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1. Question

Define a graph U2 on the set of all points of the plane R2 as its vertex set, with two

points adjacent iff they are distance 1 apart. The graph U2 ought to be called unit

distance plane, and its chromatic number w is called chromatic number of the plane.3

Finite subgraphs of U2 are called finite unit distance plane graphs.
In 1950 the 18-year old Edward Nelson posed the problem of finding w (see the

problem’s history in [Soi1]). A number of relevant results were obtained under
additional restrictions on monochromatic sets (see surveys in [CFG,KW,Soi2,Soi3]).
Falconer, for example, showed [F] that w is at least 5 if monochromatic sets are
Lebesgue measurable. Amazingly though, the problem has withstood all assaults in
the general case, leaving us with an embarrassingly wide range for w being 4, 5, 6 or 7.
In their fundamental 1951 paper [EB], Erdös and de Bruijn have shown that the

chromatic number of the plane is attained on some finite subgraph. This result has
naturally channeled much of research in the direction of finite unit distance graphs.
One limitation of the Erdös–de-Bruijn result, however, has remained a low key: they
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used quite essentially the axiom of choice. So, it is natural to ask, what if we have no
choice? Absence of choice—in mathematics as in life—may affect outcome.
We will present here an example of a distance graph on the line R; whose

chromatic number depends upon the system of axioms we choose for set theory.
While the setting of our example differs from that of the chromatic number of the
plane problem, the example illuminates how the value of chromatic number can
be dramatically affected by the inclusion or the exclusion of the axiom of choice in
the system of axioms for sets.
Finally, we formulate a Conditional Chromatic Number Theorem, which

specifically describes a setting in which the chromatic number of the plane takes
on two different values depending upon the axioms for set theory.

2. Preliminaries

Let us recall basic set-theoretic definitions and notations. In 1904 Zermelo [Z]
formalized the axiom of choice that had previously been used informally:
Axiom of choice (AC). Every family F of nonempty sets has a choice function, i.e.,

there is a function f such that f ðSÞAS for every S from F:
Many results in mathematics really need just a countable version of choice:
Countable axiom of choice (AC@0 ). Every countable family of nonempty sets has a

choice function.
In 1942 Bernays [B] introduced the following axiom:
Principle of dependent choices (DC). If E is a binary relation on a nonempty set A;

and for every aAA there exists bAA with aEb, then there is a sequence
a1; a2;y; an;y such that anEanþ1 for every noo:
AC implies DC (see Theorem 8.2 in [J], for example), but not conversely. In turn,

DC implies AC@0 ; but not conversely. DC is a weak form of AC and is sufficient for
the classical theory of Lebesgue measure. We observe that, in particular, DC is
sufficient for Falconer’s result [F] formulated in Question above.
We will make use of the following axiom:
(LM) Every set of real numbers is Lebesgue measurable.
As always, ZF stands for Zermelo–Fraenkel system of axioms for sets, and ZFC

for Zermelo–Fraenkel with the addition of the axiom of choice.
Assuming the existence of an inaccessible cardinal, Solovay constructed in 1964

(and published in 1970) a model that proved the following consistency result [Sol]:

Solovay Theorem. The system of axioms ZF + DC + LM is consistent.

As Jech [J] observes, in the Solovay model, every set of reals differs from a Borel
set by a set of measure zero.
Finally, we say a set XDR has the Baire property if there is an open set U such

that XDU (symmetric difference) is meager, (or of first category), i.e., a countable
union of nowhere dense sets.
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Example. We define a graph G as follows: the set R of real numbers serves as the

vertex set, and the set of edges is ðs; tÞ: s � t �
ffiffiffi
2

p
AQ

� �
:

Claim 1. In ZFC the chromatic number of G is equal to 2.

Proof. Let S ¼ q þ n
ffiffiffi
2

p
; qAQ; nAZ

� �
:We define an equivalence relation E on R as

follows: sEt3s � tAS;
Let Y be a set of representatives for E: For tAR let yðtÞAY be such that tEyðtÞ:

We define a 2-coloring cðtÞ as follows: cðtÞ ¼ l; l ¼ 0; 1 iff there is nAZ such that

t � yðtÞ � 2n
ffiffiffi
2

p
� l

ffiffiffi
2

p
AQ: &

Without AC the chromatic situation changes dramatically:

Claim 2. In ZF þ AC@0 þ LM the chromatic number of the graph G cannot be equal

to any positive integer n nor even to @0:

The proof of Claim 2 immediately follows from the first of the following two
statements:
1. If A1;y;An;y are measurable subsets of R and

S
noo An+½0; 1Þ; then at least

one set An contains two adjacent vertices of the graph G:
2. If AD½0; 1Þ and A contains no pair of adjacent vertices of G then A is null

(of Lebesgue measure zero).

Proof. We start with the proof of statement 2. Assume to the contrary that A

contains no pair of adjacent vertices of G yet A has positive measure. Then there is
an interval I such that

mðA-IÞ
mðIÞ 4

9

10
: ð2:1Þ

Choose qAQ such that
ffiffiffi
2

p
oqo

ffiffiffi
2

p
þ 1
10
:

Let B ¼ A � q �
ffiffiffi
2

p� �
¼ fx � q þ

ffiffiffi
2

p
: xAAg: Then

mðB-IÞ
mðIÞ 4

8

10
: ð2:2Þ

Inequalities (2.1) and (2.2) imply that there is xAI-A-B: As xAB; we have

y ¼ x þ q �
ffiffiffi
2

p� �
AA: So, we have x; yAA and x � y �

ffiffiffi
2

p
¼ �qAQ: Thus, fx; yg is

an edge of the graph G with both endpoints in A; which is the desired contradiction.
The proof of the statement 1 is now obvious. Since

S
noo An+½0; 1Þ and Lebesgue

measure is a countably additive function in AC@0 ; there is a positive integer n such

that An is a non-null set of reals. By statement 2, An contains a pair of adjacent
vertices of G as required. &

Remark. We can replace ZF + LM by ZF + ‘‘every set of real numbers has the
property of Baire.’’
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3. Epilogue

Is AC relevant to the problem of chromatic number w of the plane? The answer
depends upon the value of w which we, of course, do not know yet. However, the
presented here example points out circumstances in which AC would be quite
relevant. We have the following conditional result to report.

Conditional Theorem. 4 Assume that any finite unit distance plane graph has chromatic

number not exceeding 4: Then:

(�) In ZFC the chromatic number of the plane is 4.
(��) In ZF þ DC þ LM the chromatic number of the plane is 5, 6 or 7.

Proof. Claim (�) is true due to [EB].

The system ZF + DC + LM implies that every subset S of the plane R2 is
Lebesgue measurable. Indeed, S is measurable iff there is a Borel set B such that the
symmetric difference SDB is null. Thus, every plane set differs from a Borel set by a
null set. We can think of a unit segment I ¼ ½0; 1� as a set of infinite binary fractions
and observe that the bijection I-I2 defined as 0:a1a2yany/ð0:a1a3y; 0:a2a4yÞ
preserves null sets. Due to Falconer result [F] formulated in the Question above, we
can now conclude that the chromatic number of the plane is at least 5. &

Perhaps, the problem of finding the chromatic number of the plane has withstood
all assaults in the general case, leaving us with a wide range for w being 4, 5, 6 or 7
precisely because the answer depends upon the system of axioms we choose for set
theory?
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