Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Some new sharp Grüss' type inequalities for functions of bounded variation and

applications for selfadjoint operators in Hilbert spaces are given.

New Grüss' type inequalities for functions of bounded variation and applications

S.S. Dragomir*

Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa

ABSTRACT

ARTICLE INFO

Article history: Received 11 November 2010 Received in revised form 14 December 2011 Accepted 15 December 2011

Keywords: Čebyšev functional Grüss' inequality Čebyšev's inequality Selfadioint operators Spectral representation

1. Introduction

For two Lebesgue integrable functions $f, g: [a, b] \to \mathbb{C}$, in order to compare the integral mean of the product with the product of the integral means, we consider the *Čebyšev functional* defined by

$$C(f,g) := \frac{1}{b-a} \int_a^b f(t)g(t)dt - \frac{1}{b-a} \int_a^b f(t)dt \cdot \frac{1}{b-a} \int_a^b g(t)dt$$

In 1935, Grüss [1] showed that

$$|C(f,g)| \le \frac{1}{4}(M-m)(N-n),$$
(1.1)

provided *m*, *M*, *n*, *N* are real numbers with the property that

 $-\infty < m \le f \le M < \infty,$ $-\infty < n \le g \le N < \infty$ a.e. on [a, b]. (1.2)

The constant $\frac{1}{4}$ is best possible in (1.1) in the sense that it cannot be replaced by a smaller quantity.

For other similar results, see [2–9] and the references therein.

The importance of Grüss' inequality in various approximation results has been described in [2,5,7]. Motivated by those applications, in this paper we provide other Grüss' type inequalities and use them to obtain new inequalities involving functions of selfadjoint operators on Hilbert spaces.

E-mail address: sever.dragomir@vu.edu.au.

URL: http://www.staff.vu.edu.au/rgmia/dragomir/.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Correspondence to: School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa

^{0893-9659/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.12.027

2. New bounds

Theorem 1. Let $f : [a, b] \to \mathbb{C}$ be of bounded variation on [a, b] and $g : [a, b] \to \mathbb{C}$ a Lebesgue integrable function on [a, b]. Then

$$|C(f,g)| \le \frac{1}{2} \bigvee_{a}^{b} (f) \cdot \frac{1}{b-a} \int_{a}^{b} \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right| dt$$
(2.1)

where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on the interval [a, b]. The constant $\frac{1}{2}$ is best possible in (2.1).

Proof. We start with the following equality of interest that follows from Sonin's identity [10, p. 246],

$$C(f,g) = \frac{1}{b-a} \int_{a}^{b} \left[f(t) - \frac{f(a) + f(b)}{2} \right] \left[g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right] dt.$$
(2.2)

Taking the modulus in (2.2) and utilizing the triangle inequality, we get

$$\begin{aligned} |C(f,g)| &\leq \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{f(a) + f(b)}{2} \right| \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right| dt \\ &\leq \frac{1}{2(b-a)} \int_{a}^{b} \left[|f(t) - f(a)| + |f(b) - f(t)| \right] \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right| dt \\ &\leq \frac{1}{2} \bigvee_{a}^{b} (f) \cdot \frac{1}{b-a} \int_{a}^{b} \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) ds \right| dt, \end{aligned}$$

$$(2.3)$$

since, *f* being of bounded variation, we have that $|f(t) - f(a)| + |f(b) - f(t)| \le \bigvee_a^b (f)$ for all $t \in [a, b]$.

Consider now the functions $f, g : [a, b] \to \mathbb{R}$ with $f(t) = \operatorname{sgn}\left(t - \frac{a+b}{2}\right)$ and $g(t) = t - \frac{a+b}{2}$. Observe that f is of bounded variation and $\bigvee_{a}^{b}(f) = 2$. The function g is integrable on [a, b] and $\int_{a}^{b} g(s)ds = 0$. Also $\int_{a}^{b} |g(t)| dt = \frac{1}{4}(b-a)^{2}$ and $\int_{a}^{b} f(t)g(t)dt = \frac{1}{4}(b-a)^{2}$. Inserting these functions in (2.1) produces the same quantity $\frac{1}{4}(b-a)$ in both sides. \Box

We denote the variance of the function $f : [a, b] \to \mathbb{C}$ which is square integrable on [a, b] by D(f) and defined as

$$D(f) = \left[C\left(f,\bar{f}\right)\right]^{1/2} = \left[\frac{1}{b-a}\int_{a}^{b}|f(t)|^{2}dt - \left|\frac{1}{b-a}\int_{a}^{b}f(t)dt\right|^{2}\right]^{1/2},$$
(2.4)

where \overline{f} denotes the complex conjugate function of f.

Corollary 1. If the function $f : [a, b] \to \mathbb{C}$ is of bounded variation on [a, b], then

$$D(f) \le \frac{1}{2} \bigvee_{a}^{b} (f).$$

$$(2.5)$$

The constant $\frac{1}{2}$ is best possible in (2.5).

Proof. If we apply Theorem 1 for $g = \overline{f}$ we get

$$D^{2}(f) \leq \frac{1}{2} \bigvee_{a}^{b} (f) \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) ds \right| dt.$$
(2.6)

By the Cauchy-Bunyakovsky-Schwarz integral inequality we have

$$\frac{1}{b-a}\int_{a}^{b}\left|f(t)-\frac{1}{b-a}\int_{a}^{b}f(s)ds\right|dt \le D(f).$$
(2.7)

On making use of (2.6) and (2.7) we deduce the desired inequality (2.5).

Now, if we choose $f : [a, b] \to \mathbb{R}$ with $f(t) = \text{sgn}\left(t - \frac{a+b}{2}\right)$, then we obtain in both sides of (2.5) the same quantity 1, which proves the sharpness of the constant $\frac{1}{2}$. \Box

Now we can state the following result when both functions are of bounded variation:

Corollary 2. If $f, g : [a, b] \to \mathbb{C}$ are of bounded variation on [a, b], then

$$|\mathcal{C}(f,g)| \leq \frac{1}{4} \bigvee_{a}^{b}(f) \bigvee_{a}^{b}(g) .$$

$$(2.8)$$

The constant $\frac{1}{4}$ is best possible in (2.8).

Proof. On making use of Theorem 1 and Corollary 1 we have successively

$$\begin{aligned} |C(f,g)| &\leq \frac{1}{2} \bigvee_{a}^{b} (f) \cdot \frac{1}{b-a} \int_{a}^{b} \left| g(t) - \frac{1}{b-a} \int_{a}^{b} g(s) \, ds \right| \, dt \\ &\leq \frac{1}{2} \bigvee_{a}^{b} (f) D(g) \leq \frac{1}{4} \bigvee_{a}^{b} (f) \bigvee_{a}^{b} (g). \end{aligned}$$

The case of equality is obtained in (2.8) for $f(t) = g(t) = \text{sgn}\left(t - \frac{a+b}{2}\right), t \in [a, b].$

Remark 1. We can consider the following quantity associated with a complex valued square integrable function on $[a, b], f : [a, b] \rightarrow \mathbb{C}$,

$$E(f) := |C(f,f)|^{1/2} = \left| \frac{1}{b-a} \int_a^b f^2(t) dt - \left(\frac{1}{b-a} \int_a^b f(t) dt \right)^2 \right|^{1/2}$$

Utilizing the above results we can state for functions of bounded variation that

$$E^{2}(f) \leq \frac{1}{2} \bigvee_{a}^{b} (f) \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) ds \right| dt$$

$$\leq \frac{1}{2} \bigvee_{a}^{b} (f) D(f) \leq \frac{1}{4} \left[\bigvee_{a}^{b} (f) \right]^{2}.$$
(2.9)

If we consider $G(f) := |C(f, |f|)|^{1/2}$, where $f : [a, b] \to \mathbb{C}$ is of bounded variation on [a, b], then we also have

$$G^{2}(f) \leq \frac{1}{2} \bigvee_{a}^{b} (f) \cdot \frac{1}{b-a} \int_{a}^{b} \left| |f(t)| - \frac{1}{b-a} \int_{a}^{b} |f(s)| \, ds \right| \, dt$$

$$\leq \frac{1}{2} \bigvee_{a}^{b} (f) D(|f|) \leq \frac{1}{4} \bigvee_{a}^{b} (f) \bigvee_{a}^{b} (|f|) \leq \frac{1}{4} \left[\bigvee_{a}^{b} (f) \right]^{2}$$
(2.10)

and

$$G^{2}(f) \leq \frac{1}{2} \bigvee_{a}^{b} (|f|) \cdot \frac{1}{b-a} \int_{a}^{b} \left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) ds \right| dt$$

$$\leq \frac{1}{2} \bigvee_{a}^{b} (|f|) D(f) \leq \frac{1}{4} \bigvee_{a}^{b} (f) \bigvee_{a}^{b} (|f|) \leq \frac{1}{4} \left[\bigvee_{a}^{b} (f) \right]^{2}.$$
(2.11)

The following representation is of interest in itself. The result was first obtained in [6] (see also [7]).

Lemma 1. If $v : [a, b] \to \mathbb{C}$ and $h : [a, b] \to \mathbb{C}$ are such that one is continuous and the other of bounded variation on [a, b], then we have the identity

$$\frac{v(b)\int_{a}^{b}(t-a)dh(t)+v(a)\int_{a}^{b}(b-t)\,dh(t)}{b-a} - \int_{a}^{b}v(t)dh(t) = \int_{a}^{b}h(t)dv(t) - \frac{v(b)-v(a)}{b-a}\int_{a}^{b}h(t)dt.$$
 (2.12)

The proof can be easily done integrating by parts in the left hand side and performing the required calculations.

We can provide now the following corollaries of Theorem 1:

Corollary 3. If $v: I \to \mathbb{C}$ is differentiable on the interior of the interval I denoted by \dot{I} and $[a, b] \subset \dot{I}$, v' is of bounded variation on [a, b] and $h : [a, b] \to \mathbb{C}$ is integrable on [a, b], then we have the inequality

$$\left|\frac{v(b)\int_{a}^{b}(t-a)dh(t)+v(a)\int_{a}^{b}(b-t)dh(t)}{b-a}-\int_{a}^{b}v(t)dh(t)\right| \leq \frac{1}{2}\bigvee_{a}^{b}\left(v'\right)\int_{a}^{b}\left|h(t)-\frac{1}{b-a}\int_{a}^{b}h(s)\,ds\right|\,dt.$$
(2.13)

Corollary 4. If $v : [a, b] \to \mathbb{C}$ is absolutely continuous on [a, b] and $h : [a, b] \to \mathbb{C}$ is of bounded variation on [a, b], then we have the inequality

$$\frac{v(b)\int_{a}^{b}(t-a)dh(t)+v(a)\int_{a}^{b}(b-t)\,dh(t)}{b-a} - \int_{a}^{b}v(t)dh(t) \le \frac{1}{2}\bigvee_{a}^{b}(h)\int_{a}^{b}\left|v'(t)-\frac{v(b)-v(a)}{b-a}\right|dt.$$
(2.14)

The constant $\frac{1}{2}$ is best possible in (2.14).

3. Applications for functions of selfadjoint operators

Let U be a selfadjoint operator on the complex Hilbert space $(H, \langle ., . \rangle)$ with the spectrum Sp (U) included in the interval [m, M] for some real numbers m < M and let $\{E_{\lambda}\}_{\lambda}$ be its spectral family. Then for any continuous function $f : [m, M] \to \mathbb{C}$, it is well known that we have the following spectral representation in terms of the Riemann–Stieltjes integral [11, p. 256]:

$$\langle f(U)x, y \rangle = \int_{m-0}^{M} f(\lambda) d(\langle E_{\lambda}x, y \rangle), \qquad (3.1)$$

for any $x, y \in H$. The function $g_{x,y}(\lambda) := \langle E_{\lambda}x, y \rangle$ is of bounded variation on the interval [m, M] and $g_{x,y}(m-0) = 0$ and $g_{x,y}(M) = \langle x, y \rangle$ for any $x, y \in H$. It is also well known that $g_x(\lambda) := \langle E_\lambda x, x \rangle$ is monotonic nondecreasing and right continuous on [*m*, *M*].

Theorem 2. Let A be a selfadjoint operator in the Hilbert space H with the spectrum $Sp(A) \subseteq [m, M]$ for some real numbers m < M and let $\{E_{\lambda}\}_{\lambda \in \mathbb{R}}$ be its spectral family. If $f : \mathbb{R} \to \mathbb{C}$ is absolutely continuous on [m, M], then we have the inequality

$$\left| \left\langle \left[\frac{f(m) (M1_H - A) + f(M) (A - m1_H)}{M - m} \right] x, y \right\rangle - \langle f(A)x, y \rangle \right| \le \frac{1}{2} \bigvee_{m=0}^{M} \left(\left\langle E_{(\cdot)} x, y \right\rangle \right) \int_{m}^{M} \left| f'(t) - \frac{f(M) - f(m)}{M - m} \right| dt \\ \le \frac{1}{2} \|x\| \|y\| \int_{m}^{M} \left| f'(t) - \frac{f(M) - f(m)}{M - m} \right| dt$$
(3.2)

for any $x, y \in H$.

Proof. If we apply the inequality (2.14) for v(t) = f(t) and $h(t) = \langle E_t x, y \rangle$ where $t \in \mathbb{R}$ and $x, y \in H$ we get

...

$$\left|\frac{v(M)\int_{m=0}^{M}(t-m)\,d\,\langle E_{t}x,y\rangle+f(m)\int_{m=0}^{M}(M-t)\,d\,\langle E_{t}x,y\rangle}{M-m}-\int_{m=0}^{M}f(t)d\,\langle E_{t}x,y\rangle\right|$$

$$\leq \frac{1}{2}\bigvee_{m=0}^{M}\left(\langle E_{(\cdot)}x,y\rangle\right)\int_{m}^{M}\left|f'(t)-\frac{f(M)-f(m)}{M-m}\right|\,dt.$$
(3.3)

Since by the spectral representation (3.1) we have

$$\int_{m-0}^{M} (t-m) d\langle E_t x, y \rangle = \langle (A-1_H m) x, y \rangle, \qquad \int_{m-0}^{M} (M-t) d\langle E_t x, y \rangle = \langle (M1_H - A) x, y \rangle$$

and

$$\int_{m-0}^{M} f(t) d \langle E_t x, y \rangle = \langle f(A) x, y \rangle,$$

then we get from (3.3) the first part of (3.2).

If *P* is a nonnegative operator on *H*, i.e., $\langle Px, x \rangle \geq 0$ for any $x \in H$, then $|\langle Px, y \rangle|^2 \leq \langle Px, x \rangle \langle Py, y \rangle$ for any $x, y \in H$.

Further, if $d: m - s = t_0 < t_1 < \cdots < t_{n-1} < t_n = M$ is an arbitrary partition of the interval [m - s, M], with s > 0, then we have by the Schwarz inequality for nonnegative operators that

$$\begin{split} \bigvee_{m-s}^{M} \left(\langle E_{(\cdot)} x, y \rangle \right) &= \sup_{d} \left\{ \sum_{i=0}^{n-1} \left| \left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) x, y \right\rangle \right| \right\} \\ &\leq \sup_{d} \left\{ \sum_{i=0}^{n-1} \left[\left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) x, x \right\rangle^{1/2} \left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) y, y \right\rangle^{1/2} \right] \right\} &:= I. \end{split}$$

By the Cauchy–Bunyakovsky–Schwarz inequality for sequences of real numbers we also have that

$$I \leq \sup_{d} \left\{ \left[\sum_{i=0}^{n-1} \left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) x, x \right\rangle \right]^{1/2} \left[\sum_{i=0}^{n-1} \left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) y, y \right\rangle \right]^{1/2} \right\}$$

$$\leq \sup_{d} \left[\sum_{i=0}^{n-1} \left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) x, x \right\rangle \right]^{1/2} \sup_{d} \left[\sum_{i=0}^{n-1} \left\langle \left(E_{t_{i+1}} - E_{t_{i}} \right) y, y \right\rangle \right]^{1/2} \right]$$

$$= \left[\bigvee_{m-s}^{M} \left(\left\langle E_{(\cdot)} x, x \right\rangle \right) \right]^{1/2} \left[\bigvee_{m-s}^{M} \left(\left\langle E_{(\cdot)} y, y \right\rangle \right) \right]^{1/2} \right]^{1/2}$$

$$= \left(\|x\|^{2} - \left\langle E_{m-s} x, x \right\rangle \right)^{1/2} \left(\|y\|^{2} - \left\langle E_{m-s} y, y \right\rangle \right)^{1/2}$$

for any $x, y \in H$ and s > 0. Taking $s \to 0+$ we get last part of (3.2). \Box

Acknowledgment

The author would like to thank the anonymous referee for the valuable comments that have been implemented in the final version of the paper.

References

- [1] G. Grüss, Über das maximum des absoluten Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx \frac{1}{(b-a)^2}\int_a^b f(x)dx \cdot \int_a^b g(x)dx$, Math. Z. 39 (1935) 215–226.
- [2] P. Cerone, S.S. Dragomir, New bounds for the Čebyšev functional, Appl. Math. Lett. 18 (2005) 603-611.
- [3] P. Cerone, S.S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. 38 (1) (2007) 37-49. Preprint available at: RGMIA Res. Rep. Coll., 5 (2) (2002), Art. 14. [Online: http://rgmia.vu.edu.au/v5n2.html].
- [4] P.L. Chebyshev, Sur les expressions approximatives des intè grals dèfinis par les outres prises entre les même limites, Proc. Math. Soc. Charkov 2 (1882) 93-98
- [5] X.-L. Cheng, J. Sun, Note on the perturbed trapezoid inequality, J. Inequal. Pure Appl. Math. 3 (2) (2002) Art. 29. [Online: http://jipam.vu.edu.au/article.php?sid=181].
- S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math. 26 (2004) 89-112.
- [7] S.S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and applications, Appl. Math. Lett. 20 (2007) 123–130.
 [8] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj) 15 (38) (1973) 219–222. 2.
- [9] A.M. Ostrowski, On an integral inequality, Aequationes Math. 4 (1970) 358-373.
- [10] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, in: Mathematics and its Applications (East European Series), vol. 61, Kluwer Academic Publishers Group, Dordrecht, ISBN: 0-7923-2064-6, 1993, xviii+740 pp.
- [11] G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc., New York, 1969.