despite the fact that the
scalar part of the π0π0 invariant mass distribution peaks near 1250 MeV.
Fig. 4. The theoretical nucleon–sigma meson coupling constant gNNσ

(Eq. (10)).

trix elements, we find

(10)gNNσ = γ 25/231/2π3/4 r5/2

(1 + r2/3)5/2

m
1/2
σ

α1/2
.

(A normalization convention dependent overall phase of (−1)

in our result is suppressed here.) The NNσ form factor is
the quadratic (1 + [(1 + r2/4)/9(1 + r2/3)](P/α)2) times the
Gaussian found in the NNπ case in Eq. (4).

The numerical gNNσ predicted by Eq. (10) is shown in Fig. 4
as a function of α and β (assuming mσ = 500 MeV). Evidently
a value in the range 3–7 is predicted by the quark model given
this mσ , with gNNσ ≈ 5 preferred.

Although it is of great interest to compare our calculated
gNNσ coupling constant with the values reported in meson ex-
change model fits to NN scattering data, there is unfortunately
no single consistent value reported for gNNσ in these mod-
els. The three best known meson-exchange models of the NN
force in the literature are the Paris [12,13], Nijmegen [14–16]
and Bonn [17] models, and their NNm couplings are given
in Table 1, together with our quark model results. The Paris
model did not consider a σ meson. In the recent “CD-Bonn”
model [17], different gNNσ coupling constants and σ masses
are assumed in different NN channels; in the I = 0 3S1 NN
channel a σ mass and coupling constant of mσ = 350 MeV and
gNNσ ≈ 2.5 are used, whereas in I = 1 1S0, mσ = 452 MeV
and gNNσ ≈ 7.3 are used. The gNNσ coupling is allowed to vary
with L and I in the L > 0 NN channels, and ranges from 1.9 to
9.9 (see Table XVI of Ref. [17]). In the Nijmegen model [15] a
larger value of gNNσ = 17.9 is quoted. Thus, although our quark
model result gNNσ ≈ 5 is similar to the mean S-wave NN value
quoted in the CD-Bonn model, the scatter in the fitted values of
this parameter precludes an accurate comparison between the-
ory and experiment at present.

One may similarly evaluate the quark model prediction for
the NN coupling of the a0 I = 1 partner of the σ . Given the
effective Lagrangian

(11)LNNa0 = −gNNa0Ψ̄ �τΨ · �φa0
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Table 1
A summary of NNm coupling constants. Our calculated values are shown in the middle columns, and fitted or assumed values in the meson exchange model
literature are shown at right. Values in square brackets were fixed input

Coupling This Ref.a This Ref.b Paris [12,13] Nijmegen [15] Bonn [17]

gNNπ 7.1 [13.5] [13.3] 13.3 [13.1]
gNNη 6.0 11.5 – 9.8 –
gNNη′ 7.9 15.3 – 10.5 –
gNNσ(∼500) 5.0 – 17.9 (2.5; 7.3)c

gNNa0(∼1300) 2.7 – 3.3 –
gNNω (γμ) 30.2 12.2 12.5 15.9
gNNρ/gNNω (γμ) +1/3d 0.43e 0.22 0.20
κω (σμν/γμ) −3/2 −0.12 0.66 0
κρ (σμν/γμ) +3/2 – 6.6 6.1

a Assumes “standard” quark model parameters α = β = 0.4 GeV and γ = 0.4 (see text).
b Assumes gNNπ = 13.5.
c This “CD-Bonn” model introduces different gNNσ coupling constants for (I = 0; I = 1) NN channels, which would not be expected for an isosinglet σ . In

addition these gNNσ couplings and the σ mass are allowed to vary with L (S-wave is quoted here), and a higher-mass σ with large gNNσ couplings is also assumed.
d Assumes mρ = mω .
e This value is cited in Ref. [12] but is not actually used in the Paris model, which does not incorporate ρ exchange.
we find

(12)gNNa0 = 1

3

(
ma0

mσ

)1/2

gNNσ .

Although I = 1 scalar exchange contributes a somewhat
smaller amplitude to NN scattering than I = 0 exchange, it
may nonetheless be possible to test for the presence of both of
these scalar meson exchange amplitudes through their interfer-
ence, for example by comparing the I = 0 and I = 1 S-wave
NN scattering amplitudes discussed above.

2.3. NNω and NNρ

The NNV couplings are interesting in that the short ranged
repulsive core in the NN interaction has previously been at-
tributed to vector meson exchange, and the existence of the ω

meson was regarded as support for this picture. This mechanism
now appears less plausible, since the short range of vector me-
son exchange (R ∼ 1/mω ∼ 0.25 fm) implies extensive overlap
of the NN quark wavefunctions.

Evaluation of the NNV couplings and form factors uses the
same procedure as the scalar and pseudoscalar couplings dis-
cussed above, although there are complications due to the pres-
ence of two form factors and the non-transverse components of
the vector field.

As above we assume a term in the effective Lagrangian for
each coupling. For NNω this Lagrangian is

(13)LNNω = −gNNω

(
Ψ̄ γμΨ ωμ − κω

4MN
Ψ̄ σμνΨ Fμν

)
,

where Fμν = ∂μων − ∂νωμ. We then equate near-threshold
Hamiltonian matrix elements hf i found from this effective La-
grangian to the corresponding 3P0 decay model matrix ele-
ments. There is a complication in relating the relativistic ef-
fective Lagrangian and non-relativistic quark model matrix el-
ements; we find that one must assume a vector meson polar-
ization vector and four-momentum of the form εμ = (0, ε̂) and
qμ = (0, �q) to equate these expressions. The NNω γμ and σμν
form factors may be separated by equating hf i matrix ele-
ments with different spin states. The transitions p(+1/2) →
p(+1/2)ω(0) and p(+1/2) → p(+1/2)ω(−1) are useful in
this regard, since they receive contributions from only the γμ

and σμν terms, respectively. The resulting form factors are pro-
portional to the NNπ result Eq. (5), since they involve the same
Gaussian overlap integrals. The NNω coupling constants (and
form factors) satisfy the relations

(14)gNNω = 9

5

(
mω

mπ

)1/2

gNNπ

and

(15)κω = −3

2
.

The NNρ form factors, defined through the generalization of
the NNω effective Lagrangian to an I = 1 ρ meson,

(16)LNNρ = −gNNρ

(
Ψ̄ γμ�τΨ · �ρμ − κρ

4MN
Ψ̄ σμν �τΨ · �Fμν

)

(where �Fμν = ∂μ �ρν − ∂ν �ρμ) are related to the NNω results by

(17)gNNρ = 1

3

(
mρ

mω

)1/2

gNNω

and

(18)κρ = +3

2
.

The NNρ vector (γμ) coupling constant was previously eval-
uated by Le Yaouanc et al. [1]. Their Eq. (3.13) for gNNρ is
consistent with our Eqs. (5), (17), provided that (i) their factor
of 3R2

NR2
ρ is actually 3R2

NRρ (their result as written is dimen-

sionally incorrect), (ii) their factor of m
3/2
ρ should instead be

m
1/2
ρ mN, analogous to their gNNπ result, and (iii) the factor of

1
2 �τ in their ρ effective Lagrangian Eq. (2.17) should be �τ , as in
their π effective Lagrangian Eq. (2.12). Le Yaouanc et al. did
not evaluate the σμν term, and did not consider the NNω case.

It is interesting to compare our theoretical NNV couplings
with the fitted values found in meson exchange models of NN
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scattering. If the 3P0 model is reasonably accurate in describing
the coupling between non-strange baryons and vector mesons
(which is currently being tested at TJNAF in their search for
missing baryon resonances decaying to Nω and Nρ), and the
meson exchange models are correct in assuming that vector me-
son exchange is the dominant mechanism underlying the short
ranged NN force, we would expect to find approximate agree-
ment between these couplings.

The fitted NNV couplings found in the three well-known
meson exchange models are given in Table 1, together with
our quark model results. Evidently we do not find good agree-
ment. Note in particular that the fitted strength of the dominant
NNω γμ coupling in the meson exchange models is about a
factor of 2 smaller than the quark model prediction. The ra-
tio of the NNρ to NNω γμ couplings is rather similar in the
two approaches; the meson exchange models quote a ratio of
≈ 0.2–0.4, whereas the theoretical ratio (an SU(6) symmetry
factor rather than a detailed test of the quark model predictions)
is +1/3. Although the ratio “κ” of magnetic (σμν) to vector
(γμ) couplings does not yet appear to be well determined for
both vectors in the meson exchange model fits, there does ap-
pear to be agreement that |κρ | � |κω|. This is inconsistent with
our quark model prediction of equal magnitudes for these NNV
“strong magnetic” couplings, κ(ω,ρ) = (−,+)3/2. Since these
ratios are simple SU(6) factors and do not involve uncertainties
in the spatial wavefunctions, this disagreement may imply that
vector meson exchange is not the dominant short ranged NN
interaction mechanism. This will be addressed in detail in a fu-
ture study of the NN scattering amplitudes and phase shifts due
to meson exchange, augmented by quark model constraints on
the nucleon–meson vertices.

3. Summary and conclusions

In this Letter we have developed a formalism for deter-
mining hadron strong vertices and form factors, “three-point
functions”, in the context of the quark model. We apply this
approach to the evaluation of meson–nucleon vertices, several
of which are important in meson exchange models of nuclear
forces. The quark model expression we find for the NNπ cou-
pling confirms an earlier Orsay result. With standard quark
model parameters, this gNNπ is about half the experimental
value. Our quark model expression for the theoretical gNNσ

strong coupling of nucleons to scalar mesons is a new result,
and is numerically similar to the isospin-mean fitted NN S-wave
value in the CD-Bonn model. Our quark model result for the
NNρ vector (γμ) coupling is consistent with an earlier Orsay
result (after correcting typographical errors), although we find
a non-zero magnetic (σμν ) coupling. The strengths of the fit-
ted NNV γμ couplings in meson exchange models are rather
smaller than our quark model predictions. The NNV σμν cou-
plings are also not in good agreement with quark model predic-
tions, although they may not be well determined in the current
fits to NN scattering data.

In future we plan to carry out calculations of the NN phase
shifts predicted by meson exchange models, assuming quark
model constraints on the NNm couplings and form factors as
derived here. This should allow a determination of the sensitiv-
ity of the data to parameters such as the gNNω/gNNρ and κω/κρ

ratios, for which we have definite quark model predictions.
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