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Abstract

We revisit the theorem of Barker, Berman and Plemmons on the existence of a diagonal quadratic
Lyapunov function for a stable linear time-invariant (LTI) dynamical system [G.P. Barker, A. Berman, R.J.
Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear and Multilinear Algebra 5(3)
(1978) 249–256]. We use recently derived results to provide an alternative proof of this result and to derive
extensions.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The stability theory for linear time-invariant (LTI) differential equations of the form

ẋ = Ax, A ∈ Rn×n (1)

is well-established and several equivalent conditions for the asymptotic stability of such systems
have been derived. In particular, it is well known that the asymptotic stability of (1) is equivalent to
the spectrum of the matrix A being contained within the open left half of the complex plane. Such
matrices are referred to as stable or Hurwitz matrices. This in turn is equivalent to the existence
of a positive definite solution P = P T > 0 of the Lyapunov matrix inequality
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ATP + PA < 0. (2)

For any solution P = P T > 0 of (2), the function V (x) = xTPx on Rn is a quadratic Lyapunov
function (QLF) for the system (1), which is said to be quadratically stable.

A question that has attracted a great deal of attention in the past concerns what additional
conditions on A are required so that there exists a diagonal matrix D satisfying (2) [10,11,9,1,7].
If such a matrix exists, the system is said to be diagonally stable, and (by an abuse of the language)
the associated Lyapunov function V (x) = xTDx is called a diagonal Lyapunov function. Previous
work on diagonal stability has followed several lines of inquiry, the main thrust of which is
documented in [10,11,9,1,7]. Perhaps the best known complete solution to this problem was given
by Barker, Berman and Plemmons in 1978 [1]; here, it was shown that A ∈ Rn×n is diagonally
stable if and only if AX has at least one negative diagonal entry for all non-zero positive semi-
definite X ∈ Rn×n. Following the publication of this paper, a number of authors attempted to
derive algebraic conditions that could be used to verify its main result in practice. Noteworthy
efforts in this direction have appeared in the work of Kraaijvanger [9], Wanat [15] and others.
The primary contribution of the present paper is to describe a simple proof of the original result
in [1], as well as opening the way to a number of extensions of this basic result. In particular,
the approach given here allows several problems related to the diagonal stability problem to be
treated in a similar way. Some initial results obtained using this perspective are presented in later
sections.

2. Notation and preliminary results

We shall use the following notation. The vector x ∈ Rn is said to be positive if all its entries
are positive. This is denoted x � 0. If the entries of x are zero or positive then x is said to be
non-negative. This is denoted x � 0. The Hadamard (entry-wise) product of x and y is denoted
x ◦ y. Note that if x ◦ y � 0 then x and y are in the same closed orthant. Also, for i = 1, . . . , n, ei

denotes the column vector in Rn, whose ith entry is 1 with all other entries zero. Throughout the
paper, for symmetric matrices A, B ∈ Rn×n, we shall use the notation 〈A, B〉 = Trace(AB) to
denote the usual inner product on the space of symmetric matrices. A symmetric matrix P ∈ Rn×n

is positive semi-definite if xTPx � 0 for all x ∈ Rn, and is positive definite if xTPx > 0 for all
x /= 0 in Rn. We shall use the notations P � 0, P > 0 to denote positive semi-definiteness and
positive definiteness respectively.

Given m LTI systems, ẋ = Aix, i ∈ {1, . . . , m}, if a positive definite matrix P = P T > 0
exists such that

AT
i P + PAi = −Qi < 0, i ∈ {1, . . . , m}, (3)

then V (x) = xTPx defines a common quadratic Lyapunov function (CQLF), for the m LTI sys-
tems, and P is said to be a common Lyapunov solution for Ai , i ∈ {1, . . . , m}. If one or more of
the matrices Qi , i ∈ {1, . . . , m} are positive semi-definite, then V (x) is said to be a weak CQLF
and P is called a weak common Lyapunov solution.

The basic idea that we exploit in this paper is based upon the following recently observed
fact [14]. Let Bi = −eie

T
i , i = 1, . . . , n be the diagonal matrices in Rn×n, whose ith diagonal

element is −1, with all other entries zero. A matrix A ∈ Rn×n is diagonally stable, if and only
if A, B1, . . . . , Bn admit a weak common Lyapunov solution. While this result is easily deduced,
it is nevertheless important for a number of reasons. Firstly, it establishes a direct link between
diagonal stability and the concept of strict positive realness, which plays a central role in control
theory; this line of research has been pursued in [14]. A scalar-valued rational function H(s) of a



36 R. Shorten et al. / Linear Algebra and its Applications 430 (2009) 34–40

complex variable s is said to be positive real (PR) if and only if H(s) is real for real s and H maps
the open right half plane into the closed right half plane. If there is some ε > 0 such that H(s − ε)

is PR, then H(s) is said to be strictly positive real (SPR). Also, a matrix-valued function H(s) is
said to be PR if x∗H(s)x is PR for every complex vector x, and is said to be SPR if there is some
ε > 0 such that x∗H(s − ε)x is PR for every complex vector x.

3. Main result

In Theorem 3.1, we present an elementary proof of the main result of [1]. First of all, we state
the following lemma, which is a relatively straightforward extension of results presented in [6] for
sets of Hurwitz matrices. The argument we present here is a simple adaptation of that presented
in [8] for the case of two Hurwitz matrices.

Lemma 3.1. Let A ∈ Rn×n be Hurwitz and let Mi ∈ Rn×n, for i = 1, . . . , k. Then there exists a
positive definite P satisfying

ATP + PA < 0, MT
i P + PMi � 0 i = 1, . . . , k (4)

if and only if there do not exist positive semi-definite matrices X, Y1, . . . , Yk, with X /= 0 such
that

AX + XAT +
k∑

i=1

(MiYi + YiM
T
i ) = 0. (5)

Proof. Recall that 〈A, B〉 = Trace(AB)denotes the usual inner product on the space of symmetric
matrices in Rn×n. Consider the following four statements.

(i) There exists a positive definite solution to the set of inequalities (4).
(ii) There exists a symmetric matrix H such that 〈H, AX + XAT〉 < 0 for all non-zero X =

XT � 0 and 〈H, MiYi + YiM
T
i 〉 � 0 for all non-zero Yi = Y T

i � 0, and all i = 1, . . . , k.
(iii) There exist no positive semi-definite matrices X, Y1, . . . , Yk with X /= 0 satisfying (5).
(iv) The two pointed, convex cones

CA = {AX + XAT : X = XT � 0} (6)

and

CB = −
{

k∑
i=1

MiYi + YiM
T
i : Yi = Y T

i � 0 for i = 1, . . . , k

}
(7)

intersect only at the origin.

We wish to prove the equivalence of (i) and (iii). First of all, we shall show that (i) and (ii) are
equivalent.

To see this note that, as A is Hurwitz, there exists a positive definite P satisfying (4) if and
only if there exists a symmetric H satisfying (4). Also

ATH + HA < 0, MT
i H + HMi � 0 1 � i � k

if and only if for any non-zero positive semi-definite matrices X, Y1, . . . , Yk

〈ATH + HA, X〉 = 〈H, AX + XAT〉 < 0,
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and

〈MT
i H + HMi, Yi〉 = 〈H, MiYi + YiM

T
i 〉 � 0, 1 � i � k.

The equivalence of statements (iii) and (iv) is immediate. It is also immediate that (ii) implies
(iii), therefore the proof of the lemma will be completed by showing that (iv) implies (ii), since
this will demonstrate that (i) and (iii) are equivalent. To this end, define the truncated cone C̃A

C̃A = {AX + XAT : X = XT � 0, Trace(X) = 1}. � (8)

Theorem 2.39 from [13] establishes that two disjoint convex sets C1, C2 are strongly separated
if both sets are closed and one of them is bounded. Note that C̃A is convex, closed and bounded,
and disjoint from the convex closed setCB . Hence C̃A andCB are strongly separated, meaning that
there is a symmetric matrix H and α1 < α2 so that C̃A is contained in {M = MT : 〈M, H 〉 � α1}
and CB is contained in {M = MT : 〈M, H 〉 � α2}. Since CB is a cone, if 〈M, H 〉 < 0 for some
M ∈ CB , then 〈kM, H 〉 < α2 for sufficiently large k which is a contradiction. It follows that
〈M, H 〉 � 0 for all M ∈ CB which is the second statement in (ii). Also, as 0 ∈ CB , it follows that
α2 � 0 and hence that α1 < 0. Thus 〈M, H 〉 < 0 for all M ∈ C̃A. Furthermore if M ∈ CA then
there is k > 0 such that kM ∈ C̃A, and therefore also 〈M, H 〉 < 0 for all M ∈ CA. The statement
(ii) now follows and hence the lemma.

We are now ready to present the main result of this section.

Theorem 3.1. The Hurwitz matrix A ∈ Rn×n is diagonally stable if and only if AX has a negative
diagonal entry for every non-zero X = XT � 0, X ∈ Rn×n.

Proof. (a) Necessity: Suppose that A is diagonally stable, with the diagonal Lyapunov solution D.
It follows immediately that, for any non-zero X = XT � 0, we have Trace(DAX) < 0. Therefore
AX must have a negative diagonal entry for all non-zero positive semi-definite X.

(b) Sufficiency: The main idea of the proof of sufficiency is to re-write the condition that A

is diagonally stable as the condition that the matrices A, B1, . . . , Bn−1 have a common qua-
dratic Lyapunov function (CQLF), where Bi = −eie

T
i for 1 � i � n − 1, as was observed and

proved in [14]. Now, suppose that A is not diagonally stable. It follows from Lemma 3.1 that
one can find real symmetric positive semi-definite matrices X, Y1, . . . , Yn−1, with X /= 0, so
that

AX + XAT +
n−1∑
i=1

(BiYi + YiBi) = 0. (9)

It follows immediately from (9) that the (n, n) entry of AX + XAT must be zero. Note that
BiYi + YiBi = 0 cannot be true for all i as this would imply that AX + XAT = 0, which contra-
dicts the assumptions that A is Hurwitz and X /= 0. Note also that when BiYi + YiBi is non-zero,
the diagonal entry of this matrix is strictly negative. Hence, if there is no diagonal Lyapunov
solution for A, then all the diagonal entries of AX are non-negative. Therefore if AX has at least
one negative entry for every positive semi-definite X, A must be diagonally stable. This completes
the proof. �

4. Extensions of BBP result

The main result of the previous section can be readily adapted in a number of ways using very
similar arguments to those given above. As an example of this, we present a result in this section
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which provides necessary and sufficient conditions for so-called copositive Lyapunov function
existence. In the following section, we describe another application of the methods here to the
class of positive dynamical systems.

4.1. Copositive diagonal quadratic Lyapunov functions

We next consider a problem motivated by the stability of linear systems whose trajectories are
confined to the positive orthant of Rn; so-called positive systems. An LTI system �A : ẋ = Ax is
positive if A is a Metzler matrix, meaning that the off-diagonal entries of A are all non-negative
[4]. For systems of this class, the existence of copositive Lyapunov functions is of interest. For
such functions, we only require that the usual Lyapunov conditions are satisfied for state-values
in the non-negative orthant. We shall give below a necessary and sufficient condition for the
existence of a diagonal copositive Lyapunov solution for a Hurwitz matrix in Rn×n. Formally, we
are interested in the existence of a diagonal matrix D > 0 such that xT(ATD + DA)x < 0 for all
non-zero x � 0.

Before stating the following result, we recall the definition of a completely positive matrix [3].

Definition 4.1. A matrix X ∈ Rn×n is said to be completely positive if there exists some positive
integer p and a non-negative matrix Y in Rn×p such that X = YY T.

Note that any completely positive matrix is both non-negative and positive semi-definite (such
matrices are said to be doubly non-negative), and that the set of all completely positive matrices
in Rn×n is a convex cone. Note also that if X = YY T with Y = (y1, . . . , yp) where yi ∈ Rn for
i = 1, . . . , p, then X = ∑p

i=1 yiy
T
i . It follows immediately from Caratheodory’s Theorem [12]

that any completely positive matrix can be written as the sum of at most N = n(n+1)
2 + 1 matrices

of the form xxT, x � 0.

Theorem 4.1. Let A in Rn×n be Hurwitz. There exists a positive definite, diagonal matrix P

satisfying

xT(ATP + PA)x < 0 for all non�zero x � 0 in Rn, (10)

if and only if AX has a negative diagonal entry for every non-zero completely positive matrix X

in Rn×n.

Proof. Let N = n(n+1)
2 + 1. It is straightforward to adapt the proof of Lemma 3.1 to show that

there is some diagonal P satisfying (10) if and only if there do not exist positive semi-definite
matrices Y1, . . . , Yn, X = ∑N

k=1 xkx
T
k , where xk � 0 for k = 1, . . . , N and X /= 0, satisfying (5).

Combining this observation with the remarks made after Definition 4.1, the present result follows
in the same manner as Theorem 3.1.

Note that the diagonal entries of A(x1x
T
1 + · · · + xNxT

N) are simply Ax1 ◦ x1 + · · · + AxN ◦
xN . By exploiting the linearity of the Hadamard product, and by noting that any vector y in the
positive orthant is given by y = De for some diagonal D � 0, where e is the vector of all ones, the
previous theorem actually says that A has a copositive diagonal Lyapunov solution, if and only if,

e and
(∑N

k=1 DkADk

)
e are never in the same orthant, for any diagonal matrices, D1, . . . , DN ,

not all zero, with non-negative diagonal entries. �
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5. Example – Positive systems

We shall now apply the result of Theorem 4.1 to linear systems whose trajectories are confined
to the positive orthant; that is, we wish to consider the stability of ẋ = Ax where A is a Metzler,
Hurwitz matrix (i.e. −A is an M-matrix) [5]. This problem has been well studied. Here, we shall
use Theorem 4.1 to demonstrate the known result that a diagonal copositive Lyapunov function
always exists for such a system.

Formally, let A ∈ Rn×n be Metzler and Hurwitz and let N = n(n+1)
2 + 1. We shall now show

that there exists a D > 0 such that xT(ATD + DA)x < 0 for all x � 0, x /= 0. Theorem 4.1

implies that such a D exists if and only if e, the vector of all ones, and
(∑N

k=1 DkADk

)
e are

never in the same orthant, for all diagonal matrices D1, . . . , DN with non-negative diagonal
entries.

First of all, recall the following basic fact concerning Metzler matrices.

If M ∈ Rn×n is Metzler and Hurwitz, then for every non-zero x ∈ Rn, there is some i ∈
{1, . . . , n} such that xi(Mx)i < 0 (M reverses the sign of some entry of x) [2].

If we writed
(k)
i for the ith diagonal entry of the matrixDk , then the (i, j) entry of

∑N
k=1 DkADk ,

is

aij

(
N∑

k=1

d
(k)
i d

(k)
j

)
,

for 1 � i, j � n. To simplify notation, define

γij =
N∑

k=1

d
(k)
i d

(k)
j for i /= j,

γi =
(

N∑
k=1

(d
(k)
i )2

)1/2

, (11)

for 1 � i, j � n. It follows from the Cauchy–Schwartz inequality that γij � γiγj for all i /= j .
Thus, if we define D = diag(γ1, . . . , γn), then(

N∑
k=1

DkADk

)
	 DAD. (12)

But, as A is Metzler and Hurwitz and D /= 0, it follows that some entry of (DAD)e must be
negative. It follows from (12) that some entry of

(∑
k DkADk

)
e must also be negative and hence

A has a copositive diagonal Lyapunov function by Theorem 4.1.

6. Concluding remarks

In the present paper we have presented a novel approach to the problem of diagonal matrix sta-
bility by recasting it as an existence question for common quadratic Lyapunov functions (CQLFs).
This approach has led directly to a new proof of the classical result of Barker, Berman and Plem-
mons (BBP) on the existence of diagonal solutions to the Lyapunov inequality, as well as to some
novel extensions of the BBP result. While progress has been made recently on questions pertaining
to diagonal stability, there are still numerous fundamental issues unresolved. In particular, easily
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verifiable algebraic conditions for diagonal stability are only known for very low dimensions
and the precise nature of the relationship between diagonal stability and other strong concepts of
matrix stability such as D-stability is still unclear. It is hoped that the approach described here,
combined with the considerable literature on the CQLF existence problem, may lead to further
progress in the area of diagonal stability in the future.
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