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The ability of the oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on
saccharified sweet sorghum stalks juice was evaluated. Initially the production of lipids using synthetic
media mimicking sweet sorghum stalks has been studied and optimized concerning the nitrogen source
and the C:N ratio. Under optimum conditions (yeast extract as nitrogen source and C:N ratio of 190)
the lipid production reached 5.81 g/L with a lipid content of 47.3% (w/w) from a mixture of sucrose,
glucose and fructose, mimicking the sugar composition of sorghum. When cultivated on sweet sorghum
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stalks juice, it was observed that no external nitrogen addition was necessary which could result in
substantial decrease of the initial C:N ratio. Moreover a distinct saccharification process prior to yeast
cultivation improved the lipid production yield as it resulted in an increase of the C:N ratio. The highest
lipid production, which was 6.40 g/L with a lipid content of 29.5% (w/w), was obtained when juice from
saccharified sweet sorghum stalks at an initial sorghum content of 12% (w/w) was used as feedstock.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
. Introduction

The imminent shortage of fossil fuels and the rising environ-
ental problems caused by the extended utilization of fossil raw
aterials had made the discovery of renewable alternatives first

riority (Matsakas et al., 2014; Sarris et al., 2014). For this rea-
on, a large part of research conducted nowadays is focusing on
his target. Concerning the transport sector, which according to the
uropean Commission constitute of 32.6% of the total consumption
f energy in EU (European Commission, 2010), energy is derived
rom liquid fossil fuels, either gasoline or petroleum. In order to
ecrease the consumption of liquid fossil fuels, alternatively renew-
ble fuels needs to be more extensively utilized, where the most
ommon used are ethanol and biodiesel.
Biodiesel is the product of the transesterification of triacylglyce-
ols (TGAs) with an alcohol in the presence of a catalyst and consist
f a mixture of fatty acid esters (Economou et al., 2010; Agarwal,
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2007). The similar properties that present comparing to the fossil
petroleum, the low toxicity, its renewable characteristics as well as
the low formation of pollutants during combustion make biodiesel
an excellent substitute to fossil petroleum (Zhu et al., 2008; Zhao
et al., 2012). Different kind of lipid sources can be utilized for
the production of biodiesel, for example plant oils or animal fats
(Agarwal, 2007). As most of these sources are edible, this can result
in a direct competition between fuel or food production. The pro-
duction of the first generation biofuel has been severely criticized to
have contributed to the increase of food prices worldwide, which in
turn has raised public awareness about biofuels production (Sims
et al., 2010; Papanikolaou and Aggelis, 2011a; Pinzi et al., 2013;
Leiva-Candia et al., 2014). This reason has made the researchers
to turn their focus on the utilization on non-edible sources of
TGAs for the production of biodiesel. These non-edible sources of
lipids could for example be waste such as used cooking oils or
be derived from microorganisms capable of accumulating lipids
(Zhao et al., 2012; Papanikolaou and Aggelis, 2011a; Pinzi et al.,
2013).
A microorganism is generally considered as oleaginous when is
capable of accumulating more than about 20% (w/w) of lipids of its
total dry biomass weight (Hu et al., 2009). Oleaginous microorgan-
isms can be found in bacteria, yeasts, fungi and the algae genera

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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ig. 1. Effect of different sugars on the lipid concentration (A) and lipid content
mmonium sulfate. Effect of nitrogen source the on lipid concentration (C) and lipid

Leiva-Candia et al., 2014; Li et al., 2008). Oleaginous yeasts have
ome attractive characteristics such as their high growth rates,
heir cultivation is not affected by climate conditions and do not
equire big areas and the most important matter is that they can
se low cost fermentation medium such as waste agricultural mate-
ials and also some industrial byproducts (Ageitos et al., 2011;
hao et al., 2012). There are several yeast species that are capa-
le of efficiently accumulate lipids, such as Cryptococcus curvatus,
ipomyces starkeyi, Rhodotorula glutinis, Rhodosporidium toruloides,
arrowia lipolytica, etc. (Li et al., 2008; Ageitos et al., 2011). Among
he oleaginous organisms, L. starkeyi represents an excellent can-
idate for efficient lipid production from a wide variety of raw
aterials such as glucose and xylose (Zhao et al., 2008), sewage

ludge (Angerbauer et al., 2008) wheat straw hydrolysates (Yu et al.,
011), glucose enriched fishmeal wastewater (Huang et al., 2011)
nd olive oil mill wastewaters (Yousuf et al., 2010).

One major obstacle that hinders commercialization of microbial
ipid production is the high cost of the raw materials (Zhao et al.,
012; Chen et al., 2013). In order to decrease this cost, low-cost raw
aterials such as lignocelluloses have to be exploited. Utilization

f these raw materials not only decreases the production cost but
lso do not compete with food production, as for example when
ucrose or starch are used.

Sweet sorghum is an excellent renewable feedstock as it
ontains high amounts of soluble and insoluble carbohydrates,
resents fast growth, has high resistance to harsh climate condi-
ions (like drought) and requires low fertilization and irrigation

Gnansounou et al., 2005; Wu et al., 2010; Matsakas and
hristakopoulos, 2013a; Whitfield et al., 2012). However, the low
arbon to nitrogen (C:N) ratio (60–65) (Economou et al., 2010) can
artially inhibit lipid accumulation. In order to increase the lipid
nder constant C:N ratio of 100 by the addition of a mixture of yeast extract and
nt (D) using sugar mixture for the yeast cultivation under constant C:N ratio of 100.

production yield of L. starkeyi, one aim of the current investigation
was to increase the C:N ratio of sweet sorghum by incorporating
a distinct enzymatic treatment prior to cultivation by employing
commercial cellulase solutions. Another drawback for the utiliza-
tion of sweet sorghum stalks is the low storage stability due to
the presence of soluble sugars which can been easily degraded by
contaminating microorganisms. The low storage stability together
with the seasonal character of the sweet sorghum harvest can result
in a non-annual availability of stalks. Drying of stalks as previ-
ously demonstrated (Matsakas and Christakopoulos, 2013b; Shen
and Liu, 2009), can efficiently prevent sugar degradation and hence
improve the storage stability of the stalks enabling an annual avail-
ability.

2. Materials and methods

2.1. Raw material and microorganism

The cultivar of sweet sorghum utilized was Keller, offered by
Prof. George Skarakis, Agricultural University of Athens, Greece.
Fresh stalks were preserved at −20 ◦C until used after removing the
leaves by hand. Preparation of dried sweet sorghum stalks was done
as previously described (Matsakas and Christakopoulos, 2013b).
The dried sweet sorghum stalk particles were milled at 0.75 mm
prior to usage. The composition of the dried sweet sorghum stalks
was as follow (%, w/w): sucrose, 34.4; glucose, 8.2; fructose, 8.1;
cellulose, 19.6; hemicellulose, 15.2 (Matsakas and Christakopoulos,

2013b).

The yeast strain utilized during this work was L. starkeyi CBS
1807 and pursued from CBS-KNAW Fungal Biodiversity Centre
(Utrecht, The Netherlands).
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In order to prepare sweet sorghum juice, the stalks were dis-
ig. 2. Effect of different C:N ratios on lipid concentration (A) and lipid content (B)
s nitrogen source.

.2. Pre-culture media

Prior to each experiment, yeast was grown in 250 mL Erlen-
eyer flasks containing 50 mL of pre-culture broth with the

ollowing composition: Glucose, 20 g/L; Meat peptone, 10 g/L; Yeast
xtract, 10 g/L; KH2PO4, 6 g/L; Na2HPO4, 2 g/L. The pH of the media
as adjusted to 6 and prior to inoculation, the pre-culture broth
as sterilized at 121 ◦C for 15 min. Cultures for lipid production
ere inoculated with 5% (v/v) of the pre-culture media. The incu-

ation of the pre-culture took place at 30 ◦C and 200 rpm for
8 h.

.3. Lipid production on synthetic media

Cultivation of the yeast using synthetic media for lipid pro-
uction took place in 1 L Erlenmeyer flasks containing 200 mL of
ultivation broth, at 30 ◦C and 200 rpm. The composition of the
roth (except for the nitrogen and carbon source) was the same
s elsewhere described (Papanikolaou and Aggelis, 2002). The pH
f the broth was adjusted to 6 and the initial sugar concentration
n all the experiments was set to 40 g/L. The carbon sources were
ommercial sugars such as glucose, fructose and sucrose, alone or in

ixtures. During the experiments of the effect of different sugars,

he nitrogen source was a mixture of yeast extract and ammonium
ulfate at a concentration corresponding to a C:N ratio equal to 100.
uring the experiments where the nitrogen source or the C:N ratio

ig. 3. Time course of biomass (•) and lipid (©) concentration and sugars consump-
ion (�) when L. starkeyi was cultivated on sugar mixture, at a C:N ratio of 190 and
east extract as nitrogen source.
cultivation was performed using sugar mixture with the addition of yeast extract

was evaluated, the concentration of the sugars remained constant
at 40 g/L, whereas the concentration of the nitrogen source varied
in order to achieved the desired C:N ratio.

2.4. Sweet sorghum saccharification and lipid production

Sweet sorghum stalks were saccharified for 8.6 h by applying
enzyme loading equal to 8.32 FPU/g solid at 50 ◦C, as previously
identified as optimal saccharification conditions (Matsakas and
Christakopoulos, 2013b). Saccharification was performed by the
addition of a mixture of Celluclast® 1.5 L and Novozym® 188
(Novozymes A/S, Denmark) at a 5:1 (v/v) ratio. Novozym® 188 was
added at the start-up of the yeast cultivation in order to minimize
sucrose hydrolysis and in turn inhibition of cellulases from the glu-
cose. After saccharification the solids were removed by squeezing
through a coating sheet and centrifugation. During the experiments
where no enzymatic treatment was applied, sweet sorghum was
soaked at 50 ◦C for 2 h prior to solids separation in order to facili-
tate the extraction of sugars from the stalks. After adjusting the pH
to 6 the liquid fraction was sterilized and used as a broth for yeast
cultivation.
solved in the same mineral solution that was used in synthetic
medium without the addition of either carbon or nitrogen source
(unless otherwise stated).

Fig. 4. Effect of addition of external nitrogen source (0.2 g yeast extract per 100 g
of sorghum) on lipid concentration and content, when L. starkeyi was cultivated
on sweet sorghum juice from a sweet sorghum initial concentration of 8.7% (w/w).
Experiment with the addition of external nitrogen source is represented by the light
gray bar, whereas the control by the dark gray bar.
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(w/w) of lipid production and lipid content, respectively, at ratio of
190. A further rise of the C:N ratio resulted in a slight drop of both
lipid production and lipid content. Similar results concerning the %
ig. 5. Effect of different initial sweet sorghum contents on lipid concentration (A) a
nzymatic saccharification step.

.5. Analytical methods

Samples were centrifuged in order to separate the yeast biomass
rom the cultivation broth and the supernatant was used for the
uantification of total sugars concentration by the DNS method
Miller, 1959). In order to enable sucrose quantification by the DNS

ethod, samples were incubated at 70 ◦C for 15 min in the presence
f HCl for sucrose hydrolysis. Biomass was washed with distilled
ater to remove residual sugars and salts and centrifuged again.

inally the biomass was transferred to pre-weighted glass vials and
he biomass concentration was estimated by the weight difference
fter being dried at 80–90 ◦C until constant weight. Lipid extrac-
ion from the dried biomass was performed by using a mixture of
hloroform and methanol at 2:1 volumes (Folch et al., 1957) and
uantification was done gravimetrically after solvent evaporation
nder vacuum using a rotary evaporator.

The fatty acid profile was determined by conversion of lipids to
ethyl-esters (Appelqvist, 1968) and analyzed by gas chromatog-

aphy (Varian CP-3800, Agilent Technologies, USA) with a capillary
olumn (WCOT fused silica 100 m × 0.25 mm coating CPSIL 88 for
AME) using helium as carrier gas at a flow rate of 30 mL/min. The
nitial oven temperature was set to 175 ◦C for 26 min, following by
n increase to 205 ◦C with a rate of 2 ◦C/min, where it remained for
4 min. The temperatures of the injector and detector were set to
70 and 300 ◦C, respectively.

. Results and discussion

.1. Evaluation of lipids production on synthetic media

To characterize cell growth, sugar utilization and lipid produc-
ion patterns of L. starkeyi CBS 1807, the yeast was cultivated in a

edium with glucose, fructose and sucrose, either as single car-
on and energy source or in mixtures at the ratio that are present

n sweet sorghum stalks (glucose, 16%; fructose, 16% and sucrose
8%). As can been seen in Fig. 1, all three sugars were suitable for
he cultivation of the yeast and efficient lipid production. The high-
st lipid production was observed during cultivation on glucose
nd reached 5.71 g/L with a lipid content of 49% (w/w), whereas
ultivation on sucrose resulted in the lowest lipid production and
ontent. Cultivation on the sugar mixture resulted in a lipid con-
entration of 4.49 g/L and a lipid content of 41.3% (w/w), indicating
hat the sugar composition of sweet sorghum stalks is suitable for

he cultivation and lipid production of L. starkeyi.

In order to further evaluate and improve the lipid production
rom the sugar mixture, other factors that affect lipid accumula-
ion were studied and optimized. Generally, lipid accumulation is
tent (B), with the presence (dark gray bars) or absence (light gray bars) of a distinct

affected by several factors such as nitrogen, temperature etc. (Zhu
et al., 2008). Of all these factors, nitrogen plays a very important role
as the accumulation of lipids starts after depletion of nitrogen from
the cultivation broth (Papanikolaou et al., 2007). In addition, the
form of nitrogen (organic or inorganic) highly affects the produc-
tion of lipids (Papanikolaou and Aggelis, 2011b). For these reasons
it is of great importance to evaluate the nitrogen source as well
as the ratio of the carbon to nitrogen concentrations (C:N). Dur-
ing this work different organic (yeast extract, meat peptone and
urea) and inorganic (NH4Cl, (NH4)2SO4 and (NH4)2HPO4) nitrogen
sources were evaluated at a constant C:N ratio equal to 100. As is
shown in Fig. 1, complex organic nitrogen sources (yeast extract
and peptone) were more favorable for the production of lipids.
More specifically, the presence of yeast extract resulted in the pro-
duction of 5.23 g/L lipids with a lipid content of 43.7% (w/w). The
same positive effect of the presence of organic nitrogen source was
reported for different microorganisms like Cunninghamella echinu-
lata (Certik et al., 1999), Trichosporon fermentans (Zhu et al., 2008)
and R. toruloides (Evans and Ratledge, 1984).

Finally, the effect of different C:N ratio in a wide range (40–250)
was evaluated by using yeast extract as nitrogen source. As can be
seen in Fig. 2, lipid production increased gradually with the increase
of the C:N ratio and reached a maximum of 5.81 g/L and 47.3%
Fig. 6. Time course of biomass (�) and lipid (©) concentration and sugars consump-
tion (�) when L. starkeyi was cultivated on sweet sorghum juice that came from 12%
(w/w) sweet sorghum concentration without the addition of an external nitrogen
source.
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Table 1
Comparison of lipid concentrations obtained during this work with other reported in literature.

Microorganism Raw material Lipid concentration
(g/L)

Productivity
(g/L·day)

Reference

L. starkeyi Non-detoxified dilute sulfuric acid
pretreated wheat straw

4.6 n.a. Yu et al. (2011)

L. starkeyi Detoxified dilute sulfuric acid
pretreated wheat straw

3.7 n.a. Yu et al. (2011)

L. starkeyi Ultrasonic treated sewage sludge 1.0 n.a. Angerbauer et al. (2008)
L. starkeyi Sweet potato starch 4.8 2.40 Wild et al. (2010)
L. starkeyi Glucose-enriched fishmeal wastewater 2.7 0.45 Huang et al. (2011)
L. starkeyi Detoxified corncob hydrolyzates

treated with dilute sulfuric acid
8.1 1.01 Huang et al. (2014)

C. curvatus Sweet sorghum bagasse 2.6 0.87 Liang et al. (2012)
2.9 0.59 Gao et al. (2010)
6.9 1.38 Liang et al. (2010)
6.4 0.80 Present work
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Table 2
Fatty acid composition of the lipids produced during cultivation of L. starkeyi on
juice from 12% (w/w) liquefied sweet sorghum stalks.

Fatty acid % concentration (w/w)

C16:0 42.90
C16:1 2.15
Chlorella protothecoides Sweet sorghum juice
Schizochytrium limacinum Sweet sorghum juice
L. starkeyi Juice from saccharified sweet sorghum

w/w) lipid accumulation at low C:N ratio were reported by Wild
t al. (2010) for the same microorganism. In order to achieve high
ipid production our data reveals that the C:N ratio should prefer-
bly be kept above 100. Under optimum conditions the yield of
ipid productions per gram of consumed sugars was YL/S = 0.131 g/g,

hereas the yield of biomass formation was YX/S = 0.276 g/g with a
roductivity of 1.162 g/L·day (Fig. 3).

.2. Cultivation of L. starkeyi on juice obtained after enzymatic
reatment of sweet sorghum stalks

During initial experiments it was observed that L. starkeyi was
ot able to grow in the presence of the solids from sweet sorghum
talks (data not shown) and as a result the solids were removed
fter the enzymatic saccharification.

The ability of L. starkeyi to exploit sweet sorghum’s proteins as
itrogen source was evaluated by studying the effect of the addition
f an external nitrogen source (more specifically yeast extract) at a
oncentration equivalent to 0.2 g/100 g of sweet sorghum on lipid
roduction (initial sweet sorghum content was 8.7%, w/w). This
esulted in a significant decrease in lipid production from 4.69 g/L
lipid content of 28.3%, w/w) to 3.46 g/L (lipid content of 20.8%,
/w) (Fig. 4) probably caused by the substantial decrease of the

nitial C:N ratio of the medium after the addition of yeast extract.
oreover, even without addition of an external nitrogen source the

ipid production was lower compared to those obtained in synthetic
edia, underpinning the importance of increasing the C:N ratio by

ncreasing the initial sugars concentration.
In order to evaluate the effect of the distinct enzymatic saccha-

ification step on lipid production, experiments were conducted
t different initial sweet sorghum contents (8.7%, 12% and 16%,
/w) with or without enzymatic treatment prior to cultivation. The

ncorporation of a distinct saccharification step not only increases
he initial concentration of sugars (approximately 3–12%) but also
acilitates a better recovery of the liquid and in turn sugars by reduc-
ng the viscosity of the slurry, which is a result of the cellulolytic
ctivity. The most probable reason for the viscosity reduction is the
ollapse of the structure of lignocellulose as well as the loss of the
ater-binding capacity due to the degradation of cellulose (Szijártó

t al., 2011).
As can been seen in Fig. 5, the presence of a distinct saccharifi-

ation step increased the production of lipids under all the initial
orghum consistencies. Optimum conditions for lipid production
y L. starkeyi when cultivated on sweet sorghum juice where at
2% (w/w) initial sweet sorghum concentration with the incorpo-

ation of a distinct saccharification step and without any additional
itrogen source (Fig. 6). The lipid production reached 6.40 g/L with a

ipid content of 29.5% (w/w). Under these conditions lipid yield per
onsumed sugars was YL/S = 0.077 g/g, whereas the corresponding
C18:0 4.90
C18:1 (n-9) 49.85
C20:4 (n-6) 0.17

yield for biomass formation was YX/S = 0.262 g/g which is compara-
ble with that obtained when using the synthetic media (C:N ratio
of 190). Moreover the lipid productivity was 0.8 g/L·day and the
lipid yield per sweet sorghum solids reached 5.33 g/100 g of sweet
sorghum. Lipid production obtained during this work was higher
than most of the works reported in the literature when L. starkeyi
was cultivated on renewable raw materials or sweet sorghum was
used as raw material (Table 1).

Analysis of the lipid profile obtained at the optimum condi-
tions when yeast cultivated on sweet sorghum is shown in Table 2.
Oleic acid is the dominant fatty acid in the lipids obtained by L.
starkeyi followed by palmitic acid. High concentration of oleic acid
in the obtained lipids is a desirable property for the production of
biodiesel (Sitepu et al., 2013). Smaller amounts of palmitoleic and
stearic acid are also present. Similar fatty acid composition of lipids
obtained from L. starkeyi was also found when the yeast was culti-
vated on starch (Wild et al., 2010), mixtures of glucose and xylose
(Zhao et al., 2008) and various mixtures of glucose, cellobiose and
xylose (Gong et al., 2012).

4. Conclusions

During this work it was demonstrated that L. starkeyi could grow
well in juice obtained by enzymatically pretreated dried sweet
sorghum stalks and efficiently accumulate lipids. The incorpora-
tion of the distinct saccharification step could significantly enhance
the accumulation of lipids, with the highest lipid concentration
obtained during this work to be 6.40 g/L from juice coming from
12% (w/w) sweet sorghum concentration. Moreover, the addition of
external nitrogen source was not necessary during sweet sorghum
utilization, which is beneficial for the process economics.
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