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We propose a new type of regular monopole-like field configuration in quantum chromodynamics (QCD)
and CP1 model. The monopole configuration can be treated as a monopole–antimonopole pair without
localized magnetic charges. An exact numeric solution for a simple monopole–antimonopole solution
has been obtained in CP1 model with an appropriate potential term. We suppose that similar monopole
solutions may exist in effective theories of QCD and in the electroweak standard model.
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1. Introduction

One of most attractive mechanisms of quark confinement in
quantum chromodynamics is based on Meissner effect in dual
color superconductor [1–3]. This assumes generation of monopole
vacuum condensate due to quantum dynamics of gluons. The exis-
tence of the monopole condensation represents a puzzle in QCD
which is intimately related with the problem of origin of the
mass gap in QCD. Due to correspondence principle between quan-
tum and classical descriptions one would expect that QCD admits
classical monopole solutions. However, since invention of singu-
lar Dirac [4] and Wu–Yang monopoles [5] up to present moment
we don’t know any finite energy monopole solutions in realistic
physical theories of fundamental interactions. All known finite en-
ergy monopole solutions (like ’t Hooft–Polyakov one [6,7]) require
either introducing new particles or essential extension of the the-
ories of fundamental forces.

The problem of existence of finite energy monopoles in QCD
becomes more critical due to the following: the magnetic poten-
tial in SU(2) QCD is given by dual Abelian gauge potential which
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is defined in terms of CP1 field n̂ [8,9]. The magnetic potential
is divergenceless, this implies that any monopole field configura-
tion defined in terms of n̂ with non-vanishing magnetic charge
unavoidably contains singularities on some subset of three di-
mensional space. One possibility to overcome this problem is to
introduce additional fields as it occurs in the case of composite
’t Hooft–Polyakov monopole. Another way to avoid such singular-
ities is to consider monopole configurations with vanishing total
magnetic charge. This approach is based on the fact that monopole
charge in pure QCD does not represent gauge invariant quantity,
so, since the color symmetry is unbroken only monopole configu-
rations with a total zero magnetic charge can serve as a classical
analog to gauge invariant monopole vacuum condensate. Moreover,
it has been found that monopole–antimonopole string (or knot)
pair can form a stable vacuum in QCD [10].

In this Letter we study the problem of existence of finite
energy monopoles in QCD considering a subsector of standard
QCD which is defined formally by the CP1 Lagrangian. We pro-
pose a new type of finite energy monopole field configuration
which can be treated as a monopole–antimonopole pair. An es-
sential feature of such monopole configuration is that it does not
have localized magnetic charge anywhere in contrast to known
monopole–antimonopole solutions in Yang–Mills–Higgs theory.
We consider first singular monopole–antimonopole configura-
tion which represents a limiting case of the system of point-
like monopole and antimonopole approaching each other at zero
.
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distance. It is not much surprising that such a singular non-trivial
configuration takes place. Unexpected result is that there exists
a finite energy monopole–antimonopole configuration which is
regular everywhere and which minimizes the energy functional
of restricted QCD.

The Letter is organized as follows. In Section 2 we consider sin-
gular monopoles in CP1 model. In Section 3 we study the structure
of regular finite energy monopole–antimonopole configurations. To
demonstrate that such a configuration can be realized as a so-
lution we obtain exact numeric solution for a simple monopole–
antimonopole field in a simple CP1 in Section 4.

2. Singular monopole–antimonopole pair in CP1 model

Let us consider a simple CP1 model defined by the Lagrangian

L0 = −1

4
H2

μν, (1)

where the magnetic field Hμν is expressed in terms of the CP1

field n̂ as follows

Hμν = εabcn̂a∂μn̂b∂νn̂c . (2)

The Lagrangian L0 describes a subsector of the standard QCD with
a restricted SU(2) gauge potential given by

Âμ = − 1

g
n̂ × ∂μn̂. (3)

The expression for the gauge potential can be treated either as
a reduction of the standard QCD to the restricted QCD [8,9], or as
a special ansatz in Faddeev–Niemi approach to formulation of the
effective theory of QCD in the infrared limit [11,12]. In first case
the field n̂ satisfies the equations of motion of the standard QCD,
whereas in the second case the equations of motion for n̂ are de-
termined exactly by the CP1 Lagrangian L0.

It is convenient to express the CP1 field through the complex
field u(x) using stereographic projection

n̂ = 1

1 + u
∗
u

⎛
⎝ u+ ∗

u

−i(u− ∗
u)

u
∗
u −1

⎞
⎠ . (4)

With this the magnetic field Hμν can be written explicitly in terms
of u

Hμν = −2i

(1 + |u|2)2
(∂μu∂ν

∗
u −∂νu∂μ

∗
u). (5)

The magnetic field Hμν determines a corresponding closed differ-
ential 2-form H = dxμ ∧ dxν Hμν which implies local existence of
a dual magnetic potential C̃μ

Hμν = ∂μC̃ν − ∂ν C̃μ. (6)

All topologically non-equivalent configurations of the CP1 field n̂
are classified by homotopy groups π2,3(CP1). Consequently one can
classify possible topological fields n̂ by Hopf, Q H , and monopole,
gm , charges

Q H = 1

32π2

∫
d3xε i jk C̃i H jk,

gm = 1

V (S)

∫

S2

Hij · dσ i j, (7)

where V (S) is a volume of the sphere S2.
The magnetic vector field �Hi = 1
2 ε i jk H jk has a vanishing diver-

gence. This implies that a regular finite energy monopole config-
uration with a non-zero magnetic charge does not exist in a sim-
ple CP1 model and in the restricted QCD unless one introduces
additional fields to make a composite monopole. Monopole-like
field configurations with a total vanishing magnetic charge can
be in principle regular everywhere since in that case there is no
any topological obstructions. Monopole–antimonopole pairs made
of Dirac or Wu–Yang monopoles [13] still possess singularities in
the centers of the point-like monopoles. Besides, such a pair does
not represent a static bound state, since obviously monopole and
antimonopole will annihilate and disappear. However, in theories
with non-linear self-interaction one may expect existence of a non-
trivial monopole configuration in the limit when monopole and
antimonopole approach each other at zero distance. Indeed, we
will show that such a singular field configuration exists in CP1

model.
Let us define the following axially symmetric ansatz

u(r, θ,ϕ) = eimϕ

(
cot

(
nθ

2

)
f (r, θ) + i csc

(
nθ

2

)
Q (r, θ)

)
, (8)

where the integer numbers (m,n) are winding numbers corre-
sponding to the spherical angles (ϕ, θ). A simple setting m = n = 1,
f = 1, Q = 0 reproduces Wu–Yang monopole solution with a unit
magnetic charge, gm = 1. Another interesting case with winding
numbers m = 1, n = 2 and given functions

f (r, θ) = 1, Q (r, θ) = a2 − r2

2ar
(9)

leads to exact knot solitons with Hopf charge Q H = 1 in a special
integrable CP1 model [14,15] and in a generalized Skyrme–Faddeev
model [16]. We will consider the case m = 1, n = 2 with an ap-
propriate choice of functions ( f , Q ) leading to zero total mag-
netic charge, the value of the Hopf charge depends on imposed
boundary. It turns out that the ansatz (8) provides a rich struc-
ture of possible monopole-like configurations admitting non-trivial
twisted magnetic fluxes.

Let us first consider general properties of magnetic field config-
urations with the ansatz (8). For numeric purpose it is convenient
to change the variables

f (r, θ) = 2 − 1

F (r, θ)
,

Q (r, θ) = 1

G(r, θ)
− 1. (10)

Asymptotic properties of the magnetic field is determined by val-
ues of the functions ( f , Q ) and their first derivatives at infin-
ity r → ∞. To find proper boundary conditions near origin and
near infinity we consider simple case of radial-dependent functions
f (r), Q (r). With this one can write the magnetic field components
as follows

Hrθ = − 4 sin θ( f Q ′ − cos2 θ f ′ Q )

(cos2 θ f 2 + Q 2 + sin2 θ)2
,

Hrϕ = 4 sin2 θ(cos2 θ f f ′ + Q ′)
(cos2 θ f 2 + Q 2 + sin2 θ)2

,

Hθϕ = − 2( f 2 + Q 2) sin(2θ)

(cos2 θ f 2 + Q 2 + sin2 θ)2
. (11)

In asymptotic region near infinity, r → ∞, one has
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Hrθ → 0,

Hrϕ → 0,

Hθϕ → − 2( f 2∞ + Q 2∞) sin(2θ)

(cos2 θ f 2∞ + Q 2∞ + sin2 θ)2
, (12)

where f (r = ∞) = f∞ , Q (r = ∞) = Q ∞ .
Let us choose the following boundary conditions written for the

functions F , G:

F (0) = F (∞) = 1

2
, G(0) = G(∞) = 1

2
. (13)

One can calculate magnetic fluxes through the upper and lower
semi-spheres H2± of the sphere S2 of radius R centered at the ori-
gin r = 0. In the asymptotic limit R → ∞ the magnetic fluxes are
given by

Φ+ =
2π∫
0

dϕ

π/2∫
0

dθ Hθϕ = −2π,

Φ− =
2π∫
0

dϕ

π∫
π/2

dθ Hθφ = +2π. (14)

The Hopf charge for the given configuration is zero. The magnetic
fluxes are multiples of the minimal magnetic flux quantum 2π for
arbitrary non-zero value of F (0). The field configuration looks like
monopole (antimonopole) for observers standing at far distance in
lower (upper) half-space. Notice, the configuration has a singularity
at the point r = 0. One can consider the magnetic flux through the
surface composed from an upper semi-sphere of small radius ρ0
centered at the origin r = 0, (θ ∈ [0,π/2],ϕ ∈ [0,2π ]), and a disc
D2 : {r � ρ0} in the (X, Y ) plane

Φ0+ =
2π∫
0

dϕ

π/2∫
0

dθ Hθϕ(ρ0, θ)

+
2π∫
0

dϕ

ρ0∫
0

dr Hrϕ(r,π/2). (15)

One can check that the magnetic flux Φ0+ converges to a value
−2π in the limit ρ0 → 0. Similarly, the magnetic flux Φ0− through
the surface made of a lower semi-sphere of radius ρ0, (θ ∈
[π/2,π ],ϕ ∈ [0,2π ]), and a disc D2, converges to a value +2π
when ρ0 → 0. Such a behavior corresponds to the point-like
monopole and antimonopole placed in one point, r = 0. We will
treat such a configuration as a monopole–antimonopole pair. No-
tice, that our monopole configuration is essentially non-Abelian,
and it is different from the monopole–antimonopole pair of Dirac
monopoles forming a magnetic dipole due to superposition rule
available in linear field theory.

The semi-spheres H2± have a common boundary S1 as a circle
in the (X, Y ) plane, and due to axial symmetry the vector field n̂ is
a constant vector along the boundary. One can make compactifica-
tion of the semi-spheres H± to spheres S± by identifying all points
of the boundary to one point. With this it becomes clear that mag-
netic flux quantization originates from the non-trivial mappings
π2(S2) corresponding to monopole and antimonopole. In asymp-
totic region r → ∞ the CP1 field can be written as follows

n̂1 = sin θ(cosϕ cos θ − sinϕ),

n̂2 = − sin θ(cosϕ + cos θ sinϕ),

n̂3 = cos2 θ. (16)
Fig. 1. Density contour plot of the magnetic vector field in the plane y = 0.

This implies that n̂ represents twisted one-to-one mapping
S2 → S2.

The monopole–antimonopole configuration resembles a finite
energy solution for monopole–antimonopole in Yang–Mills–Higgs
theory [17] where monopole and antimonopole are localized
at zeros of the Higgs field on the Z -axis. One should stress
that our monopole–antimonopole differs from the monopole–
antimonopole in Yang–Mills–Higgs theory which represents a com-
posite monopole while our monopole represents a pure monopole
system without any additional scalar fields. The construction of the
singular monopole–antimonopole configuration gives a hint that
a finite energy monopole–antimonopole configuration might ex-
ist even in a simple CP1 model. The key point is that the fields f
and Q can regularize the singularity through the “dressing” effect
in a similar manner as the Higgs field regularizes the singularity
at the origin in the ’t Hooft–Polyakov monopole solution. Surpris-
ingly, we have found that such a regular monopole configuration
is allowed in the CP1 model and consequently in QCD.

3. Regular finite energy monopole–antimonopole configuration

For simplicity we consider radial-dependent functions f (r),
Q (r) (F (r), G(r)). Let us impose the following boundary conditions

F (0) = 0, F (∞) = 1,

G(0) = 0, G(∞) = 1. (17)

The CP1 field n̂ behaves like a Higgs field taking constant vector
value at the origin

n̂(r = 0) = (0,0,1). (18)

In asymptotic region r → ∞ the vector field n̂ can be written as
follows

n̂ = (
cosϕ sin(2θ),− sinϕ sin(2θ), cos(2θ)

)
, (19)

i.e., the field n̂ provides double covering of the sphere S2 	
CP1/U (1). One can calculate the magnetic fluxes through the up-
per and lower semi-spheres H2± of the sphere S2 of infinite radius
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Fig. 2. Density contour plots of the magnetic field in the planes: (a) z = 1.0; (b) z = 0.93; (c) z = 0.7; (d) z = +0.01.
Φ+ =
2π∫
0

dϕ

π/2∫
0

dθ Hθϕ = −4π,

Φ− =
2π∫
0

dϕ

π∫
π/2

dθ Hθϕ = +4π. (20)

One has non-zero magnetic flux around the Z -axis created by
the magnetic field Hrθ which implies a helical structure of the
monopole configuration

Φϕ =
∞∫

dr

π∫
dθ Hrθ = 2π. (21)
0 0
The twisted magnetic fluxes correspond to half-integer value of the
Hopf charge, Q H = 1

2 .
In further we will study possible solutions with properties of

such monopole–antimonopole configurations in CP1 model and
electroweak theory. Due to this it is important to verify strictly
the regular structure of the monopole configuration. To get a qual-
itative description we use simple radial trial functions

F (r) = 1 + e− r
2
(−1 + r2),

G(r) = 1 + e− r
2
(−1 + r2). (22)

With this one can study the detailed structure of the magnetic
field for a given monopole–antimonopole configuration. From the
density contour plot of the magnetic vector field projected onto
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Fig. 3. Three-dimensional vector stream plot for the magnetic field in Cartesian co-
ordinates.

the planes (X, Z) and (X, Y ), Figs. 1, 2 respectively, one can see
that at far distance above (below) the plane (X, Y ) the magnetic
flux corresponds to negatively (positively) charged monopole with
the magnetic field lines twisted around the Z -axis.

In Fig. 2a–d the one can retrieve a non-trivial helical structure
of the magnetic field. The magnetic vector field lines starting at
far distance z 
 0 approach the central area and wind around the
Z -axis, Fig. 2a. Passing the plane z = 0.93 the magnetic field lines
are coming untwisted and moving away from the Z -axis, Fig. 2b, c.
In the interior area 0 � z � 0.93 the magnetic fields approach the
plane z = 0 with a quite complicate helical structure which shows
opposite winding directions above and below the plane z = 0,
Fig. 2d. In lower half-space the magnetic field has a similar be-
havior due to the reflection symmetry z → −z. The vector stream
plot for the magnetic field, Fig. 3, shows the general regular struc-
ture and the presence of two local maximums of density of the
magnetic field located near the Z -axis in the planes z = ±0.93.

To make sure that magnetic field has a regular structure every-
where we make plots for the vector lines which start from four
symmetric points in the upper half-space, Fig. 4. Conditionally one
can select two types of magnetic vector field lines. The magnetic
field lines of the first type are localized along the Z -axis, Fig. 4a, b,
and the magnetic field lines of the second type spread to infin-
ity along x and y directions. One can see from Fig. 5 that field
configuration has two local energy density maximums located in
the planes z = ±0.93 along the circles θ 	 0.5, θ 	 π − 0.5. Max-
imal energy density forms two tori, so the configuration can be
viewed as a pair of monopole and antimonopole knots. Notice, the
given monopole–antimonopole configuration has no localized mag-
netic charges anywhere contrary to the case of known monopole–
antimonopole solutions in Yang–Mills–Higgs theory [17], i.e., the
magnetic flux through any closed two-dimensional surface van-
ishes identically.

In general, a detailed structure of the monopole–antimonopole
configuration can vary depending on dynamics determined by the
equations of motion. In the next section we will consider a more
simple monopole–antimonopole solution in CP1 model without he-
lical structure.

Due to Derrick theorem [18] the simple CP1 model with the
Lagrangian (1) and the pure QCD do not admit a stable static solu-
tion. So it is unlikely that monopole can be realized as a classical
solution in standard QCD. However, it is surprising that monopole–
antimonopole configuration considered above provide a minimum
of the energy functional for any given total energy value. So
that, one cannot exclude completely the possibility of existence
of monopole–antimonopole solution in pure QCD. To apply min-
imization procedure to the energy functional it is convenient to
pass to dimensionless variables x̃i by rescaling xi → dx̃i with the
length parameter d. The trial variational functions (F (r, θ), G(r, θ))

are chosen as Fourier series in sin kθ , cos lθ (k = 1,3, l = 2,4),
with Laguerre polynomial radial coefficient functions Ln(r) (n =
1, . . . ,5). In dimensionless variables the energy functional reads
(i, j = 1,2,3)

E = 1

4d

∫
d3x̃ H̃2

i j. (23)

We impose the following boundary conditions

F (0, θ) = 0, G(0, θ) = 0,

F (∞, θ) = 1, G(∞, θ) = 1. (24)

Minimizing procedure of the energy functional gives the total en-
ergy value

E 	 4.06

d
. (25)

The energy density plot, Fig. 6, shows that the monopole and an-
timonopole merge together forming a toroidal structure. Since the
Hopf charge is half-integer, Q H = 1

2 , the monopole–antimonopole
configuration differs from the topological knot and has non-
vanishing magnetic fluxes through the upper and lower semi-
spheres H2± of infinite radius, (20). It is obvious that the con-
figuration cannot represent a stable solution due to presence of
the scale parameter d which characterizes the effective size of the
monopole configuration. This is in close analogy with ’t Hooft–
Polyakov monopole case where the energy of ’t Hooft–Polyakov
monopole in BPS limit includes a scale parameter (averaged value
of the Higgs field) and its presence destabilizes the solution.

At far distance the given magnetic field configuration is similar
to a monopole–antimonopole bound state, and it does not pos-
sess a localized magnetic charge inside any closed surface. This
type of solution can resolve a puzzle of existence of monopole
in QCD and in electro-weak standard theory, where, as it is well
known, finite energy non-composite monopole solution has not
been found so far. Due to possible importance of this monopole
configuration we will demonstrate the existence of such a solution
in a simple CP1 model with a potential term which determines an
appropriate boundary condition at infinity.

4. Monopole–antimonopole solution in CP1 model with
a potential term

We consider monopole–antimonopole field configuration deter-
mined by winding numbers m = 1, n = 2 in a simple case when
the function f (r, θ) entering the ansatz (8) vanishes identically.
Let us consider the following Lagrangian for the CP1 model with
a potential term

L = −1

4
H2

μν − V (u),

V (u) = k2

4
sin2 θ ·

(
2

2 − i sin θ(e−iφu − eiφ
∗
u)

− 1

2

)2

. (26)

Due to a special form of the chosen ansatz the potential term can
be re-written in a simple form in terms of the function G(r, θ)
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Fig. 4. (a) Vector lines for the magnetic field Hmn starting from four symmetric points near Z -axis; the same lines with the point of view from above; (c) magnetic field
vector lines starting from four symmetric points at large distance from Z -axis; (d) the same lines with the point of view from above.
Fig. 5. Energy density plot for the magnetic field in spherical coordinates (r, θ) (ax-
ially symmetric case).

Fig. 6. Energy density plot for the magnetic field configuration which minimizes the
energy functional of restricted QCD.
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V (G) = k2

4
sin2 θ

(
G − 1

2

)2

. (27)

The potential term provides an appropriate boundary condition for
the field G(r, θ) at space infinity. A corresponding equation of mo-
tion represents a non-linear partial differential equation (pde)

1

(1+ ∗
u u)2

∂ν

(√
g∂μuHμν

) − k2

2
r2 sin3 θ

(
G − 1

2

)
= 0. (28)

The reduced form of the ansatz (8) with one non-vanishing
function G implies the following expressions for the vector mag-
netic field �Hi = 1

2 εi jk H jk at space infinity

�Hr = − 2 sin(2θ)

(1 + sin2 θ)2
,

�Hθ = 0, �Hϕ = 0. (29)

The magnetic flux through the sphere S2 of infinite radius gives
vanishing total magnetic charge∫

S2

dr dθ Hr = 0. (30)

The magnetic fluxes through the upper and lower half-spheres of
S2 are twice less compare to the monopole–antimonopole config-
uration considered in the previous section

Φ+ =
∫

dr

π
2∫

0

dθ Hrθ (∞, θ) = −2π,

Φ− =
∫

dr

π∫
π
2

dθ Hrθ (∞, θ) = +2π. (31)

There is no magnetic flux around the Z -axis, consequently, the
Hopf charge density vanishes identically.

One can find solution near the origin r 	 0 and near space
infinity r 	 ∞ using perturbation theory. Expanding the function
G(r, θ) in Taylor series

G(r, θ) = g1(θ)r + g2(θ)r2 + g3(θ)r3 + · · · , (32)

one obtains a solution near r = 0 with the following coefficient
functions up to third order of perturbation theory:

g1(θ) = c1,

g2(θ) = −
(

c2
1 + k2

256c2
1

)
,

g3(θ) = 7c3
1 + 3c2

5
+ 9k2

640c1

(
1 − 1

210c4
1

)
+ c2 cos(2θ), (33)

where c1, c2 are arbitrary integration constants. Notice the ap-
pearance of the angle-dependent term in the last equation which
implies that solution is axially symmetric and depends on two
variables, (r, θ). In asymptotic region near space infinity, r 	 ∞,
one has a solution which is expressed by the series expansion (up
to second order of perturbation theory)

G(r, θ) = 1

2
+

∞∑
n=1

bn(θ)
1

r4n
,

b1(θ) = 2048(7 + 3 cos(2θ))

2 5
,

k (cos(2θ) − 3)
Fig. 7. Solution for the function G(r, θ) with the model parameter k = 2.

Fig. 8. Total energy density plot, k = 2.

Table 1
Energy values for different values of the parameter k: Epde

total , Epde
pot are the total and

potential energies retrieved from solving pde, Evar
total is the total energy obtained by

using variational method.

k Epde
total Epde

pot /Epde
total Evar

total

0.5 3.68 0.45 3.42
1 5.31 0.44 5.14
2 7.61 0.44 7.92
5 12.22 0.44 15.58

b2(θ) = 134 217 728

k4(cos(2θ) − 3)11

× (
119 − 235 cos(2θ) − 139 cos(4θ) − 9 cos(6θ)

)
. (34)

The solution is given by asymptotic series and represents a non-
perturbative solution which exists only for non-zero values of the
parameter k. With this one can solve numerically the partial dif-
ferential equation (28) imposing Neumann boundary conditions
∂θ G(r, θ)|θ=0,π = 0. The solution has been obtained by using the
package COMSOL 3.5, the plot for the function G(r, θ) is depicted
in Fig. 7 with the model parameter k = 2. The energy density pro-
file, Fig. 8, has one local maximum with two tails falling down
at far distance. The solution represents non-helical magnetic field
configuration, �Hϕ = 0.

One can solve PDE for various values of the model parameter k.
For k � 0.5 one has good convergency properties for all solutions.
The ratio of the potential energy Epde

pot to the total energy Epde
tot for

various values of the parameter k is near 0.44. The obtained total
energy values are in good agreement with estimates obtained by
using variational method of minimizing the energy functional, see
Table 1.

In conclusion, we have proposed a new type of finite energy
monopole configuration which can be treated as a monopole–
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antimonopole pair. An essential feature of the configuration is that
it does not possess localized magnetic charges whereas the mag-
netic fluxes through the upper (lower) half-spheres of infinite ra-
dius correspond to monopole (antimonopole) charge. The discrete
values of the magnetic charges are conditioned by integer winding
numbers (m,n), whereas a helical structure of the magnetic field
is provided by non-zero value of the Hopf charge. Such finite en-
ergy monopole–antimonopole configurations minimize the energy
functional in restricted QCD, and they can play an important role
in QCD.

The existence of monopole–antimonopole solution in a sim-
ple CP1 model shows that the field n̂ can regularize the singularity
inherent to point-like monopoles. In standard QCD the field n̂ rep-
resents pure topological degrees of freedom, i.e., it does not have
dynamic content. Due to this, rather there is no monopole so-
lution with non-zero magnetic charge in pure QCD. However, in
effective theories of QCD describing infrared limit in Faddeev–
Niemi formalism [11,12] the field n̂ manifests dynamical proper-
ties. It would be interesting to study extended Skyrme–Faddeev–
Niemi models with potential terms [19–21] in search of possible
monopole–antimonopole solutions. Another important implication
of our results is related to the problem of existence monopoles
in the theory of electro-weak interactions. We expect that finite
energy monopole–antimonopole solution can exist within the for-
malism of the standard model. These issues will be considered in
a subsequent paper [22].
Acknowledgements

One of authors (D.G.P.) thanks Prof. Y.M. Cho, E.N. Tsoy for use-
ful discussions. The work is supported by NSFC (Grants 11035006
and 11175215), CAS (Contract No. 2011T1J31), and by UzFFR
(Grant F2-FA-F116).

References

[1] Y. Nambu, Phys. Rev. D 10 (1974) 4262.
[2] S. Mandelstam, Phys. Rep. 23C (1976) 245.
[3] A. Polyakov, Nucl. Phys. B 120 (1977) 429.
[4] P.A.M. Dirac, Phys. Rev. 74 (1948) 817.
[5] T.T. Wu, C.N. Yang, Phys. Rev. D 12 (1975) 3845.
[6] G. ’t Hooft, Nucl. Phys. B 79 (1974) 276.
[7] A.M. Polyakov, JETP Lett. 20 (1974) 194.
[8] Y.M. Cho, Phys. Rev. D 21 (1980) 1080.
[9] Y.S. Duan, Mo-Lin Ge, Sci. Sin. 11 (1979) 1072.

[10] Y.M. Cho, D.G. Pak, Phys. Lett. B 632 (2006) 745.
[11] L.D. Faddeev, Antti J. Niemi, Phys. Rev. Lett. 82 (1999) 1624.
[12] S.V. Shabanov, Phys. Lett. B 458 (1999) 322.
[13] Y. Nambu, Nucl. Phys. B 130 (1977) 505.
[14] D.A. Nicole, J. Phys. G 4 (1978) 1363.
[15] H. Aratyn, L.A. Ferreira, A.H. Zimerman, Phys. Rev. Lett. 83 (1999) 1723.
[16] L.P. Zou, P.M. Zhang, D.G. Pak, Phys. Rev. D 87 (2013) 107701.
[17] B. Kleihaus, J. Kunz, Phys. Rev. D 61 (1999) 025003.
[18] G.H. Derrick, J. Math. Phys. 5 (1964) 1252.
[19] C. Adam, J. Sanchez-Guillen, T. Romanczukiewicz, A. Wereszczynski, arXiv:

0911.3673 [hep-th], 2009.
[20] D. Foster, Phys. Rev. D 83 (2011) 085026.
[21] L.A. Ferreira, J. Jaykka, N. Sawado, K. Toda, Phys. Rev. D 85 (2012) 105006.
[22] D.G. Pak, P.M. Zhang, L.P. Zou, Monopoles in Weinberg–Salam model, arXiv:

1311.7567.

http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6E616D6275s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6D616E64656C7374616Ds1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib706F6C79616B6F763737s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6469726163s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib777579616E67s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib74686F6F6674s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib706F6C79616B6F763734s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib63686F7072643830s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6475616Es1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib70616B706C623036s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib464E70726C3939s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib73686162616E6F76s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6E616D62753737s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6E69636F6C65s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib41465As1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib7A7A707072643133s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib4B4B707264s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6465727269636Bs1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6164616Ds1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6164616Ds1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib666F73746572s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib6665727265697261s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib707A7A524334s1
http://refhub.elsevier.com/S0370-2693(13)01018-6/bib707A7A524334s1

	Monopoles without magnetic charges:  Finite energy monopole-antimonopole conﬁgurations  in CP1 model and restricted QCD
	1 Introduction
	2 Singular monopole-antimonopole pair in CP1 model
	3 Regular ﬁnite energy monopole-antimonopole conﬁguration
	4 Monopole-antimonopole solution in CP1 model with a potential term
	Acknowledgements
	References


