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ABSTRACT 

For a number field K, we give a complete characterization of  algebraic numbers which can be expressed 
by a difference of  two K-conjugate algebraic integers. These turn out to be the algebraic integers whose 
Galois group contains an element acting as a cycle on some collection of  conjugates which sum to zero. 
Hence there are no algebraic integers which can be written as a difference of  two conjugate algebraic 
numbers but cannot be written as a difference of  two conjugate algebraic integers. A generalization of  
the construction to a commutative ring is also given. Furthermore, we show that for n ~> 3 there exist 
algebraic integers which can be written as a linear form in n K-conjugate algebraic numbers but cannot 
be written by the same linear form in K-conjugate algebraic integers. 

1. INTRODUCTION 

A classical additive (multiplicative) form o f  Hilbert 's  Theorem 90 states that, given 
a finite cyclic Galois extension F/K generated by ~, an element ¢3 6 F has trace 
zero (norm 1) with respect to the extension F/K iff/3 = oe - a ( ~ )  (/3 = ot/c~ (oe)) for 
some ~ E F (see, e.g., p. 290 and p. 288 in [9] or [7]). Noncommuta t ive  versions o f  
Hilbert 's  Theorem 90 for division rings were given in [8] and, among other things, 
in [10]. 

In [5] we considered a variation o f  Hilbert 's  Theorem 90 without any restrictions 
on oe, namely, given a field K, describe algebraic over K numbers  /~ which can 
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be written as ~ - a '  (or c~/ot') with arbitrary K-conjugate numbers o~ and a~. The 
purpose of  this paper is to give a complete characterization of algebraic integers 
expressible by a difference of  two K-conjugate numbers which may be viewed as 
an arithmetical version of our variation of additive Hilbert's Theorem 90. (Partial 
results on this and similar problems were earlier obtained by the author [2] and 
T. Zaimi [14-16].) 

Let K be a number field. Given an algebraic number/3 of degree d over K, we 
denote by G the Galois group of  the normal closure of  K(/3) over K. We prove the 
following theorem. 

Theorem. An algebraic n u m b e r / 3  can be writ ten as a di[]'erence et - c~' o[" two 

K-con juga te  numbers  c~ and c~ ~ ! / 'and only i f  there is an element  in G act ing as a 

permuta t ion  group on conjugates  ~['/3 which acts' as an s-cycle on certain collection 

¢~['s conjugates  which sum m zero. Furthermore,  ! f  /3 is an algebraic integer then c~ 

too can be chosen to be an algebraic integer o['degree at most  slGI over K. 

Most important here is the second part of the statement, as the first part is a very 
slight variation of  Hilbert's Theorem 90 in its classical form and was proved in [5]. 
(Necessity: write/3 = ot - r (c~), where ~ is an automorphism of  the Galois closure 
of K(~,/3) over K which maps ~ to a t, act by the cyclic group generated by T, 
and the result follows easily for any K of  characteristic zero, by adding all obtained 
equalities. Sufficiency: defining a by ~ = l  (1 - i/s)cci-1(/3), where ~ (/3) =/3, and 
using ~2)"=1 c~i-l(/3) = 0 we have c~ - o r ( a )  =/3  for every field of characteristic 
zero.) It was the second, multiplicative, part on numbers which can be represented 
as cr/a' in which we actually required K to be an algebraic number field. The answer 
turned out to be the same with 'sum to zero' being replaced by 'multiply to a root 
of  unity', where the proof of sufficiency is not straightforward. 

With an additional arithmetical condition on/3 (to be an algebraic integer) the 
roles of  additive and multiplicative settings are in some sense reversed. In [2] we 
proved that if a unit/3 can be written as a / a '  with K-conjugate numbers ot and 
a ' ,  then cr can be chosen to be a unit too. The method similar to that in [5] was 
used. However the additive setting is more difficult. In general, the question whether 
every algebraic integer/3 which can be written as a difference of  two K-conjugate 
algebraic numbers can be also written as a difference of  two K-conjugate algebraic 
integers was posed by C.J. Smyth. We could not settle this problem in [2] and 
obtained only partial results for cubic integers instead. T. Zaimi [14-16] also 
considered this and similar problems. The above theorem answers this question in 
the affirmative. Note that the general upper bound s lG[ for the degree ofo~ coincides 
with that obtained in Theorem 1 [2] for some special cubic algebraic integers. Since 
s ~< d and [G[ ~< d!, the degree of  the algebraic integer a over K whose existence 
is claimed by the theorem will always be at most dd!.  On the other hand, it is at 
least v'-d. 

The proof of  the theorem is given in Section 2, where we also give a gen- 
eralization of the construction to an integral domain A whose quotient field K 
satisfies certain mild assumption concerning irreducibility of  polynomials. The 
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construction is in some sense a lifting o f  the pair o f  K-conjugate algebraic numbers 
o~, ott whose difference ~ - ot ~ is an algebraic integer to the pair o f  K-conjugate  

algebraic integers g t o~, F t o d .  There are however certain limits beyond which 

this argument cannot be extended. For instance, in [4] we considered the numbers 

/3 which can be represented by a linear form klOel + . .-  + knotn in K-conjugate  
oq . . . . .  o~n, where k~ . . . . .  k, 6 K add to zero. A natural extension o f  the theorem 
from n = 2 to n >/3 would be the following. I f  an algebraic integer fl can be written 
as a linear form klOtl + ...  + knetn in K-conjugate algebraic numbers oq . . . . .  otn, 

where kl, . . . ,  k,  ~ OK (the ring o f  integers o f  K), then ot = or1 can be chosen to be 
an algebraic integer too. (Of  course, except for kl + . . .  + kn = 0, one has to assume 
some additional condition on the greatest common  divisor o f  kl . . . . .  k~, like, for 

example, the only algebraic integers ff for which we have ff- lkl  . . . . .  ~-lkn c 0l(  
are units.) We prove however that such extension o f  the theorem is not true for 

any n > 2. Setting kl = k2 = 1, k3 = - 2 ,  k4 . . . . .  kn = 0, in Section 3 we will 
give an example o f  the algebraic integer 13 which can be written as a linear form 
in K-conjugate algebraic numbers, but  cannot be written by the same form in 
K-conjugate algebraic integers. 

2. LIFTING 

P r o o f  of the Theorem.  Let a ~ G be an automorphism which acts as the s-cycle 
on conjugates o f  the algebraic integer/3 adding to zero Y ~ I  ° ' i -1  (/3) = 0. Set ot = 
~-~7=1 (1 - i / s )a  i-I (/3). Then ot - a ( a )  =/3 .  Write 

F(X,  Y) = (X t c t ) ( X  t a ( e t ) . . .  (X t as-t(c¢))  - Y. 

By Hilbert's irreducibility theorem [6] (see p. 298 in [ l l ]  and a nice special 
case [1]), there exist t 6 N such that F(X,  t) is irreducible in L[X],  where L is 

the normal closure o f  K(/3) over K. (Of  course, L is also the normal closure o f  
K(a )  over K.) Let t be one o f  these, and let S be the set o f s  roots o f  the equation 

F(X, t) = 0. Then y ~ S is o f  degree s over L with S being its conjugate set. Take 
an arbitrary automorphism of  the normal  closure o f  L ( y )  over K which takes ot to 
a (~) .  The key observation is that it maps the equation F(X,  t) = 0 to itself, so, in 
particular, S to S. Suppose that this automorphism maps y to y ' .  Then y + ot and 

F '  + a(ot) are conjugate over K. However y and y '  are conjugate over L ,  hence 

so are F + a (~ )  and F '  + a(ot). It follows that the latter two are conjugate over its 
subfield K. Since y t o t  and y '  t cr (or) are K-conjugate,  we conclude that F t o t  and 

}, + a (or) are K-conjugate. Their difference is (F + or) - (F + a (or)) = ot - a  (~) = fl, 
so it remains to show that F + ot is an algebraic integer o f  degree at most  s lGI 
over K. Indeed, g t o t  is a root o f  the monic polynomial 

F ( X  - ,~, t )  = X ( X  + ~( ,~)  - , ~ ) . . .  ( X  + o s - l ( ~ )  _ ,~) _ t 

= X ( X  - ~ ) ( X  - ~ - , ~ ( ~ ) ) . . .  

( X  - / 3  - cr ( /3)  . . . . .  a s - 2 ( / 3 ) )  - t 
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of  degree s which is irreducible in L[X] (because so is F ( X ,  t))  and whose 
coefficients are algebraic integers. Thus y + ~ is an algebraic integer and its degree 
over K is ~< s[L : K] = slGI,  which completes the proof  o f  the theorem. [] 

In principle, the above proof  is not entirely constructive, but relying on some 
effective version o f  Hilbert 's irreducibility theorem (see, e.g., [1 1]) it is effective. So 

a bound for the height o f  ), + ot can be given in terms o f  d and the height of/3 only. 
However, for 'mos t ' /3  already the polynomial F ( X ,  1) (with t = 1) is irreducible in 
LI X ], so a corresponding ~, can be found from the equation F ( X ,  1) = 0. 

Let A be an integral domain, namely, a commutative ring that has an identity 
element and has no divisors o f  0. Suppose that its quotient field K has the 
following property: ~br every polynomial Q ( X )  E LIX],  where L / K  is a finite 
Galois extension, there exists a monic polynomial P ( X )  E A[XI ,  not a constant, 

such that P (Q (X)) is irreducible in L IX1. Recall that an element co is called integral 

over A if it is a root o f a  monic polynomial in AIX1 (see p. 335 in [9]). 

Proposition. With the above conditions on A and K, assume that ot and or' are 

K-conjugate.  [['~ - ~ is integral over A then there is a number  y, algebraic over 

K, such that V + e~ and T + ~' are integral over A and K-conjugate.  

Proof.  There is no loss o f  generality to assume that u :~ or' for otherwise the 
claim is trivial. Set Q ( X )  = (X + oO(X + ~r(c~))... (X + cr ' l(~)), where cr is an 

automorphism o f  the Galois closure L o f  K(c¢) over K mapping c~ to a ' .  Here, 

cr~(oO = u. Define y as an arbitrary root o f  P ( Q ( X ) )  = O, where P ( X )  c A[XI  is 
the monic polynomial for which P ( Q ( X ) )  is irreducible in L[X]. Since a - o(ot) is 
integral over A, so are also its conjugates O " j  I(o~) - -  o ' J ( o l ) ,  j = 2 . . . . .  s - 1, and 

so are their sums ~ - crJ(u), j = 1 . . . . .  s - 1. The coefficients o f  the polynomial 

Q ( X  - oe) = x ( x  + cr (c¢) - u ) . . .  (X + cr ' -1  (u) - oO are therefore integral over A, 
hence so are the coefficients o f  P ( Q ( X  - or)). I f  follows that y + c~ is integral 
over A. Furthermore, by the same argument as in the proof  o f  the theorem, y + u 

and ?' + cr(~) are K-conjugate, which completes the proof  o f  the proposition. [] 

Of  course, the Theorem is a corollary to the Proposition with K being a number 
field, a = OK, c~ = Y~=l (1 -- i /s)cr i 1 (/3), P ( X )  = X - t. 

3. E X A M P L E  

Take two distinct primes p and p '  such that ~/~, x/-p -7, ~ ~ K, where K is a 

number  field. Set/3 = v/-fi+ 4~-p-7 + ~ which is clearly an algebraic integer. Then, 
as in [4], we see that/3 = oq + or2 - 2u3 with ~1 = ( - 2 ~  + ~ + 2v/-p-~)/4 and 
its K-conjugates 

Or2 = (2v '~  + v/P - S -  2 p v @ ) / 4 ,  or3 = ( - 2 v ~ -  v/-p - 7 -  2 px/fPS)/4. 

We claim that/3 cannot be written in the form co + 0) 2 - -  2 0 )  3 with 0)2,  O93 being 

K-conjugate to an algebraic integer co. Suppose that/3 = co + co2 - 2o93. Let F be 
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the Galois closure o f  K (to) over K. Then (see the p roof  o f  Theorem 1 in [4]) F as 
a linear space over K can be written as F =/2(13) ~ U for some linear space U, 
where/2(13) is the linear space spanned by the conjugates o f  13 and where @ stands 
for the direct sum. Write to = /?  + ?' with/? ~/2(13), ?' ~ U. It follows that 

13 = to q- 0)2 - -  2093 = /? + / ? 2  --  2/?3 + ?' + }'2 - -  2 y 3 ,  

where/?2,/?3 are K-conjugate  to /? and Y2, 73 are K-conjugate  to ?'. So /3  = 0 + 
/72 - -  2/?3 and ?' + y2 - 2y3 = 0. The latter equality is impossible,  unless ~, = y2 = ?'3 
(see, e.g., [12,13] and [3] for such results). The Galois group o f  13 over K is the 
Klein 4-group, generated by two automorphisms ~ --. - v ~  and ~ --+ - v / - ~ .  

Note that £(13) = (,/-fi, ~ - 7 ,  ~,/~-p, ). Wri t ing/?  = x14'-fi + XZ%/'P 7 -[- x3~/pp'  with 
xl,  x2, x3 6 K and applying three automorphisms different f rom identity we obtain 
three remaining conjugates of/? 

--XI - X2V/  --}- X3V/ . 

Xl ~ - -  X2 W -- x3v/pp ', 

Now, solving the linear system 1 = xl - xt - 2Xl, 1 = x2 q- X2 q- 2X2,  1 = x 3 - -  

x3 + 2x3 obtained f rom/3  = /?  +/?2 - -  2/?'/3, where/?2 and/?3 are, respectively, first 
and second numbers  in the list, we get Xl = - 1 / 2 ,  x2 = 1/4, x3 = 1/2. Since Y2 = 
?'3 = ?', this implies that to = ?' + ( - 2 v / -  fi + ~ + 2 ~ - 7 ) / 4 ,  to2 = ?' n t- (2,v/P + 

-- 2 4 ~ - 7 ) / 4 ,  0)3 = ?' + ( - - 2 V ~  -- ~ -- 2~/pp ' ) /4 .  However  then to is not 
an algebraic integer, because to - 0)3 = v/p-P 7 + v~-7/2 is not. Note that all three 
numbers  to, o)2, o93 must be distinct, for otherwise either/3 or 13/2 is a difference 
o f  two K-conjugate  numbers,  which is impossible,  by the first part  o f  the theorem, 
because none of  the sums of  two distinct conjugates of  13 is equal to zero. Hence  
/?,/?2,/?3 must  be distinct. This leaves the five cases, namely, when 772 and/?3 are, 
respectively, second and first, first and third, third and first, second and third, third 
and second numbers  in the above list o f  three. Each o f  these can be easily dealt 
with in the same manner.  For example,  with /?2,/?3 being the third and the first 
numbers,  we get xl = 1/2, x2 = - 1 / 2 ,  x3 = 1/4. Then to is not an algebraic integer, 
because to - to3 = v ~  + ,g~p"/2  is not. Likewise, a contradiction is obtained in all 
five cases. Consequently, there is no algebraic integer to for which to + to2 - 2to3 = 
4"P + ~ + ~ = 13 (although there exists such algebraic number  to = ( - 2 ~  + 

+ 2 ~ ) / 4 ) .  
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