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Abstract

We prove existence and uniqueness theorems for the initial value problem for the system of
fractional differential equation®*[x () — x(0)] = Ax(¢), x(0) = Xg, where D¥ denotes standard
Riemann-Liouville frational derivative, O< a < 1, X(¢) = [x1(¢), ..., x, (t)]’ and A is a square
matrix. The unique solution to this initial value problem turns out tcEe&:r* A)xg, whereE,, de-
notes the Mittag—Leffler function generalized for matrix arguments. Further we analyze the system
DY [x(1) —x(0)] = f (1, %), ¥(0) = %o, 0 < « < 1, and investigate dependence of the solutions on the
initial conditions.
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1. Introduction

The existence and uniqueness of solutions of initial value problems for fractional order
differential equations have been studied in the literature [2,3,7,9]. In this paper we present
analysis of the system of fractional differential equations

D¥[x(t) —x(0)] = Ax(t), X(0)=%0, O<a <1,
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where D¥ denotes Riemann-Liouville derivative operator atidlenotes a square ma-
trix having real entries. The unique solution to this initial value problem turns out to be
E,(t*A)xg, whereE, denotes the Mittag—Leffler function generalized for matrices. Fur-
ther we discuss the initial valuegdslem for nonautonomous nonlinear system

D[%(t) — %o] = f(t.X), (0)=%0, O<a <1,

where f: W(C R x R") — R". It is shown that forf bounded, continuous and Lipschitz
in the second variable, there exists unique solution (locally). The dependence of solutions
on initial conditions has also been discussed.

2. Preliminariesand notations
Riemann-Liouville derivative and integral are defined below [7,9].

Definition 2.1. Let f be a continuous function defined an »], andn —1 < a <n,n e N.
Then the expression

1 a [ fO

I'n—a)dx" | (x —p)e—n+tl ™"
a

is called left-sided fractional derivatives of order

Dy, f(x)= X >a, (1)

Definition 2.2. Let f be a continuous function defined ¢, b], andae > 0. Then the
expression

1 AU dt, x>a, (2)

is called as left-sided fractional integral of order

Without loss of generality we will work withDy, f(x), I3, f(x) and unless men-
tioned otherwise, we denofey, by DJ f(x) andl, f(x) by I f(x), respectively. Also
D* f(x) andl® f (x) refer toDg, f (x) andI§, f(x).

Theorem 2.1[5]. LetT € L(R"), have real eigenvalues, Ay, ..., A,. Then there exists a
basis ofR" in which the matrix representation @f assumes Jordan form, i.e., the matrix
of T is made of diagonal blocks of the fomiag C1, Co, ..., C,], where eaclC; consists
of diagonal blocks of the form

A0 ... 0 O
1 » ... 00

0 1 ... 00

0O 0 ... 1 X
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Theorem 2.2 [5]. LetT € L(R") have nonreal eigenvalugs; =a; +ib;, j=1,...,r,
with multiplicity. Then there exists a basis®f, whereT has matrix formdiag C1, C2,
..., C;], whereC; consists of the diagonal blocks of the type

D 0 ... 0 O

L D ... 0 O b 10
O L ... 0 O _ |4 ~0bi —

. L . | b [bi a; i|’ 2 [0 lj|'
0O 0 ... b D

Theorem 2.3[5, Theorem 2, p. 129).etT € L(R"). ThenR" has a basis giving" a ma-
trix representation composed of diagonal blocks of tgpend/or matricesC;, whereC;
andC; are as defined in the preceding theorems.

3. Analysisof a system of fractional differential equations

In the present paper using methods of linear algebra [4,6] we study the following system
of fractional differential equations:

D*[x(t) —x(0)] = Ax(1), x(0)=x0, 1€[0,x*], x*>0, O<a <1, (3)
wherex () = [x1(t), x2(¢), ..., x, ()]", A isn x n real matrix and
D[x(t) — x(0)] = (D*[x1(t) — x1(0)], D*[x2(t) — x2(0)]. .. .,

D*[xn () — x(0)])".

We now proceed to solve the initial value problem (3) in various cases. In Theorem 3.1,
we discuss the case when matdhas real and distinct eigenvalues. Theorems 3.2 and 3.3
deal with the cases of compleigenvalues and repeated eigenvalues, respectively. Using
these theorems, the most genaexade has been treated where matrigan have any type
of eigenvalues (cf. Theorem 3.4)

Theorem 3.1. Let A € L(R") have distinct real eigenvalues. Then givere R, 3x > 0,
such that the systeii3) has unique solution defined ¢@, x].

Proof. Suppos€g1, g2, - - -, gn} are the (distinct) eigenvectors corresponding to the dis-
tinct eigenvalue$iy, A2, ..., A,}; sothatdg; =1;g;, j =1,2,...,n. Ifall the eigenval-
ues are real and distinct thép, g», ..., g,} forms a basis oR”". Let T be the operator
on R" having A as the matrix representation in the standard basis.BLbe the matrix
representation of in {g1, g2, ..., g.}. ThenB =diagi1, A2, ..., A,] andB = QAQ L,
whereQ~1=p!, p= [pijlandg; = Zj pijej, wheree;, j =1,...,n, denotes the stan-
dard basis. Defing = Qx,

D[5(1) — 3(0)] = QD*[%(t) — X(0)] = QAX(t) = QAQ'5(t) = By (1),
wherey(0) = 0x(0) = yo. SinceB is diagonal,
D[yi(t) = yi(Q)] = Aiyi(),  yi(0)= (o), i=1,2,....n.
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Here fi(t, yi): 2; — R, where$2; = [0, x*] x [(Jo)i — i, (Yo)i + [;] for [; > 0. Note
fi (¢, yi) = A;y; which is Lipschitz in the second variable. Hence in view of Theorems 2.1
and 2.2 in [3], there exists unique solutigs [0, x;] — R solving

D¥[yi(t) — (@] =2iyi(1), yi(0)= [Qi(O)],» = (Yo)i,
where

X~=min{x* (M)lm} i=1 n
’ "\ I fillso ’ R

Let x = min{x1, x2, ..., xa}. Theni(t) = [Q~15(r)] uniquely solves Eq. (3), wherec
[0, x]. O

Theorem 3.2. (i) Consider the system of equations

ol = _ —b t
S |
wherea,b € R, x(0) =X, € [0, x*], x* > 0, 0 < o < 1. Definez(¢) = x1(¢) + ix2(2).
Then the equation

D*[z(t) —z0o] =z, 2(0)=z0=x1(0) +ix2(0), u=a+ib, (5)

is equivalent to Eg(4). It can be shown that the complex equat{hhas unique solution.
Hence the theorem.
(i) Consider the system

D¥[x(t) —x(0)] = Ax(t), %(0)=3%0, O<a <1
A € L(R?) and A has eigenvalues+ ib, a, b € R. Then there exists a matri such that
_ a —b -1
A=Q [b B } o~
Definej(r) = 0~ (1),

_ _ —b _ _
D*[y(1) — y(0)] = [Z B } y@®), ¥(0) = yo. (6)
Equation(6) has unique solution in view of ca§¢. Hence the result.

Theorem 3.3. Consider the system

D¥[x(t) —x(0)] = Ax(t), x(0)=x0, O<a <1, r€[0,x*], x*>0, (7)
whereA is the elementary Jordan matrix
A 0 ... 0O
12 ... 00

01 .. 00



V. Daftardar-Gejji, A. Babakhani / J. Math. Anal. Appl. 293 (2004) 511-522 515

Then

D*[x1(1) — x1(0)] = Ax1(¢),
D[ x2(t) — x2(0) ] = x1(2) + Ax2(1),

D* [xn () — xp (O)] =xp-1(t) + Ax, (7).

ConsiderD*[x1(t) — x1(0)] = Ax1(¢), x1(0) = (xp)1. Here f1(z, x1) = Ax1 is defined on
21 = [0, x*] x [x1(0) — I1, x1(0) + 1] for I1 > 0. f1 is continuous and Lipschitz in the
second variable. Hence it has unique solutiaKy), ¢ € [0, x1], where

_mm{*<hrw+n>“1
=T\ T Al ‘

ConsiderD%[x2(t) — x2(0)] = x1(¢) + Ax2(¢), where nowr1(¢) is known function. Here
fo(t, x2) = x1(¢) + Axz is defined on22 = [0, x*] x [x2(0) — I2, x2(0) + I2] for I > 0.
f2 is continuous and Lipschitz in the second variable. Hence it has unique salygtion
t €0, x2], where

_mM{*<hFW+D>M1
2=\ T 2l '

Nowx1(7) andxz(r) are known functions which will be substituted in the equation
D®[x3(t) — x3(0)] = x2(t) + Ax3(1),

and so on. Thus the system of equations given i Bdas a unique solution of0, x1,

wherey =min{x1, x2, ..., Xn}-

Theorem 3.4. Consider the initial value problem

D¥[x(t) —x(0)] = A% (), %(0) = Xo, (8)

wherer € [0, x*], x*>0,0<a <1andA € L(R"). Thendy > 0 and a unique solution
to Eq.(8) defined ori0, x].

Proof. Inview of Theorem 2.3, there exists a basi®8f in which the differential equation
becomes

D[3() = (0] = By(1), ¥(0) = Jo,

whereB is composed of diagonal blocks of the tygeand(;, as defined in Theorems 2.1

and 2.2. In this basis the system decouples into simpler subsystems. Then in view of Theo-
rems 3.1-3.Fx > 0 and a unique solution to the initial value problem under consideration
defined o0, x]. The solution to initial value problem (8) can be obtained by simple for-
mulax(r) = [Q~115(t), whereQ is defined in Theorem 3.1.00
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3.1. lllustrative examples

Itis proved [5,7] that the initial value problem
D[y —y(@]-ay=g(x), O<a<1l, y0) =co,

has the following unique solution:

X

y(x)= / 1 Ey o (Ax®)g(x — 1) dt + c0Eq,1(Ax%), 9)
0
whereE, g denotes two parameter Mittag—Leffler function [7].

Example 1. Consider the following system, whereOx < 1:

D% [xl — xl(O)] = —x1— 3x2,
D*[x2—x2(0)] =2x2. x1(0) =1, x2(0)=0.
Here

-1 -3
=le 7]
having the eigenvalues1, and 2. Choose the eigenvectgis= (1, 0)", g2 = (-1, 1)’
Then

_|-1 0| ,-1]/-1 -3
o=[o 2-e|o Ze
where
1 -1
e-ls 3]
Definey = Qx. Then the system of equationsjiris decoupled, namely
D¥(y1— y1(0)) = —y1, y1(0) =1,

D% (y2 — y2(0)) = 2y2, y2(0) = 0.
In view of EQ. (9),y1(¢) = Eq.1(—1%), y2(t) = 0. Hencex1(¢) = Eq,1(—1%), x2(t) =0.

Example 2. Consider the following system of equations, where & < 1:
D*(x1() — x1(0)) = Ax1(r), x1(0) =cy,
D% (x2(1) — x2(0)) = x1(1) + Ax2(1),  x2(0) =,
D (x3(r) — x3(0)) = x2(r) + Ax3(), x3(0) =ca.

In view of Eq. (9), x1(r) = Ea1(A%)c1, x2(t) = Eq1(M%)c2 + [§x1(t — )71 x
Eaq(AT%)dT, x3(t) = Eq1(M*)c3+ [y x2(t — )T LEq o (M%) dT.
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3.2. Nonautonomous case

Theorem 3.5 (Existence)Let f; : W — R be continuous;, =1, 2, ..., n, where

n
=10, x*] x H[xj(O)—lj,xj(O)—i—lj], x*>0,1;>0,V/,
j=1

and f = (f1, f2, ..., f»). Then the nonautonomoustial value problem
D*[x(t) —x(0)] = f(1,%), ¥(0)=x0, O<a <1, (10)
has a solutiorx(¢) : [0, x] — R", where

. IT (o + 1)\ Y .
X = mm{x*, <%) } [=min{ly, 2, ..., 1,}.
o0

Proof. DenoteA (x) = (A1(x), A2(X), ..., A, (X)), where

Ai[x(0)] =xi(0) + m/(t “Lfi(s. () ds (11)

DefineU = {x (1) = (x1(1), x2(t), ..., xn (1)), xi € C[O, x1: |xi(t) — x;(0)| < 1}. Clearly
U is a nonempty, convex, closed subsetf0, x]"). Since f;'s are continuous on the
compact seW, they are uniformly continuous oW. Thus, given an arbitrary > 0, we
can finds > 0 such that

\ﬁ(t,)?)—f,-(t,i)\<%1“(a+l) (12)

whenevel|x — Z|lco < 8.
Now letx, z € U such that|x — z|oc < é. Then in view of Eq. (12),

|Ax @) — Az(0)|

/(t—s)o‘ Y F(s, %) = f(s,2(5))] ds

F()

9]

t

/(t - s)“fl[f,' (s,%(8)) — fi(s,2())] ds

= sup
1<i<n I (@)

<1§z<n I'(a) /(t DA F0) = Sl Z)] ds
<o / (=9 sup | (1. 20) = £i(0.50) s

O<r<s

\eF(a—i—l)/( RS 1ds__“:
oI (a)
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proving the continuity of the operatar. Moreover, forx € U andr € [0, x], we find

145050l = 7 2t

/ (1 — )L fi (5, 5(s)) ds

l<i<n
O<t<s

_ X
1 oo et
gr(a+1>/(x ST
0

1 a—1 : =
< ) /(x — )" sup | fi(r. x())|ds
0

I lleox® Wl IM@+D) _

ST+l T Te+Dd [flle
Thus, we have shown thatx € U, i.e., A maps the sel/ to itself. Then we look at the set
of functionsA(U) := {Ax(¢): x(t) € U}. Forz(t) € A(U) we find that, for all € [0, x],

1
|20 = |42 + 75 sup

t
Fw 2P, /(t—s)“_lﬁ(s,i(s))ds

<Ol + 75 )/(x—s)“ L sup | £ (1. 2()) ds]

l<i<n
O<r<s

_ I £ lloo e 3 I flloo 4
§||x(O)Hoo+m/(x—s) 1ds=||x(0)Hoo+mx :

which impliesA (U) is bounded in pointwise sense. Moreover, fa£ @ < 7 < x,

|Ax(11) — Ax ()],

: 2
= F—(la) /(tl — ) f (5, %(5)) ds — /(tz — )L f (s, %)) ds
0 5 .
1| f
= Fy| [ L= = =97 50) ds

0

7]
+/(t2—s)“*1f(s,ﬂs))ds
141

oo

5%

2
HI{(HO)O [/[(tl =)t — (- ) + /(tz -5t ds]
1

0
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Il £ lloo I/ lloo
<———2tp—1)* -t — 65| < ——(12 — 1)".
F(a+1)[ (12 —1)* —1f —15] F(a+1)(2 1)
Thus, if|to — 11| < 8, then
|Ax (1) — AZ(12)] , < 2M5“.

I'e+1)

Since the expression on the right-hand side is independentwé see that the set(U)

is equicontinuous. Then, the Arzela—Ascoli theorem [1] implies that every sequence of
functions inA(U) is relatively compact. Then by Schauder fixed point theorem48jas

a fixed pointx : [0, x] — R which is a solution of Eq. (10). O

Theorem 3.6 (Uniqueness)Let f; : W — R be bounded, where

n
W =10, x*1x [ [[x;0 - 1;.x;®+1;], x*>0,1;>0.
j=1

If f=(f1, f2 ..., f,) satisfies Lipschitz condition with respect to the second variable,
ie.,
|fa.% - ft.2)] <LIX = Zloo,

then the initial value problenil0) has unique solutiorx(¢) : [0, x] — R, wherey is as
defined in Theorer®.4.

Proof. Let! =min{ly, o, ...,1,} and

U ={x(t) = (x1(0), x2(0), ..., xx (1)), xi(t) € C[O, x1, Vi: |x;(t) — x; (0)] <1}.

We use the operatof (¥) = (A1(X), A2(x), ..., Ay(X)), whereA; is defined in Eq. (11)
and recall that it maps the nonempty, convex, and closed st itself. FurtherA is a
continuous operator. We prove that, for everg N U {0} and for every,z € U,

(L™
ToatD Ve (13)

In the following steps, we use the Lipschitz conditionand the induction hypothesis
and find

[A"X — A"Zlloo

[A"% — A"Z]loo <

X
< / (x =)t sup |fi(r, A" () — fi(t, AVRZ(0) | ds
I'(@) , 0<1<s

1<i<n

X
L _ o—1 n—1= _ An—1
g[‘(a)/(x s) sup A"k () — AMTZ ()| ds
0

0<r<s
X
L" / a—1_a(n—1) sup | (1) (t)|d
< (x—5)"""s xi (1) — z; s
r@rQ+an—1) ) o<i<s ’

1<i<n
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X
< L sup |)C'(t) _ Z'(t)| /(X _ s)aflsa(nfl) ds
F@I'l+am—1) ocrcy ’
1<i<n 0
_ L™Mx = Zlloo 'o)rd+ar-1) ,, < (Lx*)" 1% — 2|
TT@Ird+an—1) rA+an) X STha+1) o0

It is however, known that [7,9]

o (Lx"" o
;m—' Eq(Lx")

is the Mittag—Leffler function of ordes, evaluated at. x*. Therefore, in view of the
Banach fixed point theorem [3] has unique fixed point which is the solution of the dif-
ferential equation (10). O

3.3. Mittag—Leffler function for matrices

We consider Mittag—Leffler function for matrices, namely
(.¢] Ak
Eg(A)=) ————, 14
a(4) 4 I(ak+1) (14)

where A is n x n matrix. It is easy to show that this series converges absolutely for all
square matrices in the uniform norm, where uniform norm efn matrix A is defined to
be

Al =max{|A@)|/lx| < 1}.

Theorem 3.7. The unique solution to the initial value problem
D¥[x(t) — Xo] = Ax(r), X(0)=X0, O<a <1, 1t€[0 ], x>0,

whereA isn x n matrix, is E, (1% A) xo.

Pr oof.

2
D*[[(Eq(t* A)]x0 — Xo] = D* [F(i:i ot F((ZAJ)F TR .}zo
But the series

[ YA (1% A)? }
| M(ae+1) TI'Ca+1)
is uniformly convergent of0, x] as

@A | Ix Al
Tka+1) | Ika+1)’ ’
x> All*

and the seriey ;2 ; is convergent. Hence

T (ka+1)
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o0 o0
(t*A™) A" D*[r*"] Ar?
D% — 7 | = T Al — ...
[;F(an+l):| ;F(an+1) |: +F(Ol+1)+ i|
Therefore

D¥[[E«(t* A)]x0 — X0] = AEq(1*A)X0. O

Remark. For o = 1, we recover the standard result for a system of ordinary differential
equations [5] viz. the unique solution for the system of equatiops(r)] = [x1(1), ...,
x) ()] = Ax(t), ¥(0) = Xo is ' A Xo.

4. Dependence of solution on initial condition

Theorem 4.1. Let the functions; : W — R,i =1,2,...,n, where

n
W =10, x*1x [[[x;® - 1j.x;@+1;]. x*>0,1;>0,
j=1

be bounded. Lef = (f1, f2. ..., f,) be Lipschitz in the second variable with Lipschitz
constantL. Lety(z) andz(z) be the solutions of the initial value problems

D*[x(t) —x(0)] = f(t. %), X(0)=Xo,

D*[z() —z2(0)] = f(,2), Z(0)=Zo,
respectively, wher® < o < 1. Then

2@ — 2] , < K0 — Zolloo Ea(L1%), (15)
wherekE,, is the Mittag—Leffler function.

Proof. Consider the following iterated sequence definedifee 1, 2, .. .:

t
(A%0) (1) = %o (Amxo)(t)=xo+i f t =) f (5. (A" Yxo)(5)) ds
’ I' (o) ’ ’
0

and

t
(A%0)() =Z0,  (A™Z0)(1) = Fo+ —— / (t =)L f (s, (A" Z0)(s)) ds
’ () ’ '
0

It can be shown that

A" 50) (1) = (A"Z20) (1), < 10 — Zolloo Y.
k=1

(Lt)k
Ika+1)’
Hence

lim [[(A"X0)(t) — (A"Z0) ()], < %0 — Zolloo Ea(L1%).
m—0o0

Therefore|| y(1) — (1) oo < IIX0 — Zolloc Ea (L1%). O
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Remark. In the case whew = 1, Eq. (15) becomes the well-known Gronwall inequal-
ity [5].

Acknowledgments

Varsha Daftardar-Gejji acknowdges University Grants Commission, New Delhi, India for Minor Research
Project grants. A. Babakhani acknowledges Ursitg of Mazanderan, Iran for a research fellowship.

References

[1] C.D. Aliprantis, O. Burkinshaw, Principles of Real Analysis, Academic Press, New York, 1990.

[2] D. Delbosco, L. Rodino, Existence and uniqueness foomlinear fractional differential equation, J. Math.
Anal. Appl. 204 (1996) 609—625.

[3] K. Diethelm, N.J. Ford, Analysis of fractionaiffierential equations, J. th. Anal. Appl. 265 (2002) 229—
248.

[4] M.V. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press,
New York, 1974.

[5] Y. Luchko, R. Gorenflo, An operaihal method for solving fractional dérential equations with the Caputo
derivatives, Acta Math. Vietham. 24 (1999) 207-233.

[6] L. Perko, Differential Equations and Dynagal Systems, Springer-Verlag, New York, 1991.

[7] 1. Podlubny, Fractional Differenti€Equations, Academic Press, New York, 1999.

[8] R. Precup, Methods in Nonlinear Integiatjuations, Kluwer Academic, Dordrecht, 2002.

[9] S. Samko, A. Kilbas, O. Marichev, Fractional Intats and Derivatives, Gordon and Breach, Yverdon, 1993.



