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Abstract

In this paper we establish a direct connection between stable approximate unitary equivalence
for ∗-homomorphisms and the topology of the KK-groups which avoids entirelyC∗-algebra
extension theory and does not require nuclearity assumptions. To this purpose we show that a
topology on the Kasparov groups can be defined in terms of approximate unitary equivalence for
Cuntz pairs and that this topology coincides with both Pimsner’s topology and the Brown–Salinas
topology. We study the generalized RZrdam groupKL(A,B)= KK(A,B)/0̄, and prove that if
a separable exact residually finite dimensionalC∗-algebra satisfies the universal coefficient
theorem in KK-theory, then it embeds in the UHF algebra of type 2∞. In particular such an
embedding exists for theC∗-algebra of a second countable amenable locally compact maximally
almost periodic group.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Two ∗-homomorphisms�,� : A→ B are unitarily equivalent ifu�u∗ = � for some
unitary u ∈ B. They are approximately unitarily equivalent, written� ≈u �, if there is
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a sequence(un)n∈N of unitaries inB such that

lim
n→∞ ‖un�(a)u∗n − �(a)‖ = 0

for all a ∈ A. Stable approximate unitary equivalence is a more elaborated concept
introduced in Definition3.6. According to Glimm’s theorem, any non-type I separable
C∗-algebra has uncountably many non-unitarily equivalent irreducible representations
with the same kernel. In contrast, by Voiculescu’s theorem, two irreducible represen-
tations of a separableC∗-algebra have the same kernel if and only if they are ap-
proximately unitarily equivalent. A comparison of the above results suggests that the
notion of unitary equivalence is sometimes too rigid and that for certain purposes one
can do more things by working with approximate unitary equivalence. This point of
view is illustrated by Elliott’s intertwining argument: if� : A → B and � : B → A

are unital∗-homomorphisms between separableC∗-algebras such that�� ≈u idB and
�� ≈u idA, thenA is isomorphic toB. It is therefore very natural to study approximate
unitary equivalence of∗-homomorphisms in a general context.

Two approximately unitarily equivalent∗-homomorphisms�,� : A → B induce
the same map on K-theory with coefficients, but they may have different KK-theory
classes. In order to handle this situation, Rørdam introduced the groupKL(A,B) as
the quotient of Ext(SA,B)−1�KK(A,B) by the subgroup PExt(K∗−1(A),K∗(B)) of
Ext(K∗−1(A),K∗(B)) generated by pure group extensions [25]. This required the as-
sumption thatA satisfies the universal coefficient theorem (UCT) of [27]. Using a map-
ping cylinder construction, Rørdam showed that two approximately unitarily equivalent
∗-homomorphisms have the same class inKL(A,B). On the other hand, a topology
on the Ext-theory groups was considered by Brown–Douglas–Fillmore [4], and shown
to have interesting applications in [3,28]. This topology, called hereafter the Brown–
Salinas topology, is defined via approximate unitary equivalence of extensions. It was
further investigated by Schochet in [31,32] and by the author in [7]. Schochet showed
that the Kasparov product is continuous with respect to the Brown–Salinas topology
for K-nuclear separableC∗-algebras. An important idea from [31,32] is that one can
use the continuity of the Kasparov product in order to transfer structural properties bet-
ween KK-equivalentC∗-algebras. As it turns out, the subgroup PExt(K∗−1(A),K∗(B))

of Ext(SA,B)−1 coincides with the closure of zero in the Brown–Salinas topology
under the assumption thatA is nuclear and satisfies the UCT. It is then quite nat-
ural to defineKL(A,B) for arbitrary separableC∗-algebras as Ext(SA,B)−1/0̄ as
proposed by Lin in [20]. Nevertheless, the study of∗-homomorphisms fromA to B

via their class in Ext(SA,B)−1 is not optimal and leads to rather involved arguments
as those in [19,20,7] where the Brown–Salinas topology of Ext(SA,B)−1 is related,
in the nuclear case, to stable approximate unitary equivalence of∗-homomorphisms
from A to B.

Kasparov’s KK-theory admits several equivalent descriptions. This deep feature en-
ables one to choose working with the picture that is most effective in a given situ-
ation. Similarly, there are several (and as we are going to see, equivalent) ways to
introduce a topology on the KK-groups. The Brown–Salinas topology was already
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mentioned. In a recent important paper[22], Pimsner defines a topology on the equiv-
ariant graded KK-theory and proves the continuity of the Kasparov product in full
generality. The convergence of sequences in Pimsner’s topology admits a particularly
nice and simple algebraic description which leads to major simplifications of the the-
ory (see Lemma 3.1). However, the previous descriptions of the topology ofKK(A,B)

do not appear to be well adapted for the study of approximate unitary equivalence
of ∗-homomorphisms.

In this paper we introduce a topology onKK(A,B) in terms of Cuntz pairs and
approximate unitary equivalence. We then show that this topology coincides with Pim-
sner’s topology (Theorems 3.3 and 3.5). Our arguments rely on a result of Thomsen
[35] and on our joint work with Eilers [10]. Two∗-homomorphisms fromA to B is
the simplest instance of a Cuntz pair. However, since in general the Kasparov group
KK(A,B) is not generated by∗-homomorphisms fromA to B, it becomes necessary
to work with Cuntz pairs. We revisit Rørdam’s groupKK(A,B)/0̄ in our general set-
ting and show that it is a polish group (cf. [31]) when endowed with the (quotient
of) Pimsner’s topology for arbitrary separableC∗-algebras (see Proposition 2.8). Along
the way we show that the Brown–Salinas topology coincides with Pimsner’s topology
(Cor. 6.3) and we give a series of applications which include:

(i) two ∗-homomorphisms are stably approximately unitarily equivalent if and only
if their KK-theory classes are equal modulo the closure of zero (see Corollar-
ies 3.8, 3.7.)

(ii) If a separableC∗-algebraA satisfies the universal coefficient theorem in KK-
theory (UCT), thenKK(A,B)/ 0̄ is homeomorphic to Hom�(K(A),K(B)), where
the latter group is endowed with the topology of pointwise convergence (see The-
orem 4.1). Thus, in order to check that two KK-elements are close to each other,
it suffices to verify that the maps they induce on the total K-theory groupK(A) =
⊕∞n=0K∗(A;Z/n) agree on a sufficiently large finite subset.

(iii) If a separable exact residually finite dimensionalC∗-algebra satisfies the UCT
then it embeds in the UHF algebra of type 2∞; see Theorem4.4. In particular
the C∗-algebra of a second countable amenable locally compact maximally almost
periodic group embeds in the UHF algebra of type 2∞.

(iv) We give a short proof of a theorem of Lin,[20], stating that two unital∗-
homomorphisms between KirchbergC∗-algebras are approximately unitarily equiv-
alent if and only if their KL-classes coincide. This is used to show that a separable
nuclearC∗-algebra satisfies the approximate universal coefficient theorem of [20]
if and only if it satisfies the UCT (Theorem 5.4), answering a question of Lin
from [20].

For A in the bootstrap category of [27], one can derive (ii) from [32,12]. Its
generalization to the non-nuclear case is necessary in view of applications such as
(iii). The latter result was given a more complicated proof in an earlier preprint
[6] which is now superseded by the present paper. A definition of the topology of
KKnuc(A,B) has also appeared there, but it became a more useful tool after the emer-
gence of [22]. The author is grateful to M. Pimsner for providing him with a draft
of [22].
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2. Metric structure

In this section we define an invariant pseudometricd on KK(A,B) which makes
KK(A,B) a complete separable topological group. This is done by using a description
of KK(A,B) based on Cuntz pairs and the asymptotic unitary equivalence of[10].

The C∗-algebras in this paper, denoted byA,B,C, . . . will be assumed to be sep-
arable. We only consider HilbertB-bimodules,E,F, . . . that are countably generated.
The notationHB is reserved for the canonical HilbertB-bimodule obtained as the
completion of�2(N) ⊗alg B. As in [14] we identify M(B ⊗ K) with L(HB). A uni-
tal ∗-homomorphism� : A → L(HB) is called unitally absorbing (for the pair of
C∗-algebras(A,B)) if for any unital ∗-homomorphism� : A → L(HB) there is a
sequence of unitariesun ∈ L(HB,HB ⊕HB) such that for alla ∈ A:

(i) lim n→∞ ‖u∗n (�(a)⊕ �(a)) un − �(a)‖ = 0.
(ii) u∗n (�(a)⊕ �(a)) un − �(a) ∈ K(HB).

A ∗-homomorphism� : A→ L(HB) is calledabsorbing if its unitalization �̃ : Ã→
L(HB) is unitally absorbing. The theorems of Voiculescu[37] and Kasparov [14] exhibit
large classes of absorbing∗-homomorphisms. Thomsen [35] proved the existence of
absorbing∗-homomorphisms for arbitrary separableC∗-algebras.

Let Ec(A,B) denote the set of all Cuntz pairs(�,�). They consists of∗-homomor-
phisms�,� : A → L(HB) such that�(a) − �(a) ∈ K(HB) for all a ∈ A. It is was
shown by Cuntz thatKK(A,B) can be defined as the group of homotopy classes of
Cuntz pairs. In our joint work with Eilers we proved thatKK(A,B) can be realized in
terms of proper asymptotic unitary equivalence classes of Cuntz pairs:

Theorem 2.1 (Dadarlat and Eilers[10] ). Let A, B be separableC∗-algebras and let
(�,�) ∈ Ec(A,B) be a Cuntz pair. The following are equivalent:

(i) [�,�] = 0 in KK(A,B).
(ii) There is a∗-homomorphism� : A → L(HB) and there is a continuous unitary

valued mapt �→ ut ∈ 1+K(HB ⊕HB), t ∈ [0,∞), such that for alla ∈ A

lim
t→∞ ‖ut (�(a)⊕ �(a)) u∗t − �(a)⊕ �(a)‖ = 0. (1)

(iii) For any absorbing∗-homomorphism� : A→ L(HB) there is a continuous unitary
valued mapt �→ ut ∈ I +K(HB ⊕HB), t ∈ [0,∞) satisfying(1) for all a ∈ A.

This theorem suggests the following construction of a pseudometric onKK(A,B).
Let (ai)

∞
i=1 be a dense sequence in the unit ball ofA. If �,� : A → L(E) are

∗-homomorphisms, we define

�0(�,�) =
∞∑
i=1

1

2i
‖�(ai)− �(ai)‖
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and

��(�,�) = inf {�0(�⊕ �, u(�⊕ �)u∗) : u ∈ 1+K(E ⊕ F)unitary},

where� : A→ L(F ) is an absorbing∗-homomorphism. One verifies immediately that
��(�,�) = 0, ��(�,�) = ��(�,�) and ��(�, �)���(�,�) + ��(�, �). Moreover, if
‖�n(a) − �(a)‖ → 0 for all a ∈ A, then ��(�n,�) → ��(�,�). If �i : A → L(Fi),
i = 1,2 are∗-homomorphisms, then we write�1 ∼ �2 if there is a sequence of unitaries
wn ∈ L(F1, F2) such that for alla ∈ A

lim
n→∞ ‖wn�1(a)w

∗
n − �2(a)‖ = 0. (2)

Lemma 2.2. If �1 ∼ �2, then ��1
(�,�) = ��2

(�,�).

Proof. If w ∈ L(F1, F2) is a unitary, then��1
(�,�) = �w�1w

∗(�,�), since conjugation
by 1⊕w maps 1+K(E⊕F1) onto 1+K(E⊕F2). Thus��1

(�,�) = �wn�1w
∗
n
(�,�)→

��2
(�,�). �

The assumption of Lemma2.2 is automatically satisfied whenever�i are absorbing
∗-homomorphisms. Therefore we can define�(�,�) = ��(�,�) for some absorbing
∗-homomorphism� and this definition does not depend on�.

Lemma 2.3.With notation as above

(a) If w ∈ L(E, F ) is a unitary, then �(w�w∗, w�w∗) = �(�,�),
(b) If � : A → L(F ) is a ∗-homomorphism, then �(�,�) = �(� ⊕ �,� ⊕ �) =

�(�⊕ �, �⊕ �).

Proof. For part (a) one argues as in the proof of the previous lemma. For part (b) one
uses the observation that�⊕ � is absorbing whenever� is absorbing and part (a).�

If �,� : A → L(E) are ∗-homomorphisms, we write(�) ≈ (�′) if there is a
sequence of unitariesun ∈ 1+ K(E) such that limn→∞ ‖un�(a)u∗n − �(a)‖ = 0 for
all a ∈ A.

Lemma 2.4. Let �,� : A → L(E) and �′,�′ : A → L(E) be ∗-homomorphisms.
Assume that(�) ≈ (�′) and (�) ≈ (�′). Then�(�,�) = �(�′,�′).

Proof. This is an immediate consequence of the definition of� and the observation
that if u ∈ 1+K(E) is a unitary, then�(u�u∗,�) = �(�,�). �

We are now ready to introduce a pseudometricd on Ec(A,B). A pseudometric
satisfies all the properties of a metric except thatd(x, y) = 0 may not implyx = y.

Definition 2.5. d((�,�), (�′,�′)) = �(�⊕ �′,�⊕ �′).
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Lemma 2.6. If x, x′ ∈ Ec(A,B) and [x] = [x′] in KK(A,B) then d(x, x′) = 0.

Proof. If x = (�,�) and x = (�′,�′) then [x] − [x′] = [� ⊕ �′,� ⊕ �′] = 0. By
Theorem2.1 this implies�(�⊕ �′,�⊕ �′) = 0 henced(x, x′) = 0. �

Proposition 2.7. d is a pseudometric onEc(A,B) that descends to an invariant pseu-
dometric on KK(A,B) (denoted again byd!).

Proof. First we show thatd is a pseudometric onEc(A,B). Let x = (�,�), x′ =
(�′,�′) ∈ Ec(A,B). Thend(x, x) = 0 by Lemma2.6. The equalityd(x, x′) = d(x′, x)
is equivalent to�(�⊕�′,�⊕�′) = �(�′ ⊕�,�′ ⊕�). The latter equality follows from
Lemma 2.3(a) withw a permutation unitary and the symmetry of�. In order to verify
the triangle inequality ford, we first recall that if�, �′, �′′ : A→ L(E) then

�(�, �′)+ �(�′, �′′)��(�, �′′). (3)

Let x′′ = (�′′,�′′) ∈ Ec(A,B). The inequalityd(x, x′)+ d(x′, x′′)�d(x, x′′) is equiv-
alent to

�(�⊕ �′,�⊕ �′)+ �(�′ ⊕ �′′,�′ ⊕ �′′)��(�⊕ �′′,�⊕ �′′). (4)

By Lemma2.3

�(�⊕ �′′,�⊕ �′′) = �(�⊕ �′′ ⊕ �′,�⊕ �′′ ⊕ �′) = �(�⊕ �′ ⊕ �′′,�⊕ �′ ⊕ �′′)

and the latter term less than or equal to�(� ⊕ �′ ⊕ �′′,� ⊕ �′ ⊕ �′′) + �(� ⊕ �′ ⊕
�′′,� ⊕ �′ ⊕ �′′) by (3). Finally, �(� ⊕ �′ ⊕ �′′,� ⊕ �′ ⊕ �′′) = �(� ⊕ �′,� ⊕ �′)
and �(�⊕ �′ ⊕ �′′,�⊕ �′ ⊕ �′′) = �(�′ ⊕ �′′,�′ ⊕ �′′) by Lemma 2.3. This proves
inequality (4).

Next we are going to verify thatd descends to a metric onKK(A,B). By sym-
metry, it suffices to prove that ifx, x′, x′′ ∈ Ec(A,B) and [x′] = [x′′] in KK(A,B),
then d(x, x′′)�d(x, x′). By Lemma 2.6,d(x′, x′′) = 0. Sinced is a pseudometric,
d(x, x′′)�d(x, x′)+ d(x′, x′′) = d(x, x′).

It remains to verify the invariance of the pseudometric. We show thatd(x ⊕ y, x′ ⊕
y) = d(x, x′) for all x, x′, y ∈ Ec(A,B). Let d̂([x], [x′]) = d(x, x′) denote (tem-
porarily) the induced metric onKK(A,B). We claim thatd(x, x′) = d̂([x] − [x′],0),
which implies the invariance ofd. To verify the claim note that ifx = (�,�) and
x = (�′,�′) then d(x, x′) = �(� ⊕ �′,� ⊕ �′) by definition, andd̂([x] − [x′],0) =
d((�⊕ �′,�⊕ �′), (0,0)) = �(�⊕ �′,�⊕ �′). �

Proposition 2.8. Let A be B be separableC∗-algebras. The topology of KK(A,B)

defined by the pseudometricd satisfies the second axiom of countability. If 0̄ denotes
the closure of zero, thenKK(A,B)/ 0̄ is a polish group.
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Proof. By a result of Thomsen[35, Theorem 3.2], every element ofKK(A,B) is
represented by a Cuntz pair(�, �), where � : A → L(HB) is a fixed absorbing
∗-homomorphism. Therefore the image of each map� is contained in the separa-
ble C∗-algebra�(A)+K(HB). This shows that the topology ofKK(A,B) satisfies the
second axiom of countability.

Next we prove the completeness ofKK(A,B). Let (xn) be a Cauchy sequence
in Ec(A,B) where xn = (�n, �) with � : A → L(HB) as above. This means that
d(xn, xm) = �(�n⊕�, �⊕�m)→ 0 asm, n→∞. Since�(�m⊕�, �⊕�m) = d(xm, xm) =
0, we have�(�n ⊕ �, �m ⊕ �) → 0 as m, n → ∞. Since [�n, �] = [�n ⊕ �, � ⊕ �]
in KK(A,B), after replacing�n by �n ⊕ �, we may assume that�(�n, �m) → 0 as
m, n→ ∞. After passing to a subsequence of(�n), if necessary, we find a sequence
of unitariesun ∈ 1+ K(HB) such that�0(�n, un+1�n+1u

∗
n+1) < 1/2n. Define �′n(a) =

(u2 · · · un)�n(a)(u2 · · · un)
∗ and note that(�′n) is a Cauchy sequence in Hom(A,L(HB))

since �0(�′n, �′n+1) < 1/2n. Since Hom(A,L(HB)) is complete,(�′n) converges to
a ∗-homomorphism� with the property that�(a) − �(a) ∈ K(HB) since �′n(a) −
�(a) ∈ K(HB) for all a ∈ A. It follows that [�n, �] = [�′n, �] converges to[�, �] in
KK(A,B). �

Proposition 2.8 does not follow from [31] since we do not assumeA to be K-nuclear
and we are working a priori with a different topology.

3. Approximate unitary equivalence and the topology ofKK(A, B)

In this section we show that the approximate unitary equivalence of Cuntz pairs can
be expressed in KK-theoretical terms, see Theorem 3.3. Consequently, the topology of
KK(A,B) defined byd coincides with Pimsner’s topology, see Theorem 3.5. In the
final part we apply these results to∗-homomorphisms.

Let N̄ = {1,2, . . .} ∪ {∞} denote the one-point compactification of the natural num-
bers. We say that a topology on the KK-theory groups satisfies Pimsner’s condition if
the convergence of sequences is characterized as follows. A sequence(xn) in KK(A,B)

converges tox∞ if and only if there isy ∈ KK(A,C(N̄)⊗B) with y(n) = xn for n ∈ N

andy(∞) = x∞. Clearly a topology which satisfies the first axiom of countability and
Pimsner’s condition is unique. Pimsner made the following crucial observation.

Lemma 3.1 (Pimsner[22] ). If a topology on the KK-groups satisfies the first axiom of
countability and Pimsner’s condition, then the Kasparov product is jointly continuous
with respect to that topology.

Proof. By the functoriality of the cup product of Kasparov[16, 2.14], if y ∈ KK(A,

C(N̄) ⊗ B) and z ∈ KK(B,C(N̄) ⊗ C), then the imagew ∈ KK(A,C(N̄) ⊗ C) of
the cup producty ⊗B z ∈ KK(A,C(N̄ × N̄) ⊗ C) under the diagonal map satisfies
w(n) = z(n)⊗ y(n) for all n ∈ N̄. �

We need some notation. LetF ⊂ A be a finite subset and letε > 0. If � : A →
LB(E) and � : A → LB(F ) are two contractive completely positive maps, we write
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� ≺
F,ε

� if there is an isometryv ∈ LB(E, F ) such that‖�(a) − v∗�(a)v‖ < ε for all

a ∈ F . If v can be taken to be a unitary then we write� ∼
F,ε

�. We write � ≺ �

(respectively� ∼ �) if � ≺
F,ε

� (respectively� ∼
F,ε

�) for all finite setsF and ε > 0.

Note that if � ≺
F,ε1

� and � ≺
F,ε2

�, then� ≺
F,ε1+ε2

�.

Proposition 3.2. Let A,B,C be separableC∗-algebras such thatB stable andC is
unital and nuclear. If � : A → M(B) is an absorbing∗-homomorphism for(A,B),
then � : A → M(B ⊗ C), �(a) = �(a) ⊗ 1C , is an absorbing∗-homomorphism for
(A,B ⊗ C).

Proof. If B = K this is essentially Kasparov’s absorption theorem[14]. By [11, The-
orem 2.13] it suffices to prove that for any finite subsetF ⊂ A, any ε > 0 and any
completely positive contraction� : A→ B⊗C we have� ≺

F,ε
�. Since� is an absorbing

∗-homomorphism for(A,B), we have� ≺ � and hence� ⊗ 1C ≺ � ⊗ 1C = � for
any completely positive contraction� : A → B. Therefore it is enough to show that
� ≺

F,ε
�⊗ 1C for some completely positive contraction� : A→ B. SinceC is nuclear,

as a consequence of Kasparov’s theorem,idC ≺ � ⊗ 1C where � : C → L(H) is a
unital faithful representation with�(C) ∩ K(H) = {0}. Therefore there is sequence of
isometriesvn ∈ LC(C,HC) with

lim
n→∞ ‖c − v∗n(�(c)⊗ 1C)vn‖ = 0

for all c ∈ C. Since HC is the closure of⊕∞n=1C one can perturb eachvn to a
C-linear isometryvn : C → Ck(n) ⊂ HC . Therefore if�n : C → Mk(n)(C) denotes the
completely positive contraction obtained by compressing� to the subspaceCk(n) of H ,
we have

lim
n→∞ ‖c − v∗n(�n(c)⊗ 1C)vn‖ = 0

for all c ∈ C. If we setVn = idB⊗vn ∈ LB⊗C(B⊗C, (B⊗C)k(n)) and�n = idB⊗�n :
B ⊗ C → B ⊗Mk(n)(C), then

lim
n→∞ ‖x − V ∗n (�n(x)⊗ 1C)Vn‖ = 0

for all x ∈ B ⊗ C. Consequently

lim
n→∞ ‖�(a)− V ∗n (�n(�(a))⊗ 1C)Vn‖ = 0 (5)
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for all a ∈ A. Note that�n = �n� : A → Mk(n)(B)�B is a completely positive
contraction. From (5) we see that� ≺

F,ε
�n ⊗ 1C for some large enoughn and this

concludes the proof. �

Theorem 3.3. Let A,B be separableC∗-algebras and let(�n,�n)n∈N be a sequence
of Cuntz pairs inEc(A,B). The following are equivalent:

(i) There isy ∈ KK(A,C(N̄)⊗ B) such thaty(n)=[�n,�n] for n∈N and y(∞)=0.
(ii) For any absorbing∗-homomorphism� : A → L(HB) there is a sequence of

unitaries un ∈ 1+K(HB ⊕HB) such that for alla ∈ A

lim
n→∞ ‖un

(
�n(a)⊕ �(a)

)
u∗n − �n(a)⊕ �(a)‖ = 0 (6)

(iii) The sequence[�n,�n] converges to zero in(KK(A,B), d).

Remark 3.4. It is easy to verify that condition (ii) is equivalent to asking that there
is some∗-homomorphism� : A → L(HB) and there is a sequence of unitariesun ∈
I +K(HB ⊕HB) satisfying (6) for all a ∈ A. This is very similar to the proof of (ii)
⇔ (iii) of Theorem 2.1.

Proof. Given two sequence of∗-homomorphisms�n,�n : A → L(En), we write
(�n)n ≈ (�n)n if there is a sequence of unitariesun ∈ 1+K(En) such that

lim
n→∞ ‖un�n(a)u

∗
n − �n(a)‖ = 0

for all a ∈ A. With this notation, condition (6) reads(�n ⊕ �)n ≈ (�n ⊕ �)n. It is easy
to verify that≈ is an equivalence relation and that(�n⊕�′n)n ≈ (�n⊕�′n)n whenever
(�n)n ≈ (�n)n and (�′n)n ≈ (�′n)n.

We identify L(HB) with M(K ⊗ B) and K(HB) with K ⊗ B. Therefore the set
Ec(A,B) consists of pairs of∗-homomorphisms(�,�) : A → M(K ⊗ B) such that
�(a) − �(a) ∈ K ⊗ B for all a ∈ A. SinceM(K ⊗ B ⊗ C(N̄)) ≡ Cs(N̄,M(K ⊗ B))

(the set of strictly continuous functions from̄N to M(K⊗ B)) and K⊗ B ⊗ C(N̄) =
C(N̄,K ⊗ B), an element(�,�) ∈ Ec(A,B ⊗ C(N̄)) is completely determined by a
family (�n, �n)n∈N̄ ⊂ Ec(A,B) such that

lim
n→∞ �n(a) = �∞(a), lim

n→∞ �n(a) = �∞(a) (7)

in the strict topology ofM(K⊗ B) and such that

lim
n→∞(�n(a)− �n(a)) = �∞(a)− �∞(a)

in the norm topology, for alla ∈ A. By [35, Theorem 3.2], each element ofKK(A,B) is
represented by a pair(�, �) ∈ Ec(A,B) where� : A→ M(K⊗B) is any given absorbing
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∗-homomorphism. In view of Proposition3.2, if y ∈ KK(A,B ⊗ C(N̄)), then we can
write y = [�,�] where � = � ⊗ 1C(N̄) and � : A → M(K ⊗ B) is a fixed absorbing
∗-homomorphism for(A,B). In other words� is given by a constant family(�n)n∈N̄
with �n = �. A crucial consequence of our choice of� is that �n(a)− �∞(a) ∈ K⊗B

for all a ∈ A, since it is equal to(�n(a)− �(a))− (�∞(a)− �(a)) and therefore

lim
n→∞ ‖�n(a)− �∞(a)‖ = 0 (8)

for all a ∈ A. Therefore we are able to pass from strict convergence in (7) to norm
convergence in (8). After this preliminary discussion we proceed with the proof of the
theorem. The equivalence (ii)⇔ (iii) follows immediately from the definition ofd and
the separability ofA.

(i) ⇒ (ii) It is convenient to consider first the situation when(�n,�n) is a sequence
of Cuntz pairs where the second component�n is fixed for all n and equal to some
absorbing∗-homomorphism� as above. By assumption there isy ∈ KK(A,B⊗C(N̄))

such thaty(n) = [�n, �] andy(∞) = 0. Write y = [�,�] as above. Therefore[�n, �] =
[�n, �] hence[�n,�n] = 0 and [�∞, �] = 0. Using Theorem 2.1 we obtain

(�n ⊕ �)n ≈ (�n ⊕ �)n, (�∞ ⊕ �)n ≈ (�⊕ �)n.

In view of (8) this gives

(�n ⊕ �)n ≈ (�⊕ �)n. (9)

We now proceed with the general case with(�n,�n) as in (i). Using[35, Theorem 3.2]
again, we find a sequence(�n, �) ∈ Ec(A,B) with [�n, �] = [�n,�n] and � absorbing.
Since[�n⊕ �,�n⊕ �n] = 0, by Theorem 2.1 we obtain(�n⊕ �⊕ �)n ≈ (�n⊕ �n⊕ �)n.
By the first part of the proof, we have(�n ⊕ �)n ≈ (� ⊕ �)n. Altogether this gives
(�n ⊕ �⊕ �)n ≈ (�n ⊕ �⊕ �)n. Since� is absorbing,(�⊕ �)n ≈ (�)n hence we obtain
(ii): (�n ⊕ �)n ≈ (�n ⊕ �)n.

(ii) ⇒ (i) Replacing�n by �n ⊕ � and �n by �n ⊕ � we may assume that there
are unitariesun ∈ I + K(HB) such that limn→∞ ‖un�n(a)u

∗
n − �n(a)‖ = 0 for all

a ∈ A. Since (un�nu
∗
n,�n) and (�n,�n) have the same KK-class, after replacing

�n by un�nu
∗
n we may further assume that limn→∞ ‖�n(a) − �n(a)‖ = 0. Since

both �n and � are absorbing, there is a sequence of unitarieswn ∈ L(HB) such
that wn�n(a)w

∗
n − �(a) ∈ K(HB) and limn→∞ ‖wn�n(a)w

∗
n − �(a)‖ = 0. Define

∗-homomorphisms�,� : A→ M(K⊗B⊗C(N̄)) by setting�n = wn�nw
∗
n, �∞ = �,

�n = wn�nw
∗
n and �∞ = �. The family (�,�) = (�n,�n)n∈N̄ defines an ele-

ment y of KK(A,C(N̄) ⊗ B) such thaty(n) = [�n,�n] = [�n,�n] for n ∈ N and
y(∞) = [�∞,�∞] = [�, �] = 0. �

We collect the previous results of the section in the following form.
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Theorem 3.5. LetA beB be separableC∗-algebras. The topology of KK(A,B) defined
by the pseudometricd is separable and complete. A sequence(xn)∞n=1 converges to
x∞ in KK(A,B) if and only if there isy ∈ KK(A,C(N̄)⊗ B) with y(n) = xn for all
n ∈ N̄. Therefore the topology defined byd satisfies Pimsner’s condition and hence the
Kasparov product is continuous. The topology defined byd coincides with Pimsner’s
topology.

Proof. The first part follows from Proposition2.8 and Theorem 3.3. The second part
follows from Lemma 3.1. �

Let us see how the previous results can be applied to∗-homomorphisms. The defini-
tion of stable approximate unitary equivalence for two∗-homomorphisms�,� : A→ B

is not quite straightforward. A naive definition that would require approximate unitary
equivalence after taking direct sums with∗-homomorphisms would not be satisfactory,
due to a possible small supply of∗-homomorphisms fromA to B.

Definition 3.6. Let A, B be separableC∗-algebras. Two∗-homomorphisms�,� : A→
B are called stably approximately unitarily equivalent if there is a sequence of unitaries
vn ∈ 1+K(B⊕HB) and an absorbing∗-homomorphism� : A→ M(B⊗K) such that
for all a ∈ A

lim
n→∞ ‖vn (�(a)⊕ �(a)) v∗n − �(a)⊕ �(a)‖ = 0. (10)

From Theorem3.3 we obtain:

Corollary 3.7. Let A,B be separableC∗-algebras. Two ∗-homomorphisms�,� :
A → B are stably approximately unitarily equivalent if and only if[�] − [�] ∈ 0̄
in KK(A,B), if and only if d([�], [�]) = 0.

This result becomes more useful when there are many∗-homomorphisms fromA
to B or matrices overB. For illustration, we generalize[7, Theorem 5.1] and [20,
Theorem 3.9]. LetA and B be unital separableC∗-algebras such that eitherA or B

is nuclear. Assume that there is a sequence of unital∗-homomorphisms�n : A →
Mk(n)(B) such that for all non-zeroa ∈ A the closed two-sided ideal ofB ⊗ K
generated by{�n(a) : n ∈ N} is equal toB ⊗ K. We will also assume that each�n
appears infinitely many times in the sequence(�n).

Corollary 3.8. Let A and B be unital separableC∗-algebras such that eitherA or B
is nuclear. Assume that(�n) is as above and let�, � be two unital∗-homomorphisms
from A to B. Then [�] − [�] ∈ 0̄ if and only if there exist a sequence of integers
(m(n)) and unitaries(un) in matrices overB (of appropriate size) such that

lim
n→∞ ‖un(�(a)⊕ �n(a))u

∗
n − �(a)⊕ �n(a)‖ = 0 (11)

for all a ∈ A, where�n = �1⊕ · · · ⊕ �m(n).
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Proof. We verify only the non-trivial implication(⇒). To simplify notation, we give
the proof in the case when allk(n) = 1, i.e. �n : A→ B. The condition[�] − [�] ∈ 0̄
is equivalent to the condition that 0 belongs to the closure of[�] − [�]. If � : A →
M(B ⊗K) is defined by

�(a) = diag(�1(a), �2(a), · · ·),
then � is a unitally absorbing representation by a result of[13]. If �̂ : A → L(HB ⊕
HB)�L(HB) is defined bŷ� = �⊕ 0, then �̂ is absorbing. By Theorem 3.3 there is a
sequence of unitariesvn ∈ 1+K(B ⊕HB) such that for alla ∈ A

lim
n→∞ ‖vn (�(a)⊕ �̂(a)) v∗n − �(a)⊕ �̂(a)‖ = 0 (12)

If em = 1B ⊕ · · · ⊕ 1B (m-times), then limm→∞ ‖[vn, em]‖ = 0 for all m. For eachn
let m(n) be such that‖[vn, em(n)]‖ < 1/n. By functional calculus, there are unitaries
un ∈ Mm(n)(B) with limn→∞ ‖un − em(n)vnem(n)‖ = 0. With these choices we derive
(11) by compressing in (12) byem(n). �

The following result is derived by a similar argument.

Corollary 3.9. Let A,B and (�n) be as in Corollary3.8 and let �, � be two unital
∗-homomorphisms fromA to B. For any finite subsetF of A and anyε > 0 there is
� > 0 such that ifd([�], [�]) < � then�⊕ �n ∼F,ε �⊕ �n for somen.

4. The UCT, K-theory with coefficients and applications

Let A andB be separableC∗-algebras. The total K-theory groupK(A) = ⊕∞n=0K∗(A;
Z/n) has a natural action of the Bockstein operations� of [30]. In this section we
show that if A satisfies the UCT, thenKK(A,B)/ 0̄ is isomorphic as a topological
group with Hom�(K(A),K(B)) endowed with the topology of pointwise convergence.
This is extremely useful since in order to check that two KK-elements are close to each
other it suffices to show that the maps they induce onK(−) agree on some (sufficiently
large) finite subset. By a result of Tu [36], theC∗-algebra of an a-T-menable locally
compact second countable groupoid with Haar system satisfies the UCT. This shows
that there are large natural classes of non-nuclearC∗-algebras satisfying the UCT. As
an application we show that theC∗-algebra of a second countable amenable locally
compact maximally almost periodic group embeds in the UHF algebra of type 2∞.

If d∗ is the metric onK(B) with d∗(x, y) = 1 for x != y, then Hom�(K(A),K(B))

becomes a polish group with respect to the metric

d(�, 	) =
∞∑
n=1

1

2n
d∗(�(xn), 	(xn)),

where {x1, x2, . . .} is an enumerationK(A).
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A separableC∗-algebra satisfies the UCT of[27] if and only if is KK-equivalent to a
commutativeC∗-algebra, if and only it satisfies the following universal multi-coefficient
exact sequence of [12]:

0→ PExt(K∗−1(A),K∗(B))→ KK(A,B)
�→ Hom�(K(A),K(B))→ 0. (13)

Here PExt stands for the subgroup of Ext corresponding to pure extensions. We refer
the reader to the monograph[33] for an excellent introduction to PExt. The map�
is induced by the Kasparov product and therefore is continuous. This is also easily
seen directly since if two projections are close to each other then they have the same
K-theory class.

If x ∈ KK(A,B) we denote�(x) by x. The following result can be deduced from [32]
for nuclearC∗-algebrasA in the bootstrap category of [29], modulo the identification of
Pimsner’s topology with the Brown–Salinas topology. The idea of using the continuity
of the Kasparov product in its proof is borrowed from [32].

Theorem 4.1. Let A and B be separableC∗-algebras and assume thatA satisfies the
UCT. Then

(a) xn→ x in KK(A,B) if and only if xn→ x in Hom�(K(A),K(B)).
(b) The mapKK(A,B)/ 0̄→ Hom�(K(A),K(B)) is an isomorphism of topological

groups. In particular KK(A,B)/ 0̄ is totally disconnected.

Proof. Part (a) is an immediate consequence of (b). Since the Kasparov product is
continuous, multiplication by a KK-invertible elementy ∈ KK(A,A′) induces a com-
mutative diagram

KK(A′, B) ��

��

Hom�(K(A′),K(B))

��

KK(A,B) �� Hom�(K(A),K(B))

where the horizontal maps are continuous and the vertical maps are homeomorphisms.
Therefore, after replacingA by a KK-equivalentC∗-algebra (as in[32]), we may
assume thatA is the closure of an increasing sequence(An) of nuclearC∗-subalgebras
of A satisfying the UCT and with the property that eachK∗(An) is finitely generated.
In particular the map�n : KK(An, B)→ Hom�(K(An),K(B)) is an isomorphism by
(13). By the open mapping theorem all we need to prove is that ker(�) = 0̄. The
inclusion ker(�) ⊃ 0̄ follows from the continuity of�. Conversely let[�, �] ∈ ker(�)

with � absorbing. LetFn ⊂ An be a finite subset such that the union of(Fn) is dense
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in A. Since the diagram

KK(A,B) ��

��

Hom�(K(A),K(B))

��

KK(An, B) �� Hom�(K(An),K(B))

is commutative, we have that[�, �] = 0 when regarded as an element ofKK(An, B).
By Theorem2.1 there is a unitaryun ∈ 1+K(HB ⊕HB) such that for allan ∈ Fn

‖un (�(a)⊕ �(a)) u∗n − �(a)⊕ �(a)‖ < 1/n.

Therefore

lim
n→∞ ‖un (�(a)⊕ �(a)) u∗n − �(a)⊕ �(a)‖ = 0

for all a ∈ A, henced([�, �],0) = 0 and [�, �] ∈ 0̄. �

Proposition 4.2. Let A and B be separableC∗-algebras and assume thatA satisfies
the UCT and that the groupK∗(B) is finitely generated. Then for any subgroupG
of KK(A,B) and anyε > 0 there is a finitely generated subgroupH of G which is
ε-dense inG, i.e. for everyx ∈ G there isy ∈ H such thatd(x, y) < ε.

Proof. Let U = {z ∈ KK(A,B) : d(z,0) < ε}. Since the map

� : KK(A,B)→ Hom�(K(A),K(B))

is open, there exists an integerm�0 and t1, . . . , tn ∈ K(A)m such that

{� ∈ Hom�(K(A),K(B)) : �(t1) = · · · = �(tn) = 0} ⊂ �(U).

HereK(A)m denotes the subgroup ofK(A) generated byK∗(A;Z/k) with k�m. Let
�n : G → ∏n

i=1 K(B)m be defined by�n(x) = (x(t1), . . . , x(tn)). Since K∗(B) is
abelian and finitely generated so isK(B)m and its subgroup�n(G). Therefore there is
a finitely generated subgroupH of G such that�n(G) = �n(H). In particular for any
x ∈ G there isy ∈ H such thatx(ti) = y(ti) for all i, 1� i�n. Thereforex−y ∈ �(U),

hencex − y ∈ U + 0̄. We conclude thatd(x, y) = d(x − y,0) < ε. �

Let us recall that aC∗-algebra is called nuclearly embeddable if it has a faithful
nuclear representation on a Hilbert space. Kirchberg proved that a separableC∗-algebra
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is nuclearly embeddable if and only if is exact. AC∗-algebraA is called residually finite
dimensional (abbreviated RFD) if the finite-dimensional representations ofA separate
the points ofA. Using notation introduced before Proposition3.2 we have:

Theorem 4.3. Let A be a separable unital exact RFDC∗-algebra satisfying the UCT.
For any finite subsetF of A and any ε > 0 there are unital finite dimensional
irreducible ∗-representations
1, . . . , 
r such that for any unital finite dimensional
∗-representation
 : A→ L(H
),


⊕m1
1⊕ · · · ⊕mr
r ∼F,ε k1
1⊕ · · · ⊕ kr
r

for some nonnegative integersm1, . . . mr, k1, . . . kr .

Proof. Let fdr(A) denote the set of unital finite-dimensional∗-representations ofA. If

 ∈ fdr(A), we denote by[
] its class inKK(A,C). From the definition of the metric
d we derive the following observation. GivenF and ε as in the statement, there is
ε0 > 0 such that if
 and
′ are unital finite dimensional∗-representations ofA on the
same spaceH
 with d([
], [
′]) < ε0 then for any unitally absorbing∗-homomorphism
� : A→ L(H) there is a unitaryu ∈ 1+K(H
 ⊕H) such that

‖
(a)⊕ �(a)− u(
′(a)⊕ �(a))u∗‖ < ε

for all a ∈ F . Since A is separable there is a sequence(
n)
∞
n=1 in fdr(A) whose

unitary orbit is dense in fdr(A) in the point-norm topology. This means that for any

 ∈ fdr(A), any finite subsetF of A and anyε > 0, 
 ∼

F,ε

n for somen.

Consequently it suffices to prove the theorem only for representations
 that appear
in the sequence(
n)

∞
n=1. We may assume that each
n is repeating infinitely many

times. Let G be the subgroup ofKK(A,C) generated by the set{[
n] : n�1}. By
Proposition4.2 there is a finitely generated subgroupH of G that is ε0-dense inG.
Therefore there isr such thatH is generated by[
1], . . . , [
r ]. Fix a unitally absorbing
∗-homomorphism� : A → L(H). SinceA is nuclearly embeddable, by enlargingr,
we may arrange that

� ∼
F,ε
∞ · (
1⊕ · · · ⊕ 
r ) (14)

by an approximation result of[5]; see also [8, Proposition 6.1] for a more direct proof.
Let 
 be as in the statement of the theorem. We may assume that
 appears in the
sequence(
n)

∞
n=1 and therefore its K-homology class[
] belongs toG. It follows that

there ish ∈ H with d([
], h) < ε0. Thus there are positive integersm1, . . . mr, k1, . . . kr
such that

d([
⊕m1
1⊕ · · · ⊕mr
r ], [k1
1⊕ · · · ⊕ kr
r ]) < ε0.
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By our choice ofε0 this implies that there is a unitaryu of the form 1+compactsuch
that

‖
(a)⊕m1
1(a)⊕ · · · ⊕mr
r (a)⊕ �(a)− u(k1
1(a)⊕ · · · ⊕ kr
r (a)⊕ �(a))u∗‖ < ε

for all a ∈ F . Using (14) and compressing by a suitable finite-dimensional projection
e we obtain that there exist a positive integerN and a unitaryv close toeue such
that, if Mi = mi +N andKi = ki +N , then

‖
(a)⊕M1
1(a)⊕ · · · ⊕Mr
r (a)− v(K1
1(a)⊕ · · · ⊕Kr
r (a))v
∗‖ < 3ε

This concludes the proof.�

If A is unital, the subgroup ofK0(C) = Z generated by{[
(1A)] : 
 ∈ fdr(A)} is
isomorphic todZ for some integerd�1. The numberd is a topological invariant of
A and is denoted byd(A).

Theorem 4.4. Let A be a separable exact RFDC∗-algebra satisfying the UCT. Then
A embeds in the UHFC∗-algebra of type2∞ denoted byB. If A is unital then it
embeds as a unitalC∗-subalgebra inMd(A)(B).

Proof. By adding a unit toA (whether or notA has already a unit) we have
d(Ã) = 1. Thus it suffices to prove only the second part of the theorem. Let(Fn)

∞
n=1

be an increasing sequence of finite subsets ofA whose union is dense inA and let
εn = 1/2n. By Theorem4.3 there exist a sequence(
n)

∞
n=1 in fdr(A) and integers

0 < r(1) < r(2) < · · · < r(n) < . . ., such that ifRn ⊂ fdr(A) consists of all unital
representations unitarily equivalent to representations of the formk1
1⊕· · ·⊕kr(n)
r(n)

with ki > 0, then for any
 ∈ fdr(A) there are�, � ∈ Rn with 
⊕� ∼
Fn,εn

�. After chang-

ing notation if necessary, we may assume that there is�1 ∈ R1, �1 : A → Mk(1)(C)

such thatk(1) = 2md(A) for some positive integerm. We will construct inductively
a sequence of unital∗-homomorphisms�n : A → Mk(n)(C) with �n ∈ Rn and such
that ‖�n+1(a) − m(n)�n(a)‖ < εn for all a ∈ Fn, where m(n) is some power of 2
and k(n + 1) = m(n)k(n). Note that �n will satisfy limn→∞ ‖�n(a)‖ = ‖a‖ for all
a ∈ A since the sequence(
n)

∞
n=1 separates the elements ofA. Suppose that�1, . . . , �n

were constructed. Pick some
 ∈ Rn+1. Then 
⊕ � ∼
Fn,εn

� for some�, � ∈ Rn. Since

�n ∈ Rn, there exists a power of 2 denoted bym(n) and �′ ∈ Rn such that�⊕ �′ is
unitarily equivalent tom(n)�n hence
⊕ �⊕ �′ ∼

Fn,εn
m(n)�n. It follows that there is a

finite-dimensional unitaryu such that‖u(
⊕ �⊕ �′)(a)u∗ − m(n)�n(a)‖ < εn for all
a ∈ Fn. Setting�n+1 = u(
⊕ �⊕ �′)u∗ we complete the induction process.

Let �n : Mk(n)(C) ↪→ lim−→ Mk(n)(C)�Md(A)(B) be the canonical inclusion. Having

the sequence�n available, we construct a unital embedding� : A → Md(A)(B) by
defining �(a), a ∈ ∪∞n=1Fn, to be the limit of the Cauchy sequence(�n�n(a)) and then
extend toA by continuity. �
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Remark 4.5. The AF-embeddability of a separable nuclear RFDC∗-algebra satisfying
the UCT was proved in[18]. The approximation property given by Theorem 4.3 is
a stronger property than UHF-embeddability. It is significant that it holds for exact
C∗-algebras since as noted in [8] the UHF-embeddability of the cone of an exact sepa-
rable RFDC∗-algebra (which satisfies the UCT by virtue of being contractible) implies
Kirchberg’s fundamental characterization of exact separableC∗-algebras as subquotients
of UHF algebras [17]. Subsequently Ozawa proved that AF-embeddability of separable
exactC∗-algebras is a homotopy invariant [21].

A locally compact groupG is called maximally almost periodic (abbreviated MAP)
if it has a separating family of finite-dimensional unitary representations. Residually
finite groups are examples of MAP groups. IfG is a second countable amenable locally
compact MAP group, thenC∗(G) is residually finite dimensional by [2] and satisfies
the UCT by [36]. By Theorem 4.4 we have the following.

Corollary 4.6. TheC∗-algebra of a second countable amenable locally compact MAP
groupG is embeddable in the UHFC∗-algebra of type2∞.

Remark 4.7. If in addition we assume thatG is discrete, thenG injects in the unitary
group ofB. Note that this result is non-trivial even for the discrete Heisenberg group
H3, sinceH3 does not have injective finite-dimensional unitary representations. Indeed
if 
 : H3 → U(n) is an irreducible representation ands, t are generators ofH3
such thatr = s−1t−1st generates the center ofH3, then 
(r) = 1n,  ∈ C, hence
n = det(
(r)) = det(
(s−1t−1st)) = 1.

5. From KL-equivalence to KK-equivalence

In this section we address the question of when the Hausdorff quotient ofKK(A,B)

admits an algebraic description. The following definition due to Lin appears in[20],
except that the topology considered there is the Brown–Salinas topology, which we will
show to coincide with Pimsner’s topology in the next section. A separableC∗-algebra
A satisfies the AUCT if the natural map

KK(A,B)

0̄
→ Hom�(K(A),K(B))

is a bijection for all separableC∗-algebrasB.
Let KL(A,B) denote the quotient groupKK(A,B)/0̄. Since the Kasparov product is

continuous, it descends to an associative productKL(A,B)×KL(B,C)→ KL(A,C).
The groupKL(A,B) was first introduced by Rørdam[24] as the quotient ofKK(A,B)

by PExt(K∗−1(A),K∗(B)). The assumption thatA satisfies the UCT was necessary in
order to make PExt(K∗−1(A),K∗(B)) a subgroup ofKK(A,B) via the inclusion

PExt(K∗−1(A),K∗(B)) ↪→ Ext(K∗−1(A),K∗(B)) ↪→ K(A,B).
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In Section4 we showed that ifA satisfies the UCT then PExt(K∗−1(A),K∗(B)) co-
incides with the closure of zero, hence the terminology is consistent. Two separable
C∗-algebrasA andB areKK-equivalent, writtenA ∼KK B, if there exist� ∈ KK(A,B)

and � ∈ KK(B,A) such that

�� = [idA], �� = [idB ].

Similarly, A is KL-equivalentto B, written A ∼KL B if there exist� ∈ KK(A,B) and
� ∈ KK(B,A) such that

��− [idA] ∈ 0̄, ��− [idB ] ∈ 0̄.

Equivalently,A ∼KL B if and only if there exist� ∈ KL(A,B) and � ∈ KL(B,A)

such that

�� = [idA], �� = [idB ].

by KL(A,B). Note that KL-equivalence corresponds to the notion of isomorphism in
the category with objects separableC∗-algebras and morphisms fromA to B given by
KL(A,B).

A separable simple unital purely infinite nuclearC∗-algebraA is called a Kirchberg
C∗-algebra[26, 4.3.1]. One says thatA is in standard form if[1A] = 0 in K0(A). The
following result is due to Lin, except that he works with the Brown-Salinas topology.

Theorem 5.1 (Lin [20] ). Let A and B be unital KirchbergC∗-algebras.

(a) Let �,� : A → B be unital ∗-homomorphisms. If [�] = [�] in KL(A,B) then
� ≈u �.

(b) Assume thatA and B are in standard form. If A ∼KL B then A is isomorphic
to B.

Proof. We include a new simple proof. (a) Since the constant sequence[�] converges
to [�] there isy ∈ KK(A,C(N̄) ⊗ B) such thaty(n) = [�] for n ∈ N and y(∞) =
[�]. Since B�B ⊗ O∞ by Kirchberg’s theorem[26, 7.2.6], it follows by Phillips’
classification theorem [26, Theorem 8.2.1] and by [26, Proposition 4.1.4] that there is
a unital ∗-homomorphism� : A→ C(N̄)⊗B with y = [�]. Note that� is given by
a family of ∗-homomorphisms,� = (�n)n∈N̄ satisfying

lim
n→∞ ‖�n(a)− �∞(a)‖ = 0 (15)

for all a ∈ A. Since[�n] = y(n)= [�] it follows from [26, Theorem 8.2.1] that�n ≈u �
for all n ∈ N and similarly �∞ ≈u � since [�∞] = y∞ = [�]. In combination with
(15) this gives� ≈u �. The converse follows from Theorem 3.3.
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(b) Let � and � be as in the definition of KL-equivalence. Applying[26,
Theorem 8.3.3] again we lift� and � to unital ∗-homomorphisms� : A → B and
� : B → A such that[��] − [idB ] ∈ 0̄ and [��] − [idA] ∈ 0̄. From part (a) we have
�� ≈u idB and �� ≈u idA. It follows that A is isomorphic toB by Elliott’s intert-
wining argument [26, 2.3.4]. �

Corollary 5.2. Two separable nuclearC∗-algebras are KK-equivalent if and only if
they are KL-equivalent.

Proof. Any separable nuclearC∗-algebra is KK-equivalent to a unital Kirchberg al-
gebra in standard form[26, Proposition 8.4.5]. We conclude the proof by applying
Theorem 5.1. �

It is known that the validity of UCT for all nuclear separableC∗-algebras is equiv-
alent to the statement thatKK(A,A) = 0 for all nuclear separableC∗-algebrasA with
K∗(A) = 0 (see [27; 34, Proposition 5.3]). The following answers an informal question
of Larry Brown and shows that ifA fails to satisfy the UCT thenKK(A,A)/0̄ != 0.

Corollary 5.3. Let A be a separable nuclearC∗-algebra. If KK(A,A) = 0̄ then A

satisfies the UCT and in factA ∼KK 0.

Next we show that a nuclear separableC∗-algebra satisfies the AUCT if and only if
it satisfies the UCT. This answers a question of Lin[20].

Theorem 5.4. Let A be a separable nuclearC∗-algebra. The following assertions are
equivalent.

(i) A satisfies the UCT.
(ii) A satisfies the AUCT.

(iii) A is KL-equivalent to a commutativeC∗-algebra.
(iv) A is KK-equivalent to a commutativeC∗-algebra.

Proof. (i) ⇒ (ii) follows from Theorem4.1. (ii) ⇒ (iii) Assume thatA satisfies the
AUCT. Let C be a separable commutativeC∗-algebra withK∗(C)�K∗(A). SinceC

satisfies the UCT, there is� ∈ KK(C,A) such that the induced map�∗ : K∗(C) →
K∗(A) is a bijection. Then�(�) : K(C)→ K(A) is a bijection by the five lemma. We
denote by�̇ the image of� in KL(C,A). For a separableC∗-algebraB, consider the
commutative diagram

KL(A,B) ��

��

Hom�(K(A),K(B))

��

KL(C, B) �� Hom�(K(C),K(B))
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where the vertical maps arex �→ �̇x and composition with�(�). The top horizontal map
is bijective by assumption and the bottom horizontal map is bijective by Theorem4.1.
Thus the mapKL(A,B)→ KL(C,B) is a bijection for all separableC∗-algebrasB.
By the usual “category theory” argument it follows that�̇ has an inversė� ∈ KL(A,C).

(iii) ⇒ (iv) follows from Corollary 5.2. (iv)⇒ (i) was proved in [27]. �

Finally, let us we mention that similar methods were used to prove that if a nuclear
separableC∗-algebraA can be approximated byC∗-subalgebras satisfying the UCT,
thenA satisfies the UCT (see [9]).

6. KK-topology versus Ext-topology

For separableC∗-algebrasA,B, Kasparov [15] has established an isomorphism

KK(A,B)�Ext(SA, B)−1.

These two groups come with natural topologies, Pimsner’s topology and respectively
the Brown–Salinas topology. In these section we show that Kasparov’s isomorphism is
a homeomorphism. The following result and its proof is an adaptation of[23, Theo-
rem 3.3].

Proposition 6.1. LetA,B be separableC∗-algebras and letX be a compact metrizable
space. Then any elementy ∈ Ext(A,C(X)⊗B)−1 is represented by a∗-homomorphism
� : A→ Q(C(X)⊗ B ⊗ K) which lifts to a completely positive contraction� : A→
C(X)⊗M(B ⊗K) ⊂ M(C(X)⊗ B ⊗K).

Proof. Sincey is an invertible extension,y is represented by some∗-homomorphism
� : A→ Q(C(X)⊗ B ⊗K) which lifts to a completely positive contraction

� : A→ M(C(X)⊗ B ⊗K)�L(HC(X)⊗B)�Cs(X,L(HB)).

By [14, Theorem 3],� dilates to a∗-homomorphism� : A→ Cs(X,L(HB ⊕HB)) of
the form

�(a) =
(

�(a) �(a)
�(a) �(a)

)
,

such that�(a), �(a) ∈ Cs(X,K(HB)) for all a ∈ A. After replacing� by � ⊕ � for
some (A,C(X) ⊗ B)-absorbing∗-homomorphism�, we may assume that� itself is
(A,C(X)⊗ B)-absorbing. LetH = H ′ = HB and consider the maps

�̃ : A→ Cs(X,L(H ⊕ (H ⊕H ′)⊕ (H ⊕H ′)⊕ · · ·))
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defined by

�̃(a) = �(a)⊕ �(a)⊕ �(a) · · ·

and

�̃ : A→ Cs(X,L((H ⊕H ′)⊕ (H ⊕H ′)⊕ · · ·))

defined by

�̃(a) = �(a)⊕ �(a)⊕ · · · .

Consider also the constant unitary operator

G ∈ Cs(X,L((H ⊕H ′)⊕ (H ⊕H ′)⊕ · · · , H ⊕ (H ⊕H ′)⊕ (H ⊕H ′)⊕ · · ·))

defined by

G(x)((h1⊕ h′1)⊕ (h2⊕ h′2)⊕ · · ·) = h1⊕ (h2⊕ h′1)⊕ (h3⊕ h′2)⊕ · · · .

Let S ∈ L(H ⊕H ⊕ · · ·) be the shift operatorS(h1 ⊕ h2 ⊕ · · ·) = 0⊕ h1 ⊕ h2 ⊕ · · ·.
If U ∈ Cs(X,L(H ⊕H ′, H)) is a unitary operator, let us define

Ũ ∈ Cs(X,L((H ⊕H ′)⊕ (H ⊕H ′)⊕ · · · , H ⊕H ⊕ · · ·))

by Ũ = U ⊕ U ⊕ · · ·. The following identity was verified in the proof of[23, Theo-
rem 3.3]:

ŨG∗�̃(a)GŨ∗ = Ũ �̃(a)Ũ∗ − [U(�(a)+ �(a)U∗ ⊕ U(�(a)+ �(a))U∗ ⊕ · · ·]
+[U�(a)U∗ ⊕ U�(a)U∗ ⊕ · · ·] ◦ S∗
+[U�(a)U∗ ⊕ U�(a)U∗ ⊕ · · ·] ◦ S. (16)

Let � : A → L(H) be an (A,B)-absorbing∗-homomorphism and let us define�0 :
A→ Cs(X,L(H)) by �0(a)(x) = �(a) for all a ∈ A andx ∈ X. By Proposition3.2,�0
is an (A,C(X)⊗ B)-absorbing∗-homomorphism. Since both� and �0 are absorbing,
there is a unitaryU ∈ Cs(X,L(H⊕H ′, H)) such thatU�(a)U∗−�0(a) ∈ C(X,K(H))

for all a ∈ A. This shows that

Ũ �̃(a)Ũ∗ = U�(a)U∗ ⊕ U�(a)U∗ ⊕ · · ·
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is a norm-continuous function ofx ∈ X. Since �(a), �(a) ∈ C(X,K(H)), and since
the mapx �→ U(x) is strictly continuous, we see that the other three terms appearing
on the right-hand side of Eq. (16) are also norm-continuous functions ofx. Therefore

ŨG∗�̃(a)GŨ∗ ∈ C(X,L(H ⊕H ⊕ · · ·))�C(X)⊗ L(HB).

We conclude the proof by noting that̃UG∗�̃(·)GŨ∗ defines the same elementy ∈
Ext(A,C(X)⊗ B)−1 as �.

Theorem 6.2. Let A, B be separableC∗-algebras and let(xn) and x∞ be elements
of Ext(A,B)−1. Thenxn → x∞ in the Brown–Salinas topology if and only if there is
y ∈ Ext(A,C(N̄)⊗ B)−1 such thaty(n) = xn for all n ∈ N̄.

Proof. First we prove the implication(⇒). The elements of Ext(A,B)−1 are repre-
sented by∗-homomorphisms

� : A→ Q(B ⊗K) = M(B ⊗K)/B ⊗K

which admit completely positive contractive liftingsA → M(B ⊗ K). Such a map
� is called liftable. Let(�n), �∞ be liftable ∗-homomorphisms withxn = [�n] and
x∞ = [�∞]. Sincexn→ x∞ in the Brown–Salinas topology, if� : A→ M(B ⊗K) is
an absorbing∗-homomorphism, then there is a sequence of unitariesun ∈ Q(B ⊗ K)

liftable to unitaries inM(B ⊗K) such that

lim
n→∞ ‖un(�n(a)⊕ �̇(a))u∗n − �∞(a)⊕ �̇(a)‖ = 0

for all a ∈ A. Since [�n] = [un(�n ⊕ �̇)u∗n] and [�∞] = [�∞ ⊕ �̇] in Ext(A,B)−1,
without loss of generality we may assume that

lim
n→∞ ‖�n(a)− �∞(a)‖ = 0 (17)

for all a ∈ A. Define a∗-homomorphism

� : A→ C(N̄)⊗Q(B ⊗K) ⊂ Q(C(N̄)⊗ B ⊗K),

by �(a)(n) = �n(a), n ∈ N̄. We want to show that� is liftable. For k ∈ N define
�(k) : A→ C(N̄)⊗Q(B⊗K) ⊂ Q(B⊗C(N̄)⊗K) by �(k)(a)(n) = �n(a) if n�k and
�(k)(a)(n) = �∞(a) if n > k. Note that�(k) lifts to a completely positive contraction
A→ C(N̄)⊗M(B ⊗K). Since

lim
k→∞ ‖�

(k)(a)− �(a)‖ = lim
k→∞ sup

n>k

‖�n(a)− �∞(a)‖ = 0
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by (17), it follows by a result of Arveson, [1, Theorem 6], that� is liftable and hence
y = [�] ∈ Ext(A,C(N̄)⊗B)−1. It is clear thaty(n) = xn for all n ∈ N̄. Let us prove the
converse implication(⇐). By Proposition 6.1 every elementy ∈ Ext(A,C(N̄)⊗B)−1

is represented by a∗-homomorphism

� : A→ C(N̄)⊗Q(B ⊗K) ⊂ Q(C(N̄)⊗ B ⊗K). (18)

Therefore, if(�n)n∈N̄ are the components of�, then

lim
n→∞ ‖�n(a)− �∞(a)‖ = 0

for all a ∈ A, and hencey(n) = [�n] converges toy(∞) = [�∞] in the Brown–Salinas
topology. �

Let � be a generator ofKK1(SC,C)�Z. The Kasparov product

KK1(SC,C)⊗ KK(A,B)→ KK1(SA, B)

induces a natural isomorphism

� : KK(A,B) & � �→ �⊗ � ∈ KK1(SA, B)�Ext(SA, B)−1.

Corollary 6.3. Let A, B be separableC∗-algebras. The map � : KK(A,B) →
Ext(SA, B)−1 is a homeomorphism, when KK(A,B) is given the Pimsner topology
and Ext(SA, B)−1 is endowed with the Brown–Salinas topology.

Proof. The evaluation map atn ∈ N̄ induces a commutative diagram

KK(A,C(N̄)⊗ B)

�
��

��

Ext(SA, C(N̄)⊗ B)−1

��

KK(A,B)

�
�� Ext(SA, B)−1

Since� is a bijection, the result follows from Theorems3.5 and 6.1 �

7. Open questions

1. Let A, B be separableC∗-algebras and assume thatA is nuclear. Is the polish group
KK(A,B)/0̄ totally disconnected?
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2. Let A be a separable nuclearC∗-algebra. Fix an invariant metric for the topology
of K0(A) = KK(A,C). Is it true that for anyε > 0 there is a finitely generated
subgroup ofK0(A) which is ε-dense inK0(A)?

Both questions have positive answers if one assumes thatA satisfies the UCT, as seen
in Section4.
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