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1. Introduction

For two Lebesgue integrable functions f, g : [a, b] — C, in order to compare the integral mean of the product with the
product of the integral means, we consider the Cebysev functional defined by

1 b 1 b 1 b
C(f, g ::bi/ f(t)g(t)dt—if f(t)dt-if g(tydt.
—aJ, b—al, b—al,

In 1935, Griiss [1] showed that

1
IC(f, &)l =< Z(M—m)(N—n), (1.1)
provided m, M, n, N are real numbers with the property that
—oco<m=<f<M< o0, —o0o<n<g<N<oo ae.onla,b]. (1.2)

The constant % is best possible in (1.1) in the sense that it cannot be replaced by a smaller quantity.
For other similar results, see [2-9] and the references therein.
The importance of Griiss’ inequality in various approximation results has been described in [2,5,7]. Motivated by those
applications, in this paper we provide other Griiss’ type inequalities and use them to obtain new inequalities involving

functions of selfadjoint operators on Hilbert spaces.
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2. New bounds

Theorem 1. Let f : [a, b] — C be of bounded variation on [a, b] and g : [a, b] — C a Lebesgue integrable function on [a, b].
Then

IC(f, o)l < = \/(f) (2.1)

b 1 b
g(t) — —— / g(s)ds] dt
b—al,

—a

where \/Z(f) denotes the total variation of f on the interval [a, b]. The constant % is best possible in (2.1).

Proof. We start with the following equality of interest that follows from Sonin’s identity [ 10, p. 246],

1 P b 1 b
o= | [f(t) f(a);f()] [g(r) - g(s)ds] dt. 22)
Taking the modulus in (2.2) and utilizing the triangle inequality, we get
1 [ +f(b 1 b
ct.ol =5 [ o —f(“)f()‘ ‘g(t) -5 [ s
—aJ, 2 b—al,
1 b 1 b
o [If(t)—f(a)l+|f(b)—f(t)|]‘g(t)—b_a/ﬂ g(s)ds| de
1.0
<3 \a/(f) "
since, f being of bounded variation, we have that |f (t) — f(a)| + |f (b) — f(£)] < \/Z(f) forallt € [a, b].
Consider now the functions f, g : [a,b] — R with f(t) = sgn (t — %b) and g(t) =t — % Observe that f is of

bounded variation and \/2(f) = 2. The function g is integrable on [a, b] and fabg(s)ds = 0. Also fab lg(O)]dt = 3(b—a)?
and fabf(t)g(t)dt = %(b — a)?. Inserting these functions in (2.1) produces the same quantity %(b — a) in both sides. O

A

b
g(s)ds|dt (2.3)

We denote the variance of the function f : [a, b] — C which is square integrable on [a, b] by D(f) and defined as
i| , (2.4)

Corollary 1. If the function f : [a, b] — C is of bounded variation on [a, b], then

p(f) =[c(r.7)]"” [ f () dt — ‘ f f(tyde

where f denotes the complex conjugate function of f.

D(f) < = \/(f) (2.5)

The constant % is best possible in (2.5).

Proof. If we apply Theorem 1 for g = f we get

1.0
D(f) < - . 2.6
N=3 VO3 (2:6)
By the Cauchy-Bunyakovsky-Schwarz integral inequality we have
1
' —a dt < D(f). (2.7)

On making use of(2.6) and (2.7) we deduce the desired inequality (2.5).
Now, if we choose f : [a, b] — R with f(t) = sgn (t — azib) then we obtain in both sides of (2.5) the same quantity 1,

which proves the sharpness of the constant % O
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Now we can state the following result when both functions are of bounded variation:

Corollary 2. If f, g : [a, b] — C are of bounded variation on [a, b], then

1 b b
cr.ol=; VOV @. (2.8)

The constant % is best possible in (2.8).

Proof. On making use of Theorem 1 and Corollary 1 we have successively

1,° 1 b
CF8)l < z\a/(f)'b—a/a

1 b 1 b b
= Ve = \Vh\Ve.

The case of equality is obtained in (2.8) for f (t) = g(t) = sgn (t — %2) ,t € [a,b]. O

dt

‘l b
g(t) — P / g(s)ds
— a a

A

Remark 1. We can consider the following quantity associated with a complex valued square integrable function on

[a, b], f: [a,b] — C,
1 b, 1 b
m\/{; f (t)dt - (m\/ﬂ f(t)dt)

Utilizing the above results we can state for functions of bounded variation that

1, 1

-\ () — /

2 \a/ b—al,

1, e T

S Vopn < 1\ - (2.9)
a a

If we consider G(f) := |C (f, |f])|"/%, where f : [a, b] — C is of bounded variation on [a, b], then we also have

GZ(f)<1\b/(f)1/b
-2 b—al,

b b b b 2
< Vooan =, VoV b=, [\/(f)] (2.10)

211/2

E() =IC(F.NHI'* =

EX(f) dt

IA

1 b
ft) — b—a / f(s)ds
—aJ,

IA

1 b
Ol - / F(s)] ds| de

A

and

G (f) dt

IA

‘1 b
f(t) — —a f f(s)ds

IA

1, 1P
z\a/('f')'b—afa
1.b 1. b 1T 2

2\/(|f|)D(f)§4\/(f)\/(lf|)§4[\/(f)} : (2.11)

The following representation is of interest in itself. The result was first obtained in [6] (see also [7]).

Lemma 1. If v : [a,b] — Candh : [a, b] — C are such that one is continuous and the other of bounded variation on [a, b],
then we have the identity

b by b b . b
v(b) [ (¢ “>dh(f;)+_’;(“)fa(b 0 dh®) f v(©)dh(t) = / o — “O =1 / hode.  (212)

The proof can be easily done integrating by parts in the left hand side and performing the required calculations.
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We can provide now the following corollaries of Theorem 1:

Corollary 3. If v : I — C is differentiable on the interior of the interval I denoted by I and [a, b] C I, v' is of bounded variation
onla, blandh : [a, b] — Cis integrable on [a, b], then we have the inequality

E;\b/(v/)/;b

a

v(b) [Pt — ydh (t) + v(@) [ (b — t) dh(t) -
b—a

b b
/ v(t)dh(t) h(t) — ﬁ/ h(s)ds|dt. (2.13)

Corollary 4. If v : [a, b] — C is absolutely continuous on [a, b] and h : [a, b] — C is of bounded variation on [a, b], then we
have the inequality

v(b) [Pt — aydh(t) + v(a) [ (b — t) dh(t) ~
b—a

de. (2.14)

““*—N2:ZW)

1 b b
sZYWK

b
/ v(t)dh(t)

The constant % is best possible in (2.14).

3. Applications for functions of selfadjoint operators

Let U be a selfadjoint operator on the complex Hilbert space (H, (., .)) with the spectrum Sp (U) included in the interval
[m, M] for some real numbers m < M and let {E, }, be its spectral family. Then for any continuous function f : [m, M] — C,
it is well known that we have the following spectral representation in terms of the Riemann-Stieltjes integral [11, p. 256]:

M
FWx,y) = f ) d(Ex,y), (3.1)
m—0
for any x,y € H. The function gy, (A) := (E;x, ) is of bounded variation on the interval [m, M] and g, , (m — 0) = 0 and
8xy(M) = (x,y) forany x, y € H.Itis also well known that g, (1) := (E;x, x) is monotonic nondecreasing and right continuous
on [m, M].

Theorem 2. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp(A) C [m, M] for some real numbers
m < M and let {E; }, < be its spectral family. If f : R — C is absolutely continuous on [m, M], then we have the inequality

f(m) M1y —A) + f(M) (A—mly) 1" M, fM) = f(m)
‘q i ”]XJy—mm&w’szbé«&wmwﬁlf@)—Aﬂ_mm
1 M, fM) —f(m)
=3 lIx] IIJ/II/m - M_m’df (32)
foranyx,y € H.
Proof. If we apply the inequality (2.14) for v(t) = f(t) and h(t) = (E:x, y) wheret € Rand x,y € H we get
M _ M _ M
v(M) [ (t —m)d (Etx,;’/i +Fm) [y M — D d (Ex.y) / ) Ex )
—m m—0
1" ML F) —f(m)

Since by the spectral representation (3.1) we have

M M
/ (t—m)d(Ex,y) = ((A—1ym)x,y), / M —t)d(Ex,y) = (M1y — A)X,y)
m—0 -0

m

and

M
f fOd (Eex, y) = (F(Ax, ),
m—0
then we get from (3.3) the first part of (3.2).

If P is a nonnegative operator on H, i.e., (Px, x) > 0 for any x € H, then |(Px, y)|* < (Px, x) (Py, y) forany x, y € H.
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Further,ifd : m —s =ty < t; < --- < ty_1 < t, = M is an arbitrary partition of the interval [m — s, M], with s > 0,
then we have by the Schwarz inequality for nonnegative operators that

n—1
\/ (Eox.y)) = = sup Z| (Eeyr — Eo) % 9)|
m—s i=0
Ut 1/2 12
= szlp Z [<(Efi+1 _Efi)x’ X) ! <(Efi+1 - Efz‘)y’ y) ! ] =1

i=0

By the Cauchy-Bunyakovsky-Schwarz inequality for sequences of real numbers we also have that

n—1 172 ruq 1/2
I'= SL;p Z<(Eti+1 - Efi)x’ X) Z((Efiﬂ - Efi)y’y>
i=0 i=0
n—1 1/2 n—1 1/2
= SUP Z Efi+1 - Efi) X, X) Sl;p Z ((Efiﬂ - Efi)y’ y>
i=0

i=0

1/2 1/2

Vo) | [V (o)

1/2
(112 = (Emesx )" (¥ = (En-s. )"
forany x,y € H and s > 0. Taking s — 0+ we get last part of (3.2). O
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