
Available online at www.sciencedirect.com

a

tem of
d

ystem
the

order
resent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
R

J. Math. Anal. Appl. 293 (2004) 511–522

www.elsevier.com/locate/jma

Analysis of a system of fractional differential
equations

Varsha Daftardar-Gejji∗ and A. Babakhani

Department of Mathematics, Universityof Pune, Ganeshkhind, Pune 411007, India

Received 27 November 2002

Submitted by K.A. Ames

Abstract

We prove existence and uniqueness theorems for the initial value problem for the sys
fractional differential equationsDα[x̄(t) − x̄(0)] = Ax̄(t), x̄(0) = x̄0, whereDα denotes standar
Riemann–Liouville fractional derivative, 0< α < 1, x̄(t) = [x1(t), . . . , xn(t)]t andA is a square
matrix. The unique solution to this initial value problem turns out to beEα(tαA)x̄0, whereEα de-
notes the Mittag–Leffler function generalized for matrix arguments. Further we analyze the s
Dα[x̄(t)− x̄(0)] = f̄ (t, x̄), x̄(0) = x̄0, 0< α < 1, and investigate dependence of the solutions on
initial conditions.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The existence and uniqueness of solutions of initial value problems for fractional
differential equations have been studied in the literature [2,3,7,9]. In this paper we p
analysis of the system of fractional differential equations

Dα
[
x̄(t) − x̄(0)

] = Ax̄(t), x̄(0) = x̄0, 0 < α < 1,
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whereDα denotes Riemann–Liouville derivative operator andA denotes a square m
trix having real entries. The unique solution to this initial value problem turns out t
Eα(tαA)x̄0, whereEα denotes the Mittag–Leffler function generalized for matrices. F
ther we discuss the initial value problem for nonautonomous nonlinear system

Dα
[
x̄(t) − x̄0

] = f̄ (t, x̄), x̄(0) = x̄0, 0< α < 1,

wheref̄ :W(⊂ R × R
n) → R

n. It is shown that forf̄ bounded, continuous and Lipsch
in the second variable, there exists unique solution (locally). The dependence of so
on initial conditions has also been discussed.

2. Preliminaries and notations

Riemann–Liouville derivative and integral are defined below [7,9].

Definition 2.1. Let f be a continuous function defined on[a, b], andn−1 � α < n,n ∈ N.
Then the expression

Dα
a+f (x) = 1

Γ (n − α)

dn

dxn

x∫
a

f (t)

(x − t)α−n+1
dt, x > a, (1)

is called left-sided fractional derivatives of orderα.

Definition 2.2. Let f be a continuous function defined on[a, b], andα > 0. Then the
expression

Iα
a+f (x) = 1

Γ (α)

x∫
a

f (t)

(x − t)−α+1 dt, x > a, (2)

is called as left-sided fractional integral of orderα.

Without loss of generality we will work withDα
a+f (x), Iα

a+f (x) and unless men
tioned otherwise, we denoteDα

a+ by Dα
a f (x) andIα

a+f (x) by Iα
a f (x), respectively. Also

Dαf (x) andIαf (x) refer toDα
0+f (x) andIα

0+f (x).

Theorem 2.1 [5]. LetT ∈ L(Rn), have real eigenvaluesλ1, λ2, . . . , λr . Then there exists
basis ofRn in which the matrix representation ofT assumes Jordan form, i.e., the mat
of T is made of diagonal blocks of the formdiag[C1,C2, . . . ,Cr ], where eachCi consists
of diagonal blocks of the form


λi 0 . . . 0 0
1 λi . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 λi


 .
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Theorem 2.2 [5]. Let T ∈ L(Rn) have nonreal eigenvaluesµj = aj + ibj , j = 1, . . . , r,
with multiplicity. Then there exists a basis ofR

n, whereT has matrix formdiag[Ĉ1, Ĉ2,

. . . , Ĉr ], whereĈi consists of the diagonal blocks of the type


D 0 . . . 0 0
I2 D . . . 0 0
0 I2 . . . 0 0
...

...
. . .

...
...

0 0 . . . I2 D


 , D =

[
ai −bi

bi ai

]
, I2 =

[
1 0
0 1

]
.

Theorem 2.3 [5, Theorem 2, p. 129].LetT ∈ L(Rn). ThenR
n has a basis givingT a ma-

trix representation composed of diagonal blocks of typeCi and/or matricesĈi , whereCi

andĈi are as defined in the preceding theorems.

3. Analysis of a system of fractional differential equations

In the present paper using methods of linear algebra [4,6] we study the following s
of fractional differential equations:

Dα
[
x̄(t) − x̄(0)

] = Ax̄(t), x̄(0) = x̄0, t ∈ [0, χ∗], χ∗ > 0, 0 < α < 1, (3)

wherex̄(t) = [x1(t), x2(t), . . . , xn(t)]t , A is n × n real matrix and

Dα
[
x̄(t) − x̄(0)

] = (
Dα

[
x1(t) − x1(0)

]
,Dα

[
x2(t) − x2(0)

]
, . . . ,

Dα
[
xn(t) − xn(0)

])t
.

We now proceed to solve the initial value problem (3) in various cases. In Theorem
we discuss the case when matrixA has real and distinct eigenvalues. Theorems 3.2 an
deal with the cases of complex eigenvalues and repeated eigenvalues, respectively. U
these theorems, the most generalcase has been treated where matrixA can have any type
of eigenvalues (cf. Theorem 3.4)

Theorem 3.1. LetA ∈ L(Rn) have distinct real eigenvalues. Then givenx̄0 ∈ R
n, ∃χ > 0,

such that the system(3) has unique solution defined on[0, χ].

Proof. Suppose{ḡ1, ḡ2, . . . , ḡn} are the (distinct) eigenvectors corresponding to the
tinct eigenvalues{λ1, λ2, . . . , λn}; so thatAḡj = λj ḡj , j = 1,2, . . . , n. If all the eigenval-
ues are real and distinct then{ḡ1, ḡ2, . . . , ḡn} forms a basis ofRn. Let T be the operato
on R

n havingA as the matrix representation in the standard basis. LetB be the matrix
representation ofT in {ḡ1, ḡ2, . . . , ḡn}. ThenB = diag[λ1, λ2, . . . , λn] andB = QAQ−1,
whereQ−1 = P t , P = [pij ] andḡi = ∑

j pij ēj , whereēj , j = 1, . . . , n, denotes the stan
dard basis. Definēy = Qx̄,

Dα
[
ȳ(t) − ȳ(0)

] = QDα
[
x̄(t) − x̄(0)

] = QAx̄(t) = QAQ−1ȳ(t) = Bȳ(t),

whereȳ(0) = Qx̄(0) = ȳ0. SinceB is diagonal,

Dα
[
yi(t) − yi(0)

] = λiyi(t), yi(0) = (ȳ0)i, i = 1,2, . . . , n.
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.

Here fi(t, yi) :Ωi → R, whereΩi = [0, χ∗] × [(ȳ0)i − li , (ȳ0)i + li] for li > 0. Note
fi(t, yi) = λiyi which is Lipschitz in the second variable. Hence in view of Theorems
and 2.2 in [3], there exists unique solutionyi : [0, χi] → R solving

Dα
[
yi(t) − yi(0)

] = λiyi(t), yi(0) = [
Qx̄(0)

]
i
= (ȳ0)i,

where

χi = min

{
χ∗,

(
liΓ (α + 1)

‖fi‖∞

)1/α }
, i = 1, . . . , n.

Let χ = min{χ1, χ2, . . . , χn}. Thenx̄(t) = [Q−1ȳ(t)] uniquely solves Eq. (3), wheret ∈
[0, χ]. �
Theorem 3.2. (i) Consider the system of equations

Dα
[
x̄(t) − x̄0

] =
[

a −b

b a

][
x1(t)

x2(t)

]
, (4)

wherea, b ∈ R, x̄(0) = x̄0, t ∈ [0, χ∗], χ∗ > 0, 0 < α < 1. Definez(t) = x1(t) + ix2(t).
Then the equation

Dα
[
z(t) − z0

] = µz, z(0) = z0 = x1(0) + ix2(0), µ = a + ib, (5)

is equivalent to Eq.(4). It can be shown that the complex equation(5) has unique solution
Hence the theorem.

(ii) Consider the system

Dα
[
x̄(t) − x̄(0)

] = Ax̄(t), x̄(0) = x̄0, 0 < α < 1.

A ∈ L(R2) andA has eigenvaluesa ± ib, a, b ∈ R. Then there exists a matrixQ such that

A = Q

[
a −b

b a

]
Q−1.

Defineȳ(t) = Q−1x̄(t),

Dα
[
ȳ(t) − ȳ(0)

] =
[

a −b

b a

]
y(t), ȳ(0) = ȳ0. (6)

Equation(6) has unique solution in view of case(i). Hence the result.

Theorem 3.3. Consider the system

Dα
[
x̄(t) − x̄(0)

] = Ax̄(t), x̄(0) = x̄0, 0 < α < 1, t ∈ [0, χ∗], χ∗ > 0, (7)

whereA is the elementary Jordan matrix


λ 0 . . . 0 0
1 λ . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...


 .
0 0 . . . 1 λ
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Dα
[
x1(t) − x1(0)

] = λx1(t),

Dα
[
x2(t) − x2(0)

] = x1(t) + λx2(t),

...

Dα
[
xn(t) − xn(0)

] = xn−1(t) + λxn(t).

ConsiderDα[x1(t) − x1(0)] = λx1(t), x1(0) = (x̄0)1. Heref1(t, x1) = λx1 is defined on
Ω1 = [0, χ∗] × [x1(0) − l1, x1(0) + l1] for l1 > 0. f1 is continuous and Lipschitz in th
second variable. Hence it has unique solutionx1(t), t ∈ [0, χ1], where

χ1 = min

{
χ∗,

(
l1Γ (α + 1)

‖f1‖∞

)1/α }
.

ConsiderDα[x2(t) − x2(0)] = x1(t) + λx2(t), where nowx1(t) is known function. Here
f2(t, x2) = x1(t) + λx2 is defined onΩ2 = [0, χ∗] × [x2(0) − l2, x2(0) + l2] for l2 > 0.
f2 is continuous and Lipschitz in the second variable. Hence it has unique solutionx2(t),
t ∈ [0, χ2], where

χ2 = min

{
χ∗,

(
l2Γ (α + 1)

‖f2‖∞

)1/α }
.

Nowx1(t) andx2(t) are known functions which will be substituted in the equation

Dα
[
x3(t) − x3(0)

] = x2(t) + λx3(t),

and so on. Thus the system of equations given in Eq.(7) has a unique solution on[0, χ],
whereχ = min{χ1, χ2, . . . , χn}.

Theorem 3.4. Consider the initial value problem

Dα
[
x̄(t) − x̄(0)

] = Ax̄(t), x̄(0) = x̄0, (8)

wheret ∈ [0, χ∗], χ∗ > 0, 0 < α < 1 andA ∈ L(Rn). Then∃χ > 0 and a unique solution
to Eq.(8) defined on[0, χ].

Proof. In view of Theorem 2.3, there exists a basis ofR
n, in which the differential equatio

becomes

Dα
[
ȳ(t) − ȳ(0)

] = Bȳ(t), ȳ(0) = ȳ0,

whereB is composed of diagonal blocks of the typeCi andĈj , as defined in Theorems 2
and 2.2. In this basis the system decouples into simpler subsystems. Then in view o
rems 3.1–3.3,∃χ > 0 and a unique solution to the initial value problem under considera
defined on[0, χ]. The solution to initial value problem (8) can be obtained by simple
mula x̄(t) = [Q−1]ȳ(t), whereQ is defined in Theorem 3.1.�
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3.1. Illustrative examples

It is proved [5,7] that the initial value problem

Dα
[
y − y(0)

] − λy = g(x), 0 < α < 1, y(0) = c0,

has the following unique solution:

y(x) =
x∫

0

tα−1Eα,α(λxα)g(x − t) dt + c0Eα,1(λxα), (9)

whereEα,β denotes two parameter Mittag–Leffler function [7].

Example 1. Consider the following system, where 0< α < 1:

Dα
[
x1 − x1(0)

] = −x1 − 3x2,

Dα
[
x2 − x2(0)

] = 2x2, x1(0) = 1, x2(0) = 0.

Here

A =
[−1 −3

0 2

]
,

having the eigenvalues−1, and 2. Choose the eigenvectorsḡ1 = (1,0)t , ḡ2 = (−1,1)t .
Then

B =
[−1 0

0 2

]
= Q−1

[−1 −3
0 2

]
Q,

where

Q =
[

1 −1
0 1

]
.

Defineȳ = Qx̄. Then the system of equations inȳ is decoupled, namely

Dα
(
y1 − y1(0)

) = −y1, y1(0) = 1,

Dα
(
y2 − y2(0)

) = 2y2, y2(0) = 0.

In view of Eq. (9),y1(t) = Eα,1(−tα), y2(t) = 0. Hencex1(t) = Eα,1(−tα), x2(t) = 0.

Example 2. Consider the following system of equations, where 0< α < 1:

Dα
(
x1(t) − x1(0)

) = λx1(t), x1(0) = c1,

Dα
(
x2(t) − x2(0)

) = x1(t) + λx2(t), x2(0) = c2,

Dα
(
x3(t) − x3(0)

) = x2(t) + λx3(t), x3(0) = c3.

In view of Eq. (9), x1(t) = Eα,1(λtα)c1, x2(t) = Eα,1(λtα)c2 + ∫ t

0 x1(t − τ )τα−1 ×
Eα,α(λτα) dτ , x3(t) = Eα,1(λtα)c3 + ∫ t

0 x2(t − τ )τα−1Eα,α(λτα) dτ .
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3.2. Nonautonomous case

Theorem 3.5 (Existence).Letfi :W → R be continuous,i = 1,2, . . . , n, where

W = [0, χ∗] ×
n∏

j=1

[
xj (0) − lj , xj (0) + lj

]
, χ∗ > 0, lj > 0, ∀j,

andf̄ = (f1, f2, . . . , fn). Then the nonautonomous initial value problem

Dα
[
x̄(t) − x̄(0)

] = f̄ (t, x̄), x̄(0) = x̄0, 0 < α < 1, (10)

has a solution̄x(t) : [0, χ] → R
n, where

χ = min

{
χ∗,

(
lΓ (α + 1)

‖f̄ ‖∞

)1/α }
, l = min{l1, l2, . . . , ln}.

Proof. DenoteA(x̄) = (A1(x̄),A2(x̄), . . . ,An(x̄)), where

Ai

[
x̄(t)

] = xi(0) + 1

Γ (α)

t∫
0

(t − s)α−1fi

(
s, x̄(s)

)
ds. (11)

DefineU = {x̄(t) = (x1(t), x2(t), . . . , xn(t)), xi ∈ C[0, χ]: |xi(t) − xi(0)| < l}. Clearly
U is a nonempty, convex, closed subset ofC([0, χ]n). Sincefi ’s are continuous on th
compact setW , they are uniformly continuous onW . Thus, given an arbitraryε > 0, we
can findδ > 0 such that∣∣fi(t, x̄) − fi(t, z̄)

∣∣ <
ε

χα
Γ (α + 1) (12)

whenever‖x̄ − z̄‖∞ < δ.

Now let x̄, z̄ ∈ U such that‖x̄ − z̄‖∞ < δ. Then in view of Eq. (12),

∥∥Ax̄(t) − Az̄(t)
∥∥∞ = 1

Γ (α)

∥∥∥∥∥
t∫

0

(t − s)α−1[f̄ (
s, x̄(s)

) − f̄
(
s, z̄(s)

)]
ds

∥∥∥∥∥∞

= sup
1�i�n

1

Γ (α)

∣∣∣∣∣
t∫

0

(t − s)α−1[fi

(
s, x̄(s)

) − fi

(
s, z̄(s)

)]
ds

∣∣∣∣∣
� sup

1�i�n

1

Γ (α)

t∫
0

(t − s)α−1
∣∣fi

(
s, x̄(s)

) − fi

(
s, z̄(s)

)∣∣ds

� 1

Γ (α)

χ∫
0

(χ − s)α−1 sup
1<i<n
0<t<s

∣∣fi

(
t, x̄(t)

) − fi

(
t, z̄(t)

)∣∣ds

� εΓ (α + 1)

χαΓ (α)

χ∫
(χ − s)α−1 ds = εχα

χα
= ε,
0
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t

proving the continuity of the operatorA. Moreover, forx̄ ∈ U andt ∈ [0, χ], we find

∥∥Ax̄(t) − x̄(0)
∥∥∞ = 1

Γ (α)
sup

1�i�n

∣∣∣∣∣
t∫

0

(t − s)α−1fi

(
s, x̄(s)

)
ds

∣∣∣∣∣
� 1

Γ (α)

χ∫
0

(χ − s)α−1 sup
1<i<n
0<t<s

∣∣fi

(
t, x̄(t)

)∣∣ds

� ‖f̄ ‖∞
Γ (α + 1)

χ∫
0

(χ − s)α−1 ds

� ‖f̄ ‖∞χα

Γ (α + 1)
� ‖f̄ ‖∞

Γ (α + 1)

lΓ (α + 1)

‖f̄ ‖∞
= l.

Thus, we have shown thatAx̄ ∈ U , i.e.,A maps the setU to itself. Then we look at the se
of functionsA(U) := {Ax̄(t): x̄(t) ∈ U}. For z̄(t) ∈ A(U) we find that, for allt ∈ [0, χ],

∥∥z̄(t)
∥∥∞ = ∥∥Ax̄(t)

∥∥∞ + 1

Γ (α)
sup

1�i�n

∣∣∣∣∣
t∫

0

(t − s)α−1fi

(
s, x̄(s)

)
ds

∣∣∣∣∣
�

∥∥x̄(0)
∥∥∞ + 1

Γ (α)

χ∫
0

(χ − s)α−1 sup
1<i<n
0<t<s

∣∣fi

(
t, x̄(t)

)
ds

∣∣

�
∥∥x̄(0)

∥∥∞ + ‖f̄ ‖∞
Γ (α)

χ∫
0

(χ − s)α−1 ds = ∥∥x̄(0)
∥∥∞ + ‖f̄ ‖∞

Γ (α + 1)
χα,

which impliesA(U) is bounded in pointwise sense. Moreover, for 0� t1 � t2 � χ ,∥∥Ax̄(t1) − Ax̄(t2)
∥∥∞

= 1

Γ (α)

∥∥∥∥∥
t1∫

0

(t1 − s)α−1f̄
(
s, x̄(s)

)
ds −

t2∫
0

(t2 − s)α−1f̄
(
s, x̄(s)

)
ds

∥∥∥∥∥∞

= 1

Γ (α)

∥∥∥∥∥
t1∫

0

[
(t1 − s)α−1 − (t2 − s)α−1]f̄ (

s, x̄(s)
)
ds

+
t2∫

t1

(t2 − s)α−1f̄
(
s, x̄(s)

)
ds

∥∥∥∥∥∞

� ‖f̄ ‖∞
Γ (α)

[ t1∫ [
(t1 − s)α−1 − (t2 − s)α−1] +

t2∫
(t2 − s)α−1 ds

]

0 t1
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ce of

ble,

)

is
� ‖f̄ ‖∞
Γ (α + 1)

[
2(t2 − t1)

α − tα1 − tα2
]
� ‖f̄ ‖∞

Γ (α + 1)
(t2 − t1)

α.

Thus, if |t2 − t1| < δ, then∥∥Ax̄(t1) − Ax̄(t2)
∥∥∞ � 2

‖f ‖∞
Γ (α + 1)

δα.

Since the expression on the right-hand side is independent ofx̄, we see that the setA(U)

is equicontinuous. Then, the Arzela–Ascoli theorem [1] implies that every sequen
functions inA(U) is relatively compact. Then by Schauder fixed point theorem [8],A has
a fixed pointx̄ : [0, χ] → R which is a solution of Eq. (10). �
Theorem 3.6 (Uniqueness).Letfi :W → R be bounded, where

W = [0, χ∗] ×
n∏

j=1

[
xj (0) − lj , xj (0) + lj

]
, χ∗ > 0, lj > 0.

If f̄ = (f1, f2, . . . , fn) satisfies Lipschitz condition with respect to the second varia
i.e., ∥∥f̄ (t, x̄) − f̄ (t, z̄)

∥∥∞ � L‖x̄ − z̄‖∞,

then the initial value problem(10) has unique solution̄x(t) : [0, χ] → R, whereχ is as
defined in Theorem3.4.

Proof. Let l = min{l1, l2, . . . , ln} and

U = {
x̄(t) = (

x1(t), x2(t), . . . , xn(t)
)
, xi(t) ∈ C[0, χ], ∀i:

∣∣xi(t) − xi(0)
∣∣ < l

}
.

We use the operatorA(x̄) = (A1(x̄),A2(x̄), . . . ,An(x̄)), whereAi is defined in Eq. (11
and recall that it maps the nonempty, convex, and closed setU to itself. FurtherA is a
continuous operator. We prove that, for everyn ∈ N ∪ {0} and for everyx̄, z̄ ∈ U ,

‖Anx̄ − Anz̄‖∞ � (Lχα)n

Γ (nα + 1)
‖x̄ − z̄‖∞. (13)

In the following steps, we use the Lipschitz condition onf and the induction hypothes
and find

‖Anx̄ − Anz̄‖∞

� 1

Γ (α)

χ∫
0

(χ − s)α−1 sup
0�t�s
1�i�n

∣∣fi

(
t,An−1x̄(t)

) − fi

(
t,An−1z̄(t)

)∣∣ds

� L

Γ (α)

χ∫
0

(χ − s)α−1 sup
0�t�s

∥∥An−1x̄(t) − An−1z̄(t)
∥∥∞ ds

� Ln

Γ (α)Γ (1+ α(n − 1))

χ∫
0

(χ − s)α−1sα(n−1) sup
0�t�s

∣∣xi(t) − zi(t)
∣∣ds
1�i�n
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if-

r all
� Ln

Γ (α)Γ (1+ α(n − 1))
sup

0�t�χ
1�i�n

∣∣xi(t) − zi(t)
∣∣ χ∫

0

(χ − s)α−1sα(n−1) ds

= Ln‖x̄ − z̄‖∞
Γ (α)Γ (1+ α(n − 1))

Γ (α)Γ (1+ α(n − 1))

Γ (1+ αn)
χnα � (Lχα)n

Γ (nα + 1)
‖x̄ − z̄‖∞.

It is however, known that [7,9]

∞∑
n=0

(Lχα)n

Γ (nα + 1)
=: Eα(Lχα)

is the Mittag–Leffler function of orderα, evaluated atLχα . Therefore, in view of the
Banach fixed point theorem [3]A has unique fixed point which is the solution of the d
ferential equation (10). �
3.3. Mittag–Leffler function for matrices

We consider Mittag–Leffler function for matrices, namely

Eα(A) =
∞∑

k=0

Ak

Γ (αk + 1)
, (14)

whereA is n × n matrix. It is easy to show that this series converges absolutely fo
square matrices in the uniform norm, where uniform norm ofn × n matrixA is defined to
be

‖A‖ = max
{∣∣A(x)

∣∣/|x| � 1
}
.

Theorem 3.7. The unique solution to the initial value problem

Dα
[
x̄(t) − x̄0

] = Ax̄(t), x̄(0) = x̄0, 0 < α < 1, t ∈ [0, χ], χ > 0,

whereA is n × n matrix, isEα(tαA)x̄0.

Proof.

Dα
[[

(Eα(tαA)
]
x̄0 − x̄0

] = Dα

[
tαA

Γ (α + 1)
+ (tαA)2

Γ (2α + 1)
+ · · ·

]
x̄0.

But the series[
tαA

Γ (α + 1)
+ (tαA)2

Γ (2α + 1)
+ · · ·

]
is uniformly convergent on[0, χ] as∥∥∥∥ (tαA)k

Γ (kα + 1)

∥∥∥∥ � ‖χαA‖k

Γ (kα + 1)
, ∀k,

and the series
∑∞

k=1
‖χαA‖k

is convergent. Hence

Γ (kα+1)
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ntial

itz
Dα

[ ∞∑
n=1

(tαAn)

Γ (αn + 1)

]
=

∞∑
n=1

AnDα[tαn]
Γ (αn + 1)

= A

[
I + Atα

Γ (α + 1)
+ · · ·

]
.

Therefore

Dα
[[

Eα(tαA)
]
x̄0 − x̄0

] = AEα(tαA)x̄0. �
Remark. For α = 1, we recover the standard result for a system of ordinary differe
equations [5] viz. the unique solution for the system of equationsD[x̄(t)] = [x ′

1(t), . . . ,

x ′
n(t)] = Ax̄(t), x̄(0) = x̄0 is etAx̄0.

4. Dependence of solution on initial condition

Theorem 4.1. Let the functionsfi :W → R, i = 1,2, . . . , n, where

W = [0, χ∗] ×
n∏

j=1

[
xj (0) − lj , xj (0) + lj

]
, χ∗ > 0, lj > 0,

be bounded. Letf̄ = (f1, f2, . . . , fn) be Lipschitz in the second variable with Lipsch
constantL. Let ȳ(t) and z̄(t) be the solutions of the initial value problems

Dα
[
x̄(t) − x̄(0)

] = f̄ (t, x̄), x̄(0) = x̄0,

Dα
[
z̄(t) − z̄(0)

] = f̄ (t, z̄), z̄(0) = z̄0,

respectively, where0 < α < 1. Then∥∥x̄(t) − z̄(t)
∥∥∞ � ‖x̄0 − z̄0‖∞Eα(Ltα), (15)

whereEα is the Mittag–Leffler function.

Proof. Consider the following iterated sequence defined form = 1,2, . . . :

(A0x̄0)(t) = x̄0, (Amx̄0)(t) = x̄0 + 1

Γ (α)

t∫
0

(t − s)α−1f̄
(
s, (Am−1x̄0)(s)

)
ds,

and

(A0z̄0)(t) = z̄0, (Amz̄0)(t) = z̄0 + 1

Γ (α)

t∫
0

(t − s)α−1f̄
(
s, (Am−1z̄0)(s)

)
ds.

It can be shown that∥∥(Amx̄0)(t) − (Amz̄0)(t)
∥∥∞ � ‖x̄0 − z̄0‖∞

m∑
k=1

(Ltα)k

Γ (kα + 1)
, ∀m.

Hence

lim
m→∞

∥∥(Amx̄0)(t) − (Amz̄0)(t)
∥∥∞ � ‖x̄0 − z̄0‖∞Eα(Ltα).

Therefore‖ȳ(t) − z̄(t)‖∞ � ‖x̄0 − z̄0‖∞Eα(Ltα). �
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al-

rch

h.

Press,

to

93.
Remark. In the case whenα = 1, Eq. (15) becomes the well-known Gronwall inequ
ity [5].
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