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Maintenance of hematopoietic stemcells and their potential to give rise to progenitors of differentiated lymphoid
and myeloid cells are accomplished by a network of regulatory processes. As a part of this network, the
heteromeric transcription factor GA-binding protein (GABP) plays a crucial role in self-renewal of murine hema-
topoietic and leukemic stem cells. Here, we report the consequences of functional impairment of GABP in human
hematopoietic and in leukemic stem/progenitor cells. Ectopic overexpression of a dominant-negative acting
GABP mutant led to impaired myeloid differentiation of CD34+ hematopoietic stem/progenitor cells obtained
from healthy donors. Moreover, drastically reduced clonogenic capacity of leukemic stem/progenitor cells isolated
from bone marrow aspirates of chronic myeloid leukemia (CML) patients underlines the importance of GABP on
stem/progenitor cell maintenance and confirms the relevance of GABP for human myelopoiesis in healthy and
diseased states.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
GABP
Transcription factor
Hematopoietic stem cell
Leukemic stem cell
CML/chronic myeloid leukemia
1. Introduction

Transcriptional regulation is of particular relevance for self-renewal
of hematopoietic stem cells and accurate hematopoietic differentiation.
The potential to give rise to mature hematopoietic cells as well as to
preserve stem cell properties is regulated by a set of transcription
factors, of which only few are well-characterized (Orkin and Zon,
2008). The ETS transcription factor GA-binding protein (GABP) was
recently shown to play a crucial role for myeloid differentiation in
mice and humans (Yang et al., 2011; Yu et al., 2011; Ripperger et al.,
2015). Moreover, GABP was reported to directly impact propagation
of leukemic clones in mice transplanted with BCR-ABL1+ murine
leukemic stem cells, which resemble human chronic myeloid leukemia
(CML) (Yu et al., 2012; Yang et al., 2013). Our recent work supported
these observations by showing that GABP affects viability and imatinib
sensitivity in human CML cell lines (Manukjan et al., 2015).

Here,we focus on the effects of GABP inhumannormal and leukemic
hematopoietic stem/progenitor cells and demonstrate that GABP is
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required for proper myeloid differentiation in human primary cells.
GABP functions as an obligate heterodimer, in which the alpha-subunit
(GABPα) binds targetedDNA-motifs and thebeta-subunit (GABPβ1) con-
tributes to transcriptional regulation via its transactivation capacity
(Rosmarin et al., 2004). Hence, ectopic overexpression of GABPβ1 lacking
the transcriptional activation domain (TAD) results in a dominant-
negative GABP, as we show here and have already demonstrated in the
preliminary work (Manukjan et al., 2015). In this context, we further
show that impaired GABP decreases leukemic stem/progenitor cell
capacity of human CD34+ cells derived from CML patients.

2. Material & methods

Mobilized CD34+ cells were purified from peripheral blood
leukapheresis material from three individuals in hematological
remission after treatment for acute myeloid leukemia (AML). Bone
marrow CD34+ cells were obtained from healthy donors. Bone marrow
CD34+ cells from five CML patients (three females; two males; age
range at diagnosis: 44–87 years) in chronic phase were obtained at the
time of diagnosis. Patients did not receive tyrosine kinase inhibitor
therapy prior to sampling. Diagnosis of CMLwas confirmed by standard
cytogenetic and molecular genetic analyses to detect translocation
t(9;22)(q34;q11) and detection and quantification of p210 BCR-ABL1
fusion transcripts as described previously (Emig et al., 1999; Hughes
et al., 2006). The investigation was approved by the Hannover Medical
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School Ethics Committee (No. 2899) and written consent was obtained
from each patient in accordance with the Declaration of Helsinki. In all
cases, CD34+ cells were purified by magnetic separation according
to the manufacturer's recommendations (Miltenyi Biotec, Bergisch
Gladbach, Germany).

Cultivation, transduction and chemical treatment (DMSO and
imatinib) of K-562 cells (ACC-10, DSMZ, Braunschweig, Germany)
were performed as described earlier (Manukjan et al., 2015).

The pRSF91.IRES.dTomato.pre* vector was used to ectopically over-
express GABPB1.ΔTAD, following published protocols (Ripperger et al.,
2015). CD34+ cellswere transducedwithVSV-Gpseudotyped retroviral
particles using a RetroNectin protocol (Takara Bio Europe/Clontech,
Saint-Germain-en-Laye, France) and a multiplicity of infection (MOI)
of 50. Quantitative RT-PCR was performed using the QuantiTect SYBR
Green RT-PCR Master Mix (Qiagen, Hilden, Germany) under standard
conditions. Relative expression was calculated by the ΔΔCt method in
correlation to SDHA. Primer sequences are as follows:GABPB1 (forward:
5′-GGT CAAGATGATGAAGTT CG-3′; reverse: 5′-CTGGCA TCT CTG CTC
ACA C-3′); SDHA (forward: 5′-GCC ATC CAC TAC ATG ACG-3′; reverse:
5′-TCC ATA TAA GGT GTG CAA TAG C-3′).

Following fluorescence activated cell sorting (FACS) for dTomato-
reporter expression, HSPCs were maintained for ten days in liquid
culture using StemSpan medium (StemCell Technologies, Grenoble,
France) supplemented with 1% penicillin/streptomycin, 1% L-glutamine
(BiochromAG, Berlin, Germany) and the following recombinant human
cytokines: 100 ng/ml M-CSF, 50 ng/ml FLT3-L, 20 ng/ml SCF, and
20 ng/ml IL-6 (all PeproTech, Hamburg, Germany). For flow cytometry,
the following antibodies were used: anti-human CD11b APC (ICRF44)
(eBioscience, Frankfurt am Main, Germany); anti-human CD14 APC
Fig. 1.GABPB1.ΔTADacts as dominant-negativemutant. (A) Schematic representation of GABPβ
beta-2 (NM_016654.4) was deleted by restriction digestion to create the GABPB1.ΔTAD cons
(B) WST-1 proliferation assay on K-562 cells. Cells were FACS-purified for dTomato expressio
either as empty vector control (ve) or containing a GABPB1.ΔTAD (ΔTAD) cDNA cassette and
assay was performed every 24 h. The background-corrected optical density (ΔOD) is plotted o
three independent experiments performed two days after transduction of HSPCs comparing
amplification of both, endogenous wild-type GABPB1 and ectopically expressed GABPB1.ΔTAD.
(555399) (BD Pharmingen, Heidelberg, Germany). Colony formation
assays were performed two days after transduction with 5000 FACS-
purified reporter-positive cells per 35 mm2 culture dish using
MethoCult™ H4230 methylcellulose (StemCell Technologies)
supplemented with 1% penicillin/streptomycin (Biochrom AG),
as well as a recombinant human cytokine cocktail containing
100 ng/ml SCF, 20 ng/ml G-CSF, 20 ng/ml GM-CSF, 20 ng/ml IL-3, and
20 ng/ml IL-6 (PeproTech). Granulocyte/macrophage colony-forming
units (CFU-GM) were determined after 14 days of cultivation under
standard conditions.

3. Results & discussion

To study the impact of GABP during myeloid differentiation and
self-renewal of primary human hematopoietic stem/progenitor cells
(HSPCs), GABP function was impaired by ectopic overexpression of a
GABPβ1 subunit lacking the TAD (GABPB1.ΔTAD, shown schematically
in Fig. 1A) (Ripperger et al., 2015). GABPB1.ΔTAD ectopic overexpres-
sion was performed since knockdown efficiencies of shRNAs targeting
GABP subunits were not sufficient in HSPCs (data not shown). Initially,
effects of GABPB1.ΔTAD ectopic overexpression were studied in the
BCR-ABL1+ K-562 cell line in combination with imatinib treatment to
confirm the dominant-negative action of the mutant protein (Fig. 1B).
A similar proliferation behavior in terms of elevated sensitivity to
imatinib upon GABPB1.ΔTAD ectopic overexpression was observed
as compared to our previous investigations applying shRNA-mediated
knockdown of GABPA in K-562 cells (Manukjan et al., 2015). Hence,
the approach is feasible to be used in primary HSPCs particularly as
overexpression efficiency could be proven by qPCR (Fig. 1C).
1 subunit domains. The transactivation domain (TAD) ofGABPB1 subunit, transcript variant
truct (bottom) used for ectopic overexpression. Numbers indicate amino acid residues.
n upon transduction with the ectopic overexpression vector (pRSF91.IRES.dTomato.pre*)
subsequently treated with 100 nM imatinib or 0.1% DMSO as solvent control. The WST-1
ver time (mean ± s.d., n = 3; unpaired t-test; **P b 0.01). (C) Quantitative PCR results of
GABPB1.ΔTAD with the empty vector control (pRSF91.ve) (mean + s.d.). Primers allow
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Subsequently, liquid culture assays on mobilized peripheral blood
(mPB) CD34+ cells were performed after transduction with the empty
vector control or GABPB1.ΔTAD. CD34+ cells were achieved by
leukapheresis of AML patients at remission. Upon transduction
with GABPB1.ΔTAD, CD11b and CD14 expressions were significantly
decreased in mPB CD34+ HSPCs after ten days in liquid culture
containing a myeloid cytokine cocktail (Fig. 2A). CD11b and CD14
are defined cell-surface markers of the mature myelo-monocytic
compartment. The significant reduction of CD11b+ and CD14+ cells
Fig. 2. Ectopic overexpression of GABPB1.ΔTAD in human CD34+ HSPCs reduces myeloid differe
ten days after transduction with the ectopic overexpression vector (pRSF91.IRES.dTomato.pre
Exemplary CD11b and CD14 flow cytometric analyses plotted against the side scatter (SSC)
individual for quantification of CD11b and CD14 expression, respectively (mean + s.d.; unp
comparing cells bearing the empty vector (ve) or the GABPB1.ΔTAD (ΔTAD) cDNA cassette. C
independent experiments normalized to the empty vector control (mean + s.d.; unpaired t-t
CD34+ cells after transduction with the empty vector (ve) or the GABPB1.ΔTAD (ΔTAD) cD
performed in triplicates and summarized as bar graphs (mean + s.d.; unpaired t-test; **P b 0.0
indicates that functional GABP is necessary to perform proper
myelopoiesis in humanCD34+HSPCs. In this context, GABPwas recently
shown to directly regulate expression of ITGAM (integrin alpha M),
which codes for CD11b (Ripperger et al., 2015). Remarkably, after
14 days in liquid culture containing a myeloid cytokine cocktail, fewer
total cell numbers were detected in the GABPB1.ΔTAD group (Fig. 2B).
This confirms the lowered myelopoietic potential of mPB CD34+

HSPCs with functionally impaired GABP. In addition, we performed
colony formation assays focusing on granulocyte/macrophage (GM)
ntiation potential. (A) Liquid culture of mobilized peripheral blood (mPB) CD34+ cells for
*) either as empty vector control (ve) or containing a GABPB1.ΔTAD cDNA cassette. Left:
. Right: Bar graphs summarizing three independent experiments each of one different
aired t-test; **P b 0.01). (B) Normalized total cell count after 14 days in liquid culture
ells were counted using a Neubauer counting chamber. Bar graphs are representing six
est; **P b 0.01). (C) Colony formation assays performed on mPB and bone marrow (BM)
NA cassette. Three independent experiments using cells of three different donors were
1; ***P b 0.001).



Fig. 3. Clonogenic capacity is decreased in human CML stem/progenitor cells upon GABP impairment. (A) Colony formation assays were performed on BM-derived CD34+ cells from five
CML patients (Pat #1–5) after transduction with the empty vector (ve) or the GABPB1.ΔTAD (ΔTAD) cDNA cassette. For each patient, cells were plated in triplicates and granulocytic/
macrophage colony-forming units (CFU-GM) were determined after 14 days of cultivation (mean + s.d.; unpaired t-test; *P b 0.1; **P b 0.01; ***P b 0.001; ****P b 0.0001). (B) Dot plot
of the GABPB1.ΔTAD overexpression group relative to the mean of the empty vector control group summarizing all five experiments (mean ± s.d.; paired t-test).
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colonies. Upon ectopic overexpression of GABPB1.ΔTAD, colony forming
capacity of CD34+ HSPCs derived from mPB and healthy bone marrow
(BM) was significantly decreased (Fig. 2C). Apart from GABP's effect on
myeloid differentiation, these results indicate its crucial role for human
hematopoietic self-renewal potential.

To address the questionwhether GABP also contributes to the prop-
agation of human leukemic stem/progenitor cells, we tested CD34+

cells obtained from five CML patients at diagnosis. Cytogenetic and
molecular genetic analyses showed the presence of BCR-ABL1 fusion
and indicated high tumor cell burden. Colony formation assays were
performed with CD34+ cells from each individual and showed remark-
ably decreased colony forming capacity (N80%) upon overexpression of
GABPB1.ΔTAD (Fig. 3). Noteworthy, colony forming capacities were
heterogeneous among individual patient samples. This observation did
not correlate with the BCR-ABL1/ABL1 ratio, cytogenetic aberrations,
sex, age at diagnosis or any other known traits. It remains speculative
whether this is due to pre-programmed cell-extrinsic effects or if unde-
tected genomic alterations may be responsible. Moreover, by applying
qPCR on colony forming cells maintained in methylcellulose for
14 days, initially present overexpression of GABPB1.ΔTAD was lacking
(data not shown). In line with this, expression of the dTomato reporter
wasdecreased inGABPB1.ΔTADoverexpressing cells to nearly undetect-
able levels indicating transgene silencing in those cells (Zhang et al.,
2007). This hints towards a negative selective pressure on cells overex-
pressing GABPB1.ΔTAD confirming the necessity of functional GABP
during leukemic stem cell maintenance.

The present results demonstrate that GABP is important for myeloid
differentiation confirming the recently reported observations by us and
others in hematopoietic cell lines and murine models, respectively
(Yang et al., 2011; Yu et al., 2011; Ripperger et al., 2015). Here, for the
first time, human primary hematopoietic cells were used to address
GABP's crucial impact on myeloid differentiation and maintenance of
hematopoietic stem/progenitor cells. A putative leukemogenic role of
GABP was already postulated based upon a murine model, in which
GABP was indicated to contribute to the establishment of leukemic
stem/progenitor cell clones after transplantation of BCR-ABL1+ leuke-
mic stem cells (Yu et al., 2012; Yang et al., 2013). In line with this, we
demonstrated that a properly functioning heteromeric GABP complex
is also necessary for human CML HSPCs to give rise to myeloid colonies.
Colonies of either healthy or leukemic stem cell origin are usually
formed during multiple cell division cycles prior to maturation into
respective hematopoietic lineages (Marley and Gordon, 2005).
Hence, the colony formation assay used here is a helpful indicator for
self-renewal potential and the myeloid differentiation competence of
HSPCs.
GABP dysfunction resulted in diminished clonogenic capacity of
healthy and CML CD34+ HSPCs. This could not be overcome by the
intrinsic leukemogenic potency of BCR-ABL1+ cells, thus confirming
the importance of GABP as a regulator of crucial effectors in human
CML. Several signaling pathways are defined to co-operate with the
BCR-ABL1 fusion protein to establish a transforming and anti-apoptotic
phenotype (Steelman et al., 2004). However, whether GABP acts down-
stream of BCR-ABL1 and/or influences BCR-ABL1 co-operating signaling
pathways still needs to be addressed. In our former study, we showed
expression correlation of protein kinase D2 (PRKD2) to GABP expression
levels in the K-562 cell line and CML patients at diagnosis (Manukjan
et al., 2015). This was in line with mouse studies showing GABP's impact
on PRKD2 in the context of murine CML-like disease (Yang et al., 2013).
However, by applying qPCR on cells two days after transduction as well
as after 14 days in methylcellulose, no expression alteration could be
detected after overexpression of GABPB1.ΔTAD (data not shown). Possi-
bly, PRKD2-regulation by GABP plays rather a role in the native situation
or during progression to blast crisis. However, possible effects on PRKD2
expression in primary human cells should be investigated in more detail
to address the question of a druggable target in CML, since PRKD2 is
susceptible to kinase inhibitors (Yang et al., 2013).

In summary, these results indicate GABP to be an indispensable ETS
transcription factor during normal hematopoiesis and leukemogenesis.
Further mechanistic investigations are needed to address the time and
context dependentmolecular function of GABP inmyeloid differentiation.
Even though, we observed lowered cell counts after GABP functional im-
pairment, it remains speculative towhat extent the loss of cells is acquired
by differentiation block, cell cycle arrest or apoptosis. Sincemyeloid cyto-
kine cocktailswereused to force cells intomyelopoiesis, thepresent study
could not answer whether the functional impairment of GABP could
cause compensatory expansion of other hematopoietic lineages.
Nonetheless, this study is supportive to former data and has the potential
to initiate further analyses on GABP in the context of human hematopoi-
etic stem cell maintenance, differentiation and CML.
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