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Each surjective derivation on the algebra of formal power series can be given in 
a simple form. An operator on the vector space of polynomials in a single variable 
is constructed such that the Sheffer polynomials are its eigenvectors; furthermore, 
some known examples are quoted. cc? 1990 Academic Press, Inc 

1. INTRODUCTION 

Let K be a field of characteristic zero. The vector space K[x] of all poly- 
nomials in the variable x with coefficients in K is denoted by P. It is shown 
in [Z] that there is an isomorphism from P* (the dual of P) onto the 
algebra of formal power series K[[t]] with coefficient in K The algebra 
K[[t]] will be denoted by 9. The formal power series in the exponential 
form (see, e.g., [ 11) 

f(t)=,%,$tk (1) 

defines a linear functional and a linear operator on P by setting 

<f(t)lx”>=4z, f(t)x”= i (;> akXn--k, 
k=O 

respectively. Two important examples are q(x) = p’(x), exp( yt) p(x) = 
P(x+Y)v YCK. 

The order o(f( t)) of the series (1) is the smallest integer k for which 
uk # 0. We define o(O) = co. The series (1) is invertible in 9 if and only if 
o(f(t)) =O; its inverse is denoted by f(t)-‘. If o(f(t)) = 1 then there exists 
the compositional inverse y(t) such that J( f (t)) = t ; such a series is called 
a delta series. 
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For every ordered pair (g(t), f(t)), where g(t) is an invertible series in 
P* and f( t) a delta series in P*, we have a unique sequence of polynomials 
{S”w%O? such that the degree of s, equals n and such that the following 
condition is satisfied : ( g(t) f(t)“ 1 sJx)> = n! dk,, for all non-negative 
integers k, n (6,, is the Kronecker delta). The polynomials s,(x) are called 
Sheffer for the pair (g(t), f(t)). In the case g(t) = 1 we write p,(x) instead 
of s,(x), and we say that the sequence {p,(x)) FzO is associated to the delta 
series f(t). 

The order of formal power series defines a topology on 9. The sequence 
{fk(f)}~zO in 9 converges to f(t) in 9 if and only if lim,,, o(f,Jt)- 
f(t)) = 00. The linear operator T on S is continuous if and only if 
limk + m o( TfJ t)) = cc whenever lim, -t o. o(fJt))= co. The adjoint A* on 
P* = 5 of a linear operator A on P is defined by the relation (A*f(t) 1 p(x)) 
= (f(t) 1 Q(x)), f(t) E P*, p(x) E P. For a given linear operator A on P the 
adjoint A* exist and is given by 

n*f(t)= .f <flt)kl,ix*) tk. 

k=O 

It is shown in [2] that an operator T on P* is the adjoint of a linear 
operator A on P if and only if T is continuous, moreover, all 
automorphisms and surjective derivations on P* are continuous. We shall 
here amend the Theorem 3.6.1 in [2]. 

2. RESULTS 

Let ( p,(x)}~=, be the associated sequence of polynomials for the delta 
series f(t). The umbra1 shift 0, on P is defined by the relation 
O,p,(x) = pn+,(x). The formal derivative of the series h(t) is denoted by 
h’(t). 

THEOREM 1. A linear operator D on P* is a surjective derivation on P* 
if and only if D = tly for some delta series f(t) in P*, moreover, the operator 
D is given by 

Dh(t) =f’(t)-‘h’(t). (2) 

Proof. Let D be a surjective derivation on P*. By the Theorem 3.2.3 in 
[2] there is a dalta series f(t) in P* such that Df( t) = 1. Since 

<DfWk I P,(X)> = k(f(tJk- ‘W(t) I P,(X)> 

= k<ftt)k- ’ I P,(X) > = (ftt)k I Pn + l(X) > 

= utt)k I efP”(x)) = @,*fWk I P,(X)> 
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for all non-negative integers k and n, we conclude that DJ‘(t)k = 
O,?f(r)k = kf(~)~ ~ ‘. Since any series h(r) in P* can be written in the form 
h(t) = C,“=, ~~,f(t)~, the continuity of D implies Dh(t) = C;=, a,kf(t)‘~ ‘. 
Since the map f(t) +f’(t) is a surjective derivation on P* we get from 
h’(t) = C,“=, a,kf( t)kP ‘f’(t) finally the result Dh( t) =f’( t) -‘h’( t). 

For the proof in the opposite direction suppose that D = d,? for some 
delta series f( t). Let {p,(x)} ,F: 0 be the sequence of polynomials associated 
to f(t). By the same argument as that above we obtain Dh( t) =f’(t)-‘h’(t) 
for every h(t) in P*. Since D(a(t) b(t)) = (Da(t)) b(t) + a(t)(Db(t)) for all 
a(t) and b(t) in P*, the operator D is a derivation on P*. For each given 
series h(t) the equation f’(t) x(t) = h(t) has a solution in P* given by the 
formal integral x(t) = Ji f’(t) h(t) dt, thus shows that the operator D is a 
surjective derivation on P*. 

The operator of multiplication of polynomials in P by x is denoted by 
x. Since (h(t)(xp(x)) = (h’(t)/ p(x)) f or every h(t) in P* and every p(x) 
in P, then it is clear that x*/z(t) = h’(t) for all h(t) in P*. For a delta deries 
f(t) and the associated polynomials p,(x) we have 

(h(t) I +Pn(x) > 

=(e,*h(t)l~,(x))=(Dh(t)l~,(.~))=(f’(t)-’h’(t)l~,(x)) 

= Qwlf’w’Pnw = (h(t)l.Icf’(t)-‘p,(x)) 

for every series h(t) in P*. Thus 13, = xf’(t) -‘. As a consequence of this 
result we get the recurrence formula 

Pn + 1 (x) = xf’(t) ~ ‘P,W (3) 

THEOREM 2. The associated polynomials p,(x) of a delta series f(t) in P* 
are eigenvectors of the operator T,= 8,-f(t) with the eigenvalues n, 
n = 0, 1, 2, . . . . 

T’-P,(X) = rip,(x). (4) 

Proof For n = 0 the proof is trivial. 
For n 2 1 the relation (g(t)f(t)” (s,(x)) = n! 6,,, implies the recurrence 

formula f(t) s,(x) = ns, _ ,(x) and we have 

T’P,(x) = off(t) P,(X) = dfnp,- Itx) = UP,. 

as was to be proved. See also [3]. 

EXAMPLE 1. The Mittag-Leffler polynomials M,(x) are associated to 
the delta seriesf(t)=(e’- l)(e’+ 1)-l. Since T,=f’(t)-‘f(t)=(e’-e-‘)/2 
we get from (4) 

x(M,(x+ 1)-M,(x- l))= 2&4,,(x). 
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It is easy to see that for all a(t) and b(t) and each p(x) in P the following 
relation holds (see, e.g., [2]) : 

a’(t)=a(t)x-xa(t). (5) 

For a given pair (g(t), f(t)) the polynomials p,(x) and s,(x) are related 
by the equation g(t) s,(x) = p,(x) for all non-negative integers n. The 
Sheffer shift 8 g,f on P is defined by 

~g,f&z(x) = sn, l(X). (6) 

From (5) and (6) we derive 

e&f= gW’~&) = g(t)-‘xf’(t)-‘g(f) 

=(xg(t)-‘+(g(t)~‘)‘)f’(t)-‘g(t) 

=x~‘(t)-‘-g(t)-*g’(t)f’(t)-‘g(t)=(x-g’(t)g(t)-’)f’(t)-‘. 

The relation (6) thus becomes 

s,+l(X)=(X-g’(t)g(t)-l)f’(t)~lS,(X), (7) 

the recurrence formula for Sheffer polynomials. 

THEOREM 3. The Scheffer polynomials s,(x) of the pair (g(t), f(t)) are 
eigenvectors of the operator Tg,r= e,,f (t) Mlith the corresponding eigen- 
values n = 0, 1,2, .,. 

T,,,&) = ns,(x). (8) 

Proof (Compare [3]). For n=O, (8) is trivial. For n 2 1 we get by a 
simple calculation 

Tg,fsn(x) = eg,ff(t) d4 = e,+,- dx)) 
= neg,,Sn- 1(~) = n&L 

as was to be proved. 

EXAMPLE 2. The Hermite polynomials H:)(x) of variance v are Sheffer 
for g(t) = exp(vt*/2) and f(t) = t. 

Indeed, in this case f’(t) = 1 and g’(t) g(t))’ = (log g(t))’ = vt and from 
(8) we find Tg,r= (x - vt)t. 
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From (8) we get 

, 

v  -$ H!:“(X) - x $ fly(x) + nHj:” = 0, 

which is the differential equation of the Hermite polynomials. 

EXAMPLE 3. The Laguerre polynomials L?‘(x) of order c1 are Sheffer 
for g(r)=(l --,)-‘-I andf(t)=t(l-l)P’. 

We have now f’(t)= -(l -t)-2, g’(t)g(f)-‘=(a+ 1)(1-t)-‘, and 
Tg,f= -st2 + (x - a - 1 )t. From (8) we get the differential equation for the 
Laguerre polynomials : 
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