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0. Introduction

Let A be a linear algebra over a field F . An ascending filtration α = {An} on A is a sequence of
subspaces A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · such that A = ⋃∞

n=0 An and Ak Al ⊂ Ak+l for all k, l = 0,1,2, . . . .
Given a ∈ A, the α-degree of a, denoted by degα a, is defined as the least n such that a ∈ An . If B is
a subalgebra of A with a filtration α, as above, then we call the filtration β = {B ∩ An} the restriction
of α to B and we write β = α ∩ B . In the case of monoids (that is, semigroups with 1) the terms
of filtrations are simply subsets, with all other conditions being the same. In the case of groups the
terms of filtrations must be closed under inverses.

In this paper we will consider finitary filtrations, that is, filtrations all of whose terms are finite-
dimensional. If we deal with monoids or groups, the terms of finitary filtrations are simply finite.

A generic example is as follows. Let A be a unital associative algebra generated by a finite set X .
Then a finitary filtration α = {An} arises on A, if one sets A0 = Span{1} and An = An−1 +Span{Xn}, for
any n > 1. The α-degree of a ∈ A in this case is an “ordinary” degree with respect to the generating
set X , that is the least degree of a polynomial in X equal a. We write degα a = degX a. Such filtration
α is called the degree filtration defined by the generating set X .

If B is a subalgebra of an algebra A such that A is generated by a finite set X and B by a finite
set Y , α = {An} and β = {Bn} are respective degree filtrations then there is t such that Y ⊂ At and
then it immediately follows that for any n � 0 we have Bn ⊂ Atn . If β ′ = α ∩ B then β is majorated
by β ′ in the sense of the following definition.

Definition 1. Given two filtrations β = {Bn} and β ′ = {B ′
n} on the same algebra B , we say that β is

majorated by β ′ if there is an integer t > 0 such that Bn ⊂ B ′
tn , for all n � 0. We then write β � β ′ .

If β � β ′ and β ′ � β then we say that β and β ′ are equivalent and write β ∼ β ′ .

Setting B = A in the argument just before the definition, we can say that any two degree filtration
on the same algebra are equivalent.

In terms of degrees, β � β ′ if and only if, there is natural t such that degβ ′ b � t degβ b and β ∼ β ′
if both degβ ′ b � t degβ b and degβ b � t degβ ′ b, for any b ∈ B . If B is a subalgebra of A, β defined by
a finite generating set Y of B , α by a finite generating set X of a, β ′ = β ∩ B then inequality β � β ′
is equivalent to the existence of t ∈ N such that degX b � t degY b, for any b ∈ B .

In a similar way one can speak about the degree filtrations and their equivalence in other classes
of algebras, say, Lie, Jordan, etc.

In the case of monoids the degree filtration on a monoid M with generating set X is defined by
setting M0 = {1} and, for n > 1, Mn = {x1 . . . xm | xi ∈ X, m � n}. But if G is a group with generating
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set X , then one sets G0 = {1} and Gn = {y1 . . . ym | yi ∈ X ∪ X−1, m � n}. In the case of general
universal algebras see Section 1.4.

The rate of growth of a degree filtration defined by a finite generating set on an algebra with a
finite set of operations or a linear algebra with a finite set of multilinear operations is bounded from
above by an exponential function. In other words, for such filtration {An},

(D) there is c > 0 such that dim An < cn, for all n = 1,2, . . . .

For example, in the case of associative algebras, if #X = d < ∞ then dim An � 1 + d + · · · + dn �
(d + 1)n . The same estimate works in the case of monoids and similar estimates are true for groups
and linear algebras with one binary operation, such as Lie, Jordan, alternative, etc. For general case
see Section 1.4. These observations lead us to the main definition of the paper.

Definition 2. A filtration α = {An} on an algebra A satisfying (D) is called a tame filtration.

As noted above, any degree filtration is a tame filtration. Moreover, if B is a subalgebra of an alge-
bra A and α is a tame filtration of A then the restriction α ∩ B is a tame filtration of B . In particular,
the restriction of a degree filtration of an algebra A to a subalgebra B is always a tame filtration of B . This
simple fact will be used without further comments in several theorems of this paper designed to deal
with the following natural questions:

(1) Is it true that every tame filtration of an algebra B is equivalent (or equal) to a filtration restricted from
the degree filtration of a finitely generated algebra A where B is embedded as a subalgebra?

(2) If the answer to the previous question is “yes”, can one choose A finitely presented? If not, indicate condi-
tions ensuring that the answer is still “yes”.

It follows from our examples in Section 1.4, that the set of pairwise inequivalent tame filtrations
on any infinite-dimensional algebra B is uncountable. At the same time, the set of finitely generated
subalgebras of finitely presented algebras over a fixed countable field is countable. Thus, the answer to
the second question is generally “no”. (Similar argument works in the case of infinite groups, monoids,
etc.) However, there is an extensive class of so called constructive tame filtrations, see definition in
Section 4, for which the answer is “yes”.

Now our answers to the above questions are as follows. Note that an algebra A is called unital if
A has identity element 1; a subalgebra B of such A is called unital if 1 ∈ B .

(i) In the case of associative and Lie algebras, we prove that a filtration β on an algebra B is a tame filtration
if and only if β ∼ α∩ B where α is a degree filtration on a 2-generator algebra A, in which B is embedded
as a subalgebra.

(ii) Under the same condition as in (i), we prove that a filtration β on an algebra B is a tame filtration if and
only if β = α∩ B where α is a degree filtration on a finitely generated algebra A, in which B is embedded
as a subalgebra.

(iii) In the case of associative algebras over any field, which is finitely generated over prime subfield, a con-
structive filtration β on a (unital) countable algebra B is a tame filtration if and only if β ∼ α ∩ B where
α is a degree filtration on a (unital) finitely presented algebra A, in which B is embedded as a (unital)
subalgebra.

The results of (i) and (iii) have their analogues in Group Theory, see [16] and [17], where the
author answers questions asked by M. Gromov [9].

If B is a finitely generated subalgebra of a finitely generated algebra A then we say then B is
embedded in A without distortion (or that B is an undistorted subalgebra of A) if a degree filtration
of B is equivalent to the restriction to B of a degree filtration of A. As will be shown in Section 1.2,
then any degree filtration of B is equivalent to the restriction of any degree filtration of A. Thus the
property of being undistorted does not depend on the particular choice of finite generating sets in A
and B . All this is obviously true in the case of monoids or groups.
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Some results about distorted and undistorted subalgebras are as follows:

(iv) In the case of commutative associative algebras, all finitely generated subalgebras of finitely generated
algebras are undistorted.

(v) In the case of noncommutative associative algebras, free associative algebras of finite rank and also free
algebras of finite rank in certain proper varieties of associative algebras have distorted finitely generated
subalgebras.

(vi) All finitely generated subalgebras in free Lie algebras of finite rank are undistorted.
(vii) Any finitely generated associative, respectively, Lie algebra can be embedded without distortion in a sim-

ple 2-generator associative, respectively, Lie algebra.

An important tool while comparing two finitary filtrations on the same algebra is given by the
following.

Definition 3. Let α = {An} and α′ = {A′
n} be two finitary filtrations on the same algebra A. For each

n � 0 we set

distα
′

α (n) = min
{
m

∣∣ An ⊂ A′
m

}
.

The function distα
′

α thus obtained is called the distortion function of α′ with respect to α.

In terms of distortion functions, two finitary filtrations α and α′ of an algebra A are equivalent if
and only if both distα

′
α and distαα′ are bounded from above by a linear function. The notion of undis-

torted embedding in terms of distortion functions (see Proposition 2) is equivalent to the following:
given two degree filtrations, α in A and β in B , the function distβα∩B is bounded from above by a
linear function. Again, all the above is true in the case of monoids, groups or even more general
universal algebras.

Also the following result will be proven in a far greater generality than we state here (see Sec-
tion 1.4):

(vii) Let g : N → N be any function. On any finitely generated infinite-dimensional associative or Lie algebra
over a field there exist tame filtrations α and α′ such that distα

′
α (n) > g(n), for any n � 1.

Given two functions f , g : N → N we say that f is majorated by g and write f � g if there is
natural t such that f (n) � tg(tn), for all n ∈ N. If both f � g and g � f then we say that f is
equivalent to g and write f ∼ g . The equivalence classes acquire partially ordering if one sets [ f ] � [g]
once f � g .

Now suppose we are given two pairs of equivalent filtrations: α ∼ β and α′ ∼ β ′ . Then it is easy to

show (see below claim (5) of Proposition 1) that distα
′

α ∼ distβ
′

β . This allows us, given an embedding
ϕ : B → A, where A and B are finitely generated algebras, to define the distortion dist(ϕ) of ϕ as
follows. Take any two degree filtrations α in A, β in B and consider the image ϕ(β) under ϕ . Then
dist(ϕ) is defined as the equivalence class of distϕ(β)

α∩ϕ(B)
under the above equivalence relation. In par-

ticular, if B is a subalgebra of A, we define distB
A = dist(ϕ) where ϕ is the natural embedding of B

in A. The definition of this asymptotic invariant is analogous to the definition introduced by Gromov
[9] in order to measure the distortion of the lengths of elements of groups that may occur when one
group is embedded in another.

In our simple Proposition 3 we note that distH
G = distF [H]

F [G] , where H is a finitely generated subgroup
of a finitely generated group G , and F [H], F [G] are the group algebras of H and G , with natural em-
bedding of F [H] in F [G]. Similar is the situation in the case of semigroups. In the case of Lie algebras
and their universal enveloping algebras the situation is somewhat different. For a subalgebra M of a
Lie algebra L, let U (M) be the associative subalgebra generated by M in the universal enveloping al-
gebra U (L) for L. It is well known that U (M) is isomorphic to the universal enveloping algebra for M .
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Given a function f : N → N we define its superadditive closure as the least function f : N → N such
that f (n) � f (n), for all n ∈ N, and satisfying f (m) + f (n) � f (m + n).

(ix) If M is a finitely generated subalgebra in a finitely generated Lie algebra L then distM
L � distU (M)

U (L) . More

precisely, if f represents distM
L then distU (M)

U (L) is represented by f . There are examples of pairs M ⊂ L for
which the above inequality is strict.

As we mentioned earlier, any filtration α on an algebra A allows one to define the degree function
degα : A → N. If α is a tame filtration, we call degα tame. Tame degrees have all “natural” properties
of ordinary degrees with respect to a finite generating set of A. Still, in Section 4.3 we show that a
particular tame degree can be a pretty wild function, even in the case of very basic associative or Lie
algebras.

1. General properties of distortion

In this section we consider tame filtrations on universal algebras. In Section 1.1 we discuss fil-
trations on universal algebras. Using this generality, in Section 1.2 we establish some basic facts
about distortion functions and embeddings with or without distortion. In Section 1.3 we discuss
connections with some algorithmic decidability problems. Finally, in Section 1.4 we provide with a
construction that exhibits uncountably many pairwise inequivalent tame filtrations on virtually any
infinite(-dimensional) algebra.

1.1. Filtrations on universal algebras

Given a signature Ω , we will be considering general universal algebras with operations in Ω , we
called them Ω-algebras, and linear Ω-algebras, which are vector spaces over a field F , with multilin-
ear operations in Ω .

Let us indicate some problems which arise when we try to generalize the notion of a filtra-
tion {An}, A0 ⊂ A1 ⊂ · · · , on a universal algebra A, which may have nullary or unary operations.
Suppose, following the pattern exhibited in Introduction, we require that Ai1 . . . Ainω ⊂ Ai1+···+in ,
where ω is an arbitrary operation of arbitrary arity n. Then the condition A1λ ⊂ A1, for a unary
operation λ can quickly make A1 infinite (or infinite-dimensional) even if A is finitely-generated and
λ is the only operation on A. Another kind of confusion may arise if we require A0 . . . A0ω ⊂ A0, for
any n-ary operation ω. These problems can be avoided if we give the following.

Definition 4. If A is an Ω-algebra, respectively a linear Ω-algebra, then an ascending chain of subsets,
respectively, subspaces, α = {An}, n = 0,1,2, . . . , is a filtration provided that A = ⋃∞

n=0 An and for any
m-ary operation ω and any a1 ∈ Ai1 , . . . ,am ∈ Aim one has a1 . . .amω ∈ Ai1+···+im+1.

As we can see, in this approach we count the number of operations rather than the number
of elements involved in these operations. In the case of rings, semigroups or groups (in the latter
case each term T of a filtration is usually assumed symmetric: T −1 = T ), a filtration {An} in the
sense of Definition 4 produces a filtration {Bn} in the “common” sense if one sets Bn+1 = An , for
all n = 0,1, . . . . Two filtrations are equivalent in the “new” sense if and only if they are equivalent
in the “old” sense. Speaking about the notions of the equivalence of two filtrations or the distortion
functions, they are the same as given in Definitions 1 and 3. The notion of the tame filtration remains
the same as in Introduction, except that in the case where we do not have the structure of vector
space on A (like in groups, monoids, etc.) we simply have to require the existence of an integer c
such that #An � cn , for all n � 1. Here and in what follows, given a set M , we denote the cardinality
of M by #M .

Let us now define the degree filtration of an Ω-algebra, with finite signature Ω as follows. First we
write Ω = Ω0 ∪ Ω1 ∪ · · · ∪ Ωq where the operations in Ωm have arity m. We identify Ω0 with the
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subset of elements of A selected by these operations. If X is a generating set for A then the degree
filtration {An}, n = 0,1,2, . . . , is defined as follows: A0 = X ∪ Ω0 and if n > 0 then

An =
q⋃

m=1

⋃
ω∈Ωm

⋃
i1+···+im+1�n

Ai1 . . . Aimω.

In the case of linear Ω-algebras one has to define A0 as the linear span of X ∪ Ω0 and replace
all unions in the previous formula by vector space sums. It follows from this definition that the
degree filtration is a filtration and if X is finite then all sets Ai are finite(-dimensional). Any two
degree filtrations α = {An} and α′ = {A′

n} on a finitely generated algebra A are equivalent. Indeed,
if α, respectively, α′ is defined by a finite generating set X , respectively, X ′ then there is k such that
X ′ ⊂ Ak . Let us set t = kq + 1. Then, using induction, for each ω ∈ Ωm , m � q, and n = i1 +· · ·+ im + 1,
we will have

A′
i1

. . . A′
im

ω ⊂ Amax{ti1,k} . . . Amax{tim,k}ω ⊂ At(i1+···+im)+qk+1 ⊂ Atn.

1.2. Some basic facts about distortion

We start by listing few general properties of distortion functions. We denote by id the identity
function on N and f ◦ g the usual composition of two functions f , g : N → N. Given t ∈ N and
f : N → N we denote by t · f the scalar multiple of f by t . We write f � g if f (n) � g(n), for all
n ∈ N. Also, given a homomorphism of algebras ϕ : A → B and a filtration α = {An} on A, we denote
by ϕ(α) the image-filtration {ϕ(An)} on ϕ(A).

Proposition 1. The following facts are true for the distortion functions of filtrations.

(1) If μ, ν , π are three filtrations on the same algebra A then

distπμ � distπν ◦distνμ . (1)

(2) If μ, ν are two filtrations on an algebra A and B is a subalgebra of A then

distν∩B
μ∩B � distνμ .

(3) If C ⊂ B ⊂ A are algebras with filtrations α on A, β on B and γ on C then

distγα∩C � distγβ∩C ◦distβα∩B .

(4) If μ, ν are two filtrations on an algebra A, and ϕ : A → B is a homomorphism of algebras then

distϕ(ν)

ϕ(μ) � distνμ .

(5) If μ ∼ μ′ and ν ∼ ν ′ are two pairs of pairwise equivalent filtrations on an algebra A then distνμ ∼ distν
′

μ′ .

Proof. (1) Let μ = {Un}, ν = {Vn}, π = {Wn}, f = distπμ , g = distπν and h = distνμ . Then, by definition
of the distortion function, for any n we have Un ⊂ Vh(n) ⊂ W g(h(n)) . Since f (n) = min{m | Un ⊂ Wm},
it follows that f (n) � g(h(n)), proving our first claim.

(2) Let μ = {Un}, ν = {Vn}, g = distν∩B
μ∩B and h = distνμ . Then, for any n, we have Un ⊂ Vh(n) . Tak-

ing intersections of both sides of the latter containment with B , we obtain Un ∩ B ⊂ Vh(n) ∩ B . By
definition of the distortion function, g(n) � h(n), proving our second claim.
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(3) This follows by applying (1) and (2). Indeed, let us apply (1) to the following three filtrations
on C : μ = α ∩ C , ν = β ∩ C and π = γ . We will have distγα∩C � distγβ∩C ◦distβ∩C

α∩C . Now one can rewrite

distβ∩C
α∩C = distβ∩C

(α∩B)∩C . According to (2), distβ∩C
(α∩B)∩C � distβα∩B . Since the distortion functions are non-

decreasing, it follows that distγα∩C � distγβ∩C ◦distβ∩C
α∩C � distγβ∩C ◦distβα∩B , as claimed.

(4) Let μ = {Un}, ν = {Vn}, g = distϕ(ν)

ϕ(μ) and h = distνμ . Then, for any n, we have Un ⊂ Vh(n) . Taking
the images of the latter containment under ϕ , we obtain ϕ(Un) ⊂ ϕ(Vh(n)). It follows that g(n) � h(n).

(5) Using (1), we can write

distβα � distβ
β ′ ◦distβ

′
α′ ◦distα

′
α .

We may assume that there is t such that both distβ
β ′ � t · id and distα

′
α � t · id. It then follows that

distβα(n) � t · distβ
′

α′ (tn), for all n ∈ N and so distβα � distβ
′

α′ . The converse inequality follows in the same
manner. �

The just proved proposition turns out to be instrumental in proving general properties of distortion
in algebras.

Proposition 2. Let A be an algebra, B and C subalgebras of A such that C ⊂ B.

(i) If A is a finitely generated algebra then any two degree filtrations on A are equivalent.
(ii) If α and α′ are two filtrations of A and α ∼ α′ then α ∩ B ∼ α′ ∩ B.

(iii) If A is finitely generated then all tame filtrations of B obtained by restriction from the degree filtrations
of A are pairwise equivalent.

(iv) Suppose that A and B are finitely generated and α and β are two degree filtrations on A and B, respec-
tively. Then β � α ∩ B. Thus B is undistorted in A if and only if there are two degree filtrations α in A
and β in B such that α ∩ B � β .

(v) Let all A, B and C be finitely generated. If C is undistorted in B and B undistorted in A, then C is
undistorted in A.

(vi) Let A, B, C be as in (v). If C is undistorted in A then C is undistorted in B.
(vii) Let ϕ be a homomorphism of A which is injective when restricted to B. If A and B are finitely generated

and ϕ(B) is undistorted in ϕ(A) then B is undistorted in A. In particular, a retract of an algebra is always
an undistorted subalgebra.

(viii) Suppose A ∈ Q, where Q is a (quasi)variety Q of algebras, ϕ : B → A the natural embedding of B in
A, μ : F (X) → A, ν : F (Y ) → B epimorphisms of free algebras of Q, generated by finite sets X and Y .
Suppose B is given by some set T (Y ) ⊂ F (Y ) × F (Y ) of defining relations. Let π : F (Y ) → F (X) be any
homomorphism such that μ ◦ π = ϕ ◦ ν and T (X) = (π × π)(T (Y )). If B is undistorted in A then B is
an undistorted subalgebra in an algebra A′ defined in terms of generators X and relations T (X).

Proof. (i) The proof of this was given in Section 1.1.
(ii) By definition, α � α′ if and only if there is a linear function f such that distα

′
α � f . Applying

claim (2) of Proposition 1, we obtain distα
′∩B

α∩B � distα
′

α � f . Thus α∩ B � α′ ∩ B . By symmetry, α′ ∩ B �
α ∩ B , and our claim follows.

(iii) Follows from (i) and (ii).
(iv) Set γ = α ∩ B . Choose a generating set X for A which includes the generating set Y for B . Let

α′ and β ′ be respective degree filtrations and γ ′ = B ∩ α′ . Then obviously distγ
′

β ′ � id. Now α ∼ α′ ,
β ∼ β ′ as pairs of degree filtrations on the same algebras and γ ∼ γ ′ by (ii). Thus there is integral t

such that distβ
′

β ,distγγ ′ � t · id. Applying claim (1) of Proposition 1, we obtain

distγβ � distγ ′ ◦distγ
′
′ ◦distβ

′
β � (t · id) ◦ id ◦ (t · id) = t2 · id.
γ β
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So β � γ = α ∩ B , as claimed. Thus if we only assume α ∩ B � β , we will have α ∩ B ∼ β , proving
that B is an undistorted subalgebra in A. Now if B is undistorted in A then α ∩ B ∼ β , and in
particular, β � α ∩ B .

(v) If α, β and γ are degree filtrations in A, B and C , respectively, then by previous claim we only
need to establish that distγα∩C � u · id, for some integral u. By our assumption, we have such constant

t for both distγβ∩C and distβα∩B . Using claim (3) of Proposition 1, we obtain

distγα∩C � distγβ∩C ◦distβα∩B � (t · id) ◦ (t · id) = t2 · id.

Selecting u = t2 completes the proof of this claim.
(vi) We apply claim (1) of Proposition 1 to filtrations μ = β∩C , ν = α∩C and π = γ on C . We will

then have distγβ∩C � distγα∩C ◦distα∩C
β∩C . Using claim (2) of Proposition 1, we obtain distα∩C

β∩C � distα∩B
β .

By (iv) there is t ∈ N such that distα∩B
β � t · id. Since C is undistorted in A, we may assume that also

distγα∩C � t · id. Since the distortion functions are non-decreasing, we finally get distγβ∩C � (t · id) ◦
(t · id) = t2 · id. Thus β ∩ C � γ and by (iv), C is undistorted in B , as claimed.

(vii) Let α = {An}, β = {Bn} be degree filtrations in A, respectively, B . Then ϕ(α) and ϕ(β) are
degree filtrations in ϕ(A), respectively, ϕ(B). By (iv) we only need to show α ∩ B � β . Since ϕ(α) ∩
ϕ(B) � ϕ(β), there is t ∈ N, such that for any n ∈ N and any b ∈ B ∩ An we have ϕ(b) ∈ ϕ(Btn). Since
the restriction of ϕ to B is injective, we have b ∈ Btn . Thus B ∩ An ⊂ Btn and so B is undistorted in A.

(viii) From μ ◦ π = ϕ ◦ ν it follows that

(μ × μ)
(
T (X)

) = (μ × μ)(π × π)
(
T (Y )

) = (ϕ × ϕ)(ν × ν)
(
T (Y )

)
⊂ (ϕ × ϕ)

(
diag(B × B)

) ⊂ diag(A × A).

Thus A satisfies all relations T (X) and so if A′ is defined by generators X and relations T (X)

and μ′ : F (X) → A′ is the respective canonical epimorphism then there is a natural epimorphism
ε : A′ → A such that μ = ε ◦ μ′ . Finally setting ϕ′(b) = μ′ ◦ π ◦ ν−1(b) correctly defines the desired
undistorted embedding of B in A′ . Indeed, if f1, f2 ∈ F (Y ) are such that ν( f1) = ν( f2) then f1 = f2
is a relation in B hence π( f1) = π( f2) is a relation in A′ and so (μ′ ◦ π)( f1) = (μ′ ◦ π)( f2). This
shows that ϕ′ : B → A′ is well defined. Now, for any b ∈ B ,

ε ◦ ϕ′(b) = ε ◦ μ′ ◦ π ◦ ν−1(b) = μ ◦ π ◦ ν−1(b) = ϕ ◦ ν ◦ ν−1(b) = ϕ(b).

Thus, ϕ = ε ◦ ϕ′ and it follows from the injectivity of ϕ that ϕ′ is also injective.

F (Y )

ν π

B
ϕ′

ϕ

A′

ε

F (X)
μ′

μ

A

Finally, using our previous claim (vii), we conclude that ϕ′ is an undistorted embedding, provided
that ϕ is undistorted. The proof is now complete. �

If G is an Ω-algebra then the linear space A = F [G] with basis G is a linear Ω-algebra. Given
a filtration α = {Gn} on G , we denote by F [α] the filtration on A whose terms An are linear spans
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of the respective terms of α. If α is a finitary filtration then also F [α] is finitary. If α is the degree
filtration of G defined by a finite set X then F [α] is the degree filtration of A defined by the same
set X . Finally, dim F [G]n = #Gn . Now suppose H is a subalgebra of G . Then the linear span F [H] is
a subalgebra of F [G] and F [G]n ∩ F [H] = Span{Gn ∩ H}. It now follows that distβα∩H = distF [β]

F [α]∩F [H] .
This argument works, in particular, in the case of semigroups and semigroup algebras. In the case
of groups and group algebras, one can restrict oneself to degree filtrations α defined by symmetric
generating sets X , that is X−1 = X .

Proposition 3. Let H be a finitely generated subgroup of a finitely generated group G, F [G] the group algebra
of G over a field F , F [H] the group algebra of H naturally embedded in F [G]. Then the distortion of the
embedding of H in G is the same as the distortion of the embedding of F [H] in F [G]. The same claim holds
valid in the case of semigroups/monoids and their semigroup/monoid algebras.

This latter result leads to a variety of distortions in associative algebras obtained with the help of
known results on distortion in groups (see [9] in the case of examples (i) and (ii) and [18] in the case
of example (iii)). We exhibit here just three.

Example 1. Let H be cyclic subgroup with generator c in the Heisenberg group G with presentation
G = 〈a,b, c | [a,b] = c, [a, c] = [b, c] = 1〉. Then the distortion of F [H] in F [G] is quadratic.

Example 2. Let H be cyclic subgroup with generator b in the Baumslag–Solitar group G with presen-
tation G = 〈a,b | aba−1 = b2〉. Then the distortion of F [H] in F [G] is exponential.

Example 3. Let g(k) be the “exponential tower with basis 2 of height k”, that is, the function defined
by g(1) = 2 and g(k) = 2g(k−1) , for k > 1. Let H be the subgroup generated by b in the 1-relator
Baumslag group G with presentation G = 〈a,b | (aba−1)b(aba−1)−1 = b2〉. Then the distortion of F [H]
in F [G] is represented by a function f such that f (n) = g([log2 n]).

1.3. Distortion and membership problem

In this subsection we elaborate on the following observation: knowing that the distortion of a
subalgebra B in an algebra A is not too “ugly” can help one to build an algorithm deciding whether
an element a ∈ A is actually an element of B . Our main result holds valid for any finitely generated
Ω-algebra. However, additional details arise in the case of linear Ω-algebras and so we will start with
this kind of algebras. As before, the term “algebra” will mean linear “Ω-algebra”.

In this subsection we will be considering linear Ω-algebras over constructive fields. A field F is
called constructive if there is an enumeration of the elements of F : a1,a2, . . . such that aia j = a f (i, j)
and aia j = ag(i, j) where f , g : N → N are recursive functions.

Let A be a linear Ω-algebra over a constructive field F , with finite generating set X . We say that
the Intersection Problem of Finite-dimensional Subspaces (Intersection Problem, for short) is decidable
in A if there is an algorithm that allows, given two finite subsets R and S of elements of A, written as
“polynomials” in X , with linear spans Span{R} and Span{S} over F , to produce a finite subset T ⊂ A,
again written as “polynomials” in X , which is a linear basis of Span{R} ∩ Span{S}. An equivalent
problem is that of decidability of linear dependence of finite sets. Further, given a finitely generated
subalgebra B of a finitely generated algebra A, we say that the Generalized Membership Problem in B
is decidable in A if there is an effective procedure that allows one, for any finite subset S ⊂ A, to
effectively produce a finite subset T ⊂ A, such that T is a linear basis of B ∩ Span{S}. Again, S and T
are written as “polynomials” in X or, more precisely, the elements of the free linear Ω-algebra F (X)

generated by X .

Theorem 1. Let A be a finitely generated Ω-algebra where Ω is a finite set of operations. If A is a linear algebra
then we additionally assume that the ground field of coefficients F is constructive and that the Intersection
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Problem is algorithmically decidable in A. Then the following conditions on a finitely generated subalgebra B
are equivalent:

(1) The (Generalized) Membership Problem for B in A is algorithmically decidable.
(2) Any distortion function for B in A is recursive.
(3) A distortion function for B in A is bounded from above by a recursive function.

Proof. Let α = {An} be the degree filtrations of A and β = {Bn} of B . We restrict ourselves to the
proof in the case of linear Ω-algebras, with few remarks about the “non-linear” case at the end of
the proof.

To prove Implication (1) ⇒ (2), assume that A is a linear Ω-algebra and B a subalgebra with
Generalized Membership Problem effectively decidable. Given any natural n, let us effectively select a
finite basis Pn of An , the nth term of α. Using our hypothesis, we can effectively write the finite set
Q n which is a linear basis of Kn = B ∩ An , the nth term of the restriction filtration α ∩ B . After this,
starting from m = n, we effectively write the linear bases Rn,m of the subspaces Kn ∩ Bm where each
Bm is a finite-dimensional space, the mth term of β . The least value of m such that #Rn,m = #Q n

equals the nth value of the distortion function distβα∩B . So this function is recursive, proving our first
implication.

The implication (2) ⇒ (3) being trivial, let us prove (3) ⇒ (1). We assume that distβα∩B is bounded
from above by a recursive function f : N → N, for a fixed choice of degree filtrations α in A and β

in B . Let us prove that the Generalized Membership Problem in B is algorithmically decidable. Indeed,
let S be a finite subset of A and n ∈ N be a number such that Span{S} ⊂ Am . By our hypothesis, then
B ∩ Span{S} ⊂ B f (n) . Then also B ∩ Span{S} ⊂ B f (n) ∩ Span{S}. Since f (n) is computable and B f (n)

has an effectively computable basis Q f (n) , using the decidability of the Intersection Problem in A,
we effectively find a basis in B f (n) ∩ Span{S}, hence in B ∩ Span{S}. Thus (3) ⇒ (1) has been also
established, proving our theorem in the case of linear Ω-algebras.

In the case of Ω-algebras which are not linear, the logic of the proof is exactly the same except
that we do not need to consider any spans of finite sets of monomials but rather the finite sets
themselves, and their intersections, which by necessity are constructive. �

As an application, let us consider a (quasi)variety Q of linear algebras where there are finitely pre-
sented algebras with algorithmically undecidable equality problem (see [11]). Additionally we assume
that the Intersection Problem is algorithmically decidable in free algebras of finite rank of Q. As an
example, one can consider the varieties of all associative or all Lie algebras, etc.

We will now follow the pattern of a well-known group-theoretic construction of Mikhailova [14],
whose relevance to the distortion in groups was first mentioned by Gromov [9].

Example 4. Let B be a finitely presented linear algebra in a (quasi)variety Q, with undecidable equality
problem. We write B = F (X)/I where F (X) is a free algebra with free generating set X and I an ideal
in F (X) generated by a finite set R . Let us consider the direct product G = F (X) × F (X). Suppose H
is a subalgebra in G generated by the elements of the form (r,0), where r ∈ R , and also by the set of
“diagonal” elements {(x, x) | x ∈ X}. Clearly, H contains (I,0). Conversely, if ( f ,0) ∈ H, then f must
be an element of (I,0) which follows because (I,0) is the kernel of the projection of H onto the
right factor F (X) in G . As a result, ( f ,0) ∈ H if and only if f ∈ I . This also tells us that we cannot
effectively write the basis of the intersection Span{( f ,0)} ∩ H. Hence the (Generalized) Membership
Problem for H in G is algorithmically undecidable. According to the above Theorem 1, the embedding
of H in F (X) × F (X) is distorted, moreover the distortion function is not bounded by any recursive
function.

Replacing F (X)× F (X) by F (X) is not possible in many important (quasi)varieties. In other words,
free algebras of finite rank in many (quasi)varieties have no finitely generated distorted subalgebras.
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This is either known (as in the case of groups), or will be shown later in this paper (as in the case of
Lie algebras).

1.4. Multitude of tame filtrations on algebras

As in Introduction, any degree filtration of a finitely generated (linear) Ω-algebra is a tame fil-
tration. Indeed, suppose #X = r, #Ω = p. If an element a ∈ A is in the nth term An of the degree
filtration defined by X on an Ω-algebra A then by induction it easily follows that a can be repre-
sented by a word in an (r + p)-letter alphabet X ∪ Ω whose length is at most nq + 1, where q is the
maximal arity of operations in Ω . Thus #An � C((r + p)q)n , for a certain constant C . Therefore, the
growth of the sequence of the numbers #An is at most exponential, proving that any degree filtration
is a tame filtration. As it turns out, the degree filtrations are just a tip of an iceberg in the vast array
of all tame filtrations.

Theorem 2. Let Ω be a finite signature. On any countable Ω-algebra or countably-dimensional linear Ω-
algebra there is at least continuum of pairwise non-equivalent tame filtrations. Given any function g(n), one
can always choose two tame filtrations α = {An} and α′ = {A′

n} so that for the distortion function f = distα
′

α
one has f (n) > g(n), for all n > 0.

Proof. In our proof, we restrict ourselves to the case of Ω-algebras, the case of linear Ω-algebras
being quite analogous. Thus, let A be an infinite finitely generated algebra of finite signature Ω , with
finite generating set X , #X = r. Let {An} be the degree filtration of A determined by X . For any
a ∈ A we denote by d(a) its degree with respect to {An}, that is, d(a) = n, if a ∈ An \ An−1. As noted
previously, d(a) is the minimal number of operations necessary to obtain a, starting from X ∪ Ω0.
To simplify the notation, we will assume in the future that Ω0 ⊂ X .

Now let us fix a real number λ such that 0 < λ < 1. We choose an infinite set W λ of elements
w ∈ A with pairwise different values of [d(w)λ], for any w ∈ W λ . Here [r] is the integral part of a
real number r. Such set has to exist because A is infinite and each An is finite.

We are going to define a new filtration, {Aλ
n}, in the following way. We choose a set Y ∪ V λ so

that there is bijection ϕ : Y ∪ V λ → X ∪ W λ with ϕ(Y ) = X and ϕ(V λ) = W λ . We define a function
dα on absolutely free algebra F of signature Ω with free generating set Y ∪ V λ (notice that if Ω is
the group signature then, being nonassociative, an absolutely free Ω-algebra is a much “larger” object
than the free group!). The elements of F , we call them words, appear by induction on the number of
applications of operations in Ω starting from the elements of Y ∪ V λ . We set dλ(y) = 0, for all y ∈ Y ,
and if v ∈ V λ , then ϕ(v) = w , for a unique w ∈ W λ , and we set dλ(v) = [d(w)λ + 1]. Using induc-
tion, let us assume that we have already assigned the values of dλ to some words u1, . . . , um ∈ F .
If ω ∈ Ωm , 1 � m � q, and u = u1 . . . umω then we set dλ(u) = dλ(u1) + · · · + dλ(um) + 1.

Now, for any n > 0, we define the nth term of a filtration of F by setting F λ
n = {u | dλ(u) � n}.

Clearly, {F λ
n } is an ascending filtration in F . Suppose we have shown that this is also a tame filtration.

Consider a unique homomorphism ϕ : F → A extending the above bijection ϕ : Y ∪ V λ → X ∪ W λ and
set Aλ

n = ϕ(F λ
n ). Then Aλ

n is a tame filtration in A. To provide ourselves with continuum of pairwise
inequivalent tame filtrations on A, we will later need to prove that {Aλ

n} � {Aμ
n } if λ �= μ.

Let us denote by Sλ
n the sphere of radius n in F , that is, the set of all words u with dλ(u) = n.

Let V λ
n be the set of letters v in V λ with dα(v) = n. Then Sλ

0 = X and, using induction on n � 1,
Sλ

n = Sλ
n ∪ V λ

n where Sλ
n = ⋃

(Sλ
n)ω with (Sλ

n)ω = ⋃
i1+···+im+1=n Sλ

i1
. . . Sλ

im
ω, for each ω ∈ Ωm (m � 1).

By our hypothesis about V λ , #Sλ
n � #Sλ

n + 1.
It suffices to prove by induction on n that #Sλ

n � cn , for big enough constant c. However, for
our argument using induction on n, we need to prove a stronger inequality #Sλ

n � cn

(n+1)2 , where the

constant c is big enough. The choice of c is dependent on the cardinalities of Ω and X . Since the
sphere of radius 1 is finite, let c be such that the above inequality holds for n = 1.

To handle the case of n > 1, we will need the following.
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Lemma 1. For any m � 1 there is a constant C(m) > 0, such that

∑
i1+···+im=n

m∏
k=1

1

(ik + 1)2
� C(m)

(n + 2)2
,

for any n.

Proof. Use induction by s and the convergence of the series 1 + 1
22 + 1

32 + · · · . �
Assuming our upper bound for the number of words u with dλ(u) � k true for any k < n, we

will now estimate the number of words of the form u1 . . . umω where u1 ∈ Fi1 , . . . , um ∈ Fim , ω an
operation in Ωm and i1 + · · · + im + 1 = n. Using Lemma 1 and the induction hypothesis, this number
does not exceed

∑
i1+···+im+1=n

m∏
k=1

cik

(ik + 1)2
� ci1+···+im

C(m)

(n + 1)2
= cn−1 C(m)

(n + 1)2
.

To obtain the upper bound for #Sλ
n we have to sum all the expressions just obtained over ω ∈

Ω \ Ω0 and add 1 in order to take care of possible contributions of letters from V λ . This brings us
to 1 + ( K

c ) cn

(n+1)2 . Here K is the sum of all C(m) (with possible repetitions) over all ω ∈ Ω , of arity

m � 1. It is quite obvious now that c can be chosen so that the following is satisfied for all n:

1 +
(

K

c

)
cn

(n + 1)2
� cn

(n + 1)2
, for all n > 1.

Thus we have shown that #Sλ
n � cn

(n+1)2 , for all m � 1. For this c we will also have #Sλ
n � cn , hence

the growth of {#F λ
n } is bounded by an exponential function, as claimed.

Notice that, for any word u, one has dλ(u) � d(u)λ . This is true for u ∈ Y ∪ V λ . Now if
u = u1 . . . umω, then, considering λ < 1 and using induction, we obtain dλ(u) = ∑

dλ(ui) + 1 �∑
d(ui)

λ + 1 � (
∑

d(ui))
λ + 1 = (d(u) − 1)λ + 1 � d(u)λ . In terms of filtrations, if u ∈ F is such

that d(u)λ > n then u /∈ Fn . Since An = ϕ(Fn), we have that no elements a ∈ A with d(a)λ > n can be
contained in An .

Now we can prove that the filtrations obtained for different values of parameter λ are not equiva-
lent. Indeed, suppose 0 < λ < μ < 1. Assume that there is natural number t such that the nth term of
the filtration defined by λ is a subset of the (tn)th term of the filtration defined by μ, for all n � 1.
Let us find a ∈ W λ such that [d(a)λ + 1] = n, for some n such that (n − 1)μ/λ > tn, which is possible
because λ < μ. In particular, a ∈ Aλ

n . Since d(a) � (n − 1)1/λ , it follows that d(a)μ � ((n − 1)1/λ)μ > tn.
Hence, a /∈ Aμ

tn , a contradiction. This completes the proof of the first claim of our theorem in the case
where A is finitely generated.

To complete the proof of the first claim in the general case, let us assume that A is not finitely
generated but has a countable set of generators {a0,a1, . . .} such that for each i � 1, we have ai /∈
alg{a1, . . . ,ai−1}. Again we introduce free Ω-algebra F , now with free generating set {y0, y1, . . .} and
define an epimorphism ϕ : F → A extending the bijection ϕ(yi) = ai , for i = 0,1, . . . .

Now let us choose a real number λ � 1 and define a degree function on F by setting dλ(yi) = [iλ],
for all i � 0. As earlier, dλ extends to the whole of F and induces a function on A denoted by
the same symbol. Using this function, one defines a filtration {Aλ

n} on A such that A0 consists of
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the values of 0-ary operations and element a0. Since ai /∈ alg{a0, . . . ,ai−1}, it follows that dλ(ai) =
dλ(yi) = [iλ], for i = 0,1, . . . .

Now the proof of Lemma 1 goes without any changes, including the fact #Sλ
n � #Sλ

n + 1, because,
for n fixed, there is at most one i such that dλ(yi) = n. As before, it follows that {Aλ

n} is a tame
filtration. Finally, if λ < μ then {Aλ

n} � {Aμ
n }. This follows because dλ(ai)/dμ(ai) → 0 when i → ∞.

Now let us fix an increasing function g : N → N. Again, we start with the case where A is finitely
generated. We choose an infinite set W ′ of elements w1, . . . , wn, . . . ∈ A so that d(wn) > g(n). Then
we consider an absolutely free Ω-algebra F with free generating set Y ∪ V ′ which is in bijection ϕ
with X ∪ W ′ , as before. Let ϕ be an epimorphism extending the above bijection. In the same manner,
as previously, we define the filtration F ′

n , except that now dλ should be replaced by d′ , such that
d′(y) = 0, for all y ∈ Y , and d′(vn) = n, for all n = 1,2, . . . , where vn ∈ V ′ is such that wn = ϕ(vn).
The proof that {F ′

n} is a tame filtration is the same, as before. We now set A′
n = ϕ(F ′

n) and consider

the distortion function f = distα
′

α of a tame filtration α′ = {A′
n} with respect to the degree filtration

α = {An}. By definition, A′
n ⊂ A f (n) . Since wn ∈ A′

n \ Ag(n) , it follows that f (n) > g(n), for all n, as
claimed. This completes the proof of the second claim of our theorem in the case where A is finitely
generated.

To complete the proof of the second claim in the general case, we may now assume that A is
not finitely generated but has a countable set of generators a0,a1, . . . such that for each i � 1, we
have ai /∈ alg{a1, . . . ,ai−1}. Again we introduce free Ω-algebra F with free generating set y0, y1, . . .

and define an epimorphism ϕ : F → A extending the bijection ϕ(yi) = ai , for i = 0,1, . . . . Given a
function g as above, we choose d(yi) arbitrarily with d(yi) > max{g(k) | k � i}. We also set d(ai) =
d(yi). Now let us consider two filtrations: α = {Aλ

n} with λ = 1 and α′ = {A′
n} defined by d, that is,

A′
n = {a | d(a) � n}. In this case, ai ∈ Aλ

i \ A′
g(i) . Thus, distα

′
α > g(n). �

Corollary 1. Let A be a countable (semi)group or countably-dimensional associative or Lie algebra over a field.
Then A has at least continuum of pairwise inequivalent tame filtrations. Given any function g : N → N one
can always find two tame filtrations α and α′ in A such that distα

′
α (n) > g(n), for all n � 1.

Remark 1. We can be more precise about the cardinality of the set of pairwise inequivalent tame
filtrations.

First, in the case of countable algebras this cardinality is continuum simply because the cardinality
of the countable Cartesian power of finite subsets of a countable is continuum.

Second, in the case of countably-dimensional linear Ω-algebras the cardinality of this set can be
even greater than continuum, namely as large as the cardinality of the ground field F . In Section 4.3
we will produce such examples already on the polynomial algebra F [x] in one variable.

2. Distortion in classical algebras

In the previous section we have seen that tame filtrations are abound on virtually any infi-
nite(-dimensional) algebra. As announced in Introduction, we will show in Section 3 that in the classi-
cal situation of associative and Lie algebras, every tame filtration of a countably-dimensional algebra B
is the restriction of a degree filtration of a suitable finitely generated algebra A. But there are impor-
tant classes of algebras such that if A is a finitely generated algebra of this class and if a tame filtration
of a finitely generated subalgebra B is the restriction of a degree filtration of A, then it is equiva-
lent to a degree filtration of B . In other words, all subalgebras of such algebras A are undistorted.
As examples, we show that, among others, this property holds for commutative associative algebras
and free Lie algebras. Oddly enough, free noncommutative associative algebras may and do have dis-
torted subalgebras. One more topic we study in this section is the connection between the distortion
of the embedding of Lie algebras M ⊂ L and their associative counterparts U (M) ⊂ U (L). This is in-
teresting when compared with a similar situation with the embedding of groups and their group
algebras, see Proposition 3.
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2.1. Commutative associative algebras

For the proof of our main result in this subsection we use simple facts of the theory of Groebner
bases in the commutative algebras. One of the many possible references is [12].

Theorem 3. The embedding of a finitely generated subalgebra in a finitely generated commutative associative
algebra has no distortion.

Proof. Let A be a finitely generated commutative algebra with generators a1, . . . ,ak , B a subalgebra
generated by b1, . . . ,b� , α = {An} and β = {Bn} respective degree filtrations in A and B . We write
A as a factor-algebra of the polynomial algebra in k + � variables F [x1, . . . , xk, y1, . . . , y�]/I , where
ai = xi + I , b j = y j + I , for i = 1, . . . ,k and j = 1, . . . , �.

We introduce an order on the monomials in x1, . . . , xk, y1, . . . , y� in the following way. Let us
assume that any xi is greater than any monomial in y1, . . . , y� , but xi y j > xr , for any indexes i, j, r.
Two monomials in x1, . . . , xk are ordered by Short-lex, and the same is true for two monomials in
y1, . . . , y� . In other words, we start comparing two monomials in x1, . . . , xk, y1, . . . , y� first by degX ,
where X = {x1, . . . , xk}. If these degrees are the same then compare by degY , where Y = {y1, . . . , y�}.
If even these degrees are the same, we begin comparing lexicographically, considering xi > y j for any
i, j. We keep in mind that in the theory of Groebner bases it is allowed to introduce the order in many
different ways provided that the set of words becomes a totally ordered monoid with minimum 1.

Let us consider the Groebner basis of monic polynomials g1, . . . , gs in I with respect to this order.
We also choose C > 0 so that degY (gi) � C , for all i = 1, . . . , s.

Being Groebner basis in an ideal I means that g1, . . . , gs ∈ I and that the leading monomials
lm(g1), . . . , lm(gs) of g1, . . . , gs generate an ideal �(I) spanned by the leading monomials of all ele-
ments in I . A linear basis of F [x1, . . . , xk, y1, . . . , y�] modulo I is formed by all monomials which are
not divisible by any of lm(g1), . . . , lm(gs).

Any polynomial g = g(x1, . . . , y�) can be reduced modulo I to a unique linear combination of such
monomials using transformations of the following kind. If g contains a monomial u = u′u′′ , where
u′ = lm(gi), for some i, then we replace u by (u′ − gi)u′′ , followed by reduction of like terms.

Notice that under these transformations the weighted “degree” C degX (g) + degY (g) of g cannot
grow. Indeed, the “degree” C degX +degY of any monomial in the expression of gi is at most the
“degree” of lm(gi), which follows from the definition of the order and the inequality degY (gi) � C .
In particular, if we start with a polynomial g(x1, . . . , xk) of degree d and end up with a polynomial
f (y1 . . . , y�) of degree m then m � Cd.

Now we can show that distβα∩B(n) � Cn, for any n = 1,2, . . . . Indeed, let b ∈ An ∩ B . In this case
b = g(a1, . . . ,ak) where g(x1, . . . , xk) is a polynomial of degree degX g = d � n. Let us pass from
g(x1, . . . , xk) to a polynomial h(x1, . . . , y�), which is reduced modulo I . By the above, C degX (h) +
degY (h) � C degX g � Cn. Now since b ∈ B , b = f (b1, . . . ,b�), for a polynomial f (y1, . . . , y�) of some
degree m = degY f . Let us assume that f (y1, . . . , y�) is of minimal possible degree with respect to Y ,
representing b and depending only on Y . We can pass from f (y1, . . . , y�) to h(x1, . . . , y�) by transfor-
mations of the form indicated above. It follows from the definition of the order on the monomials in
X ∪ Y , that the leading monomial lm(gi) for an element gi of the Groebner basis for I is a monomial
in Y only if gi is a polynomial in Y and the degree of lm(gi) is the greatest possible among all the
other monomials in gi . By the minimality of the degree of f (y1, . . . , y�), it then follows that h is a
polynomial in Y and its degree is the same as the degree of f . Then by the above, m � Cn, proving
our claim. �
Example 5. One of possible ways to generalize this result is to consider algebras satisfying nontriv-
ial polynomial identity (PI-algebras) (for some basic facts about algebras with polynomial identities,
see [3]). Unfortunately, a result by Umirbaev [19] shows that a free algebra FV(Y ), freely generated
by a finite set Y , in the variety V of associative algebras over computable fields, defined by the
following identity:
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[x1, x2][x3, x4][x5, x6][x7, x8] ≡ 0, (2)

contains a finitely generated subalgebra B with undecidable membership problem. Also, the Intersec-
tion Problem is decidable in FV . Indeed, if A(Y ) is the free associative algebra with free generating
set Y (see Section 2.2 for formal definition) then one may write a vector space decomposition
A(Y ) = FV(Y ) ⊕ V (Y ), where V (Y ) is the set of all consequences of (2) in the A(Y ). Since (2)
is multilinear, one can write the same equation for each term of the degree filtration of A(Y ):
A(V )n = FV(Y )n ⊕ V (Y )n . This latter is an equality for finite-dimensional spaces. The space V (Y )

is spanned by finitely many monomials u[v1, v2][v3, v4][v5, v6][v7, v8]w , where the sum of lengths
of all words u, v1, . . . , w is at most n. Since A(Y ) is the free associative algebra, we can effectively
write the basis of V (Y )n and hence of FV(Y )n . Now, given two finite subsets S and R in FV(Y ), we
effectively find n such that S ∪ R ⊂ FV(Y )n , find the basis of FV(Y )n , as described above, and solve
the Intersection Problem for Span{S} ∩ Span{R}. Thus Theorem 1 applies, showing that none of the
distortion functions for B in FV(Y ) is bounded by a recursive function, certainly not by any linear
function. Therefore, the embedding of B in FV(Y ) is necessarily distorted.

It is easy to see that the above argument providing us with an algorithm for the solution of the
Intersection Problem works in the case of every variety defined by not only by multilinear but also
homogeneous identities within a variety of all algebras, or all associative algebras, or all Lie algebras,
etc. In the case of homogeneous rather than multilinear identities one has to complement the set of
identities by their partial linearizations.

2.2. Free associative algebras and free group algebras

Let X be a nonempty alphabet and W (X) the set of all words (including the empty word 1) in X .
One calls W (X) the free monoid with basis (free generating set) X . Let us fix the field F of coefficients
and consider the free associative algebra A(X) over F . The elements of A(X) are linear combinations
of words in W (X) with coefficients in F .

The elements of A(X) are often called (noncommutative) polynomials in X . The degree n = deg f
of f ∈ A(X) is the length of the longest word that enters the decomposition of f through W (X) with
nonzero coefficient. Thus the degree of a monomial λw , 0 �= λ ∈ F , w ∈ W (X) is just the length of w .

If we replace W (X) by the free group F (X) then the resulting algebra F (X) is called a free group
algebra.

We start by giving a quick proof to an example by U. Umirbaev [21]. Let A = A(x, y, z) be a free
associative algebra with free generators x, y, z and C = A(x, y) a (free) subalgebra generated by x, y.
Let I be the ideal of C generated by some elements f1, . . . , fk . We denote by B the subalgebra of A
generated by the elements zf1, . . . , zfk , x, y, [z, x] = zx − xz and [z, y] = zy − yz.

Lemma 2. Let f be an arbitrary element of C . Then f is an element of I if and only if zf is an element of B.

Proof. First we assume f ∈ I . Then f is the sum of expressions of the form u fi v , where u, v are
monomials in x, y. Let us prove zf ∈ B . It is sufficient to show zu fi ∈ B , because v ∈ B . We proceed
by induction on deg u with trivial basis when deg u = 0. If u = xu′ then zu fi = zxu′ f i = [z, x](u′ f i) +
x(zu′ f i). Here [z, x] ∈ B , u′ f i ∈ B (because this depends only on x, y), while the second summand is
in B by the induction hypothesis. If u = yu′ then we argue similarly but use [z, y] ∈ B .

Now we assume that zf ∈ B . Let us prove f ∈ I . For this we notice that zf is homogeneous of
degree 1 in z, hence zf is a linear combination of expressions of one of the forms u[z, x]v , u′[z, y]v ′
and u′′(zfi)v ′′ , where u, v, u′, v ′, u′′, v ′′ ∈ C . Here the left factors u, u′, u′′ can be removed because in
the product zf all monomials start with z. In the expressions z( f i v ′′) each factor f i v ′′ is in I whereas
z( f i v ′′) itself is in B . Therefore, without loss of generality, we can remove these expressions if we
replace f by f − f i w . After doing so, we arrive at the equation [z, x]v + [z, y]v ′ = zf , where v, v ′
depend on the generators x, y only. A part of this sum, −xzv − yzv ′ equals zero because all the
monomials should start with z. It follows that v = v ′ = 0, which follows because the right C-module
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generated by xz and yz is free. As a result, [z, x]v + [z, y]v ′ = zf = 0, hence f = 0. Considering that
this “final” f was obtained by a number of transformations of the form f → f − f i w , we conclude
that, for the “original” f we must have f ∈ I . �

It is well known that over any field there exist 2-generator associative algebras with undecidable
equality problem [11]. As a result, by Lemma 2, we have an example of a finitely generated subalgebra
B in a 3-generator free algebra A with undecidable membership problem. It is very easy to obtain
an example of a subalgebra in a 2-generator free associative algebra, with undecidable membership
problem. For this, we simply need to effectively embed A in a free associative algebras A′ = A(u, v)

with free generators u, v , for instance, by setting x = u2, y = uv and z = v2. Then obviously, there is
no algorithm to decide the membership problem for the image of B in A′ .

It is now very easy to notice that also in any free group algebra F (X) with #X � 2 there is a
subalgebra with undecidable membership problem. Indeed, A(X) ⊂ F (X), and there is an obvious
algorithm to decide whether an element of F (X) is an element of A(X). Therefore, if B is a subalge-
bra with undecidable membership problem in A(X), it will also be is a subalgebra with undecidable
membership problem in F (X).

Using the above in conjunction with Theorem 1 allows us to make the following conclusion.

Theorem 4 (Examples). Let A be a free associative algebra A(X) or a free group algebra F (X) with #X � 2
over a field F . Then one can choose a finitely generated distorted subalgebra B in A in such a way that none of
the distortion functions for B in A is bounded from above by any recursive function.

Proof. The argument in the case of free group algebras being identical to that in the case of free
associative algebras, we restrict ourselves to these latter ones.

Since the above example of a finitely generated subalgebra with undecidable membership problem
in a free associative algebra or F (X) of rank at least 2 does not depend on the field, we first consider
a free associative algebra A0 of rank at least 2 over the prime subfield F0 of F . Then F0 is constructive
and by Theorem 1 we have a distorted subalgebra B0 in A0. Now let us consider the F -algebra A =
F ⊗F0 A0 and its F -subalgebra B = F ⊗F0 B0. Suppose that β0 = {(B0)n} and α0 = {(A0)n} are degree
filtrations in B0 and A0, respectively, defined by the generating sets Y and X , respectively, such that
the distortion function distβ0

α0∩B is not bounded by a linear function. Then setting β = {F ⊗F0 (B0)n}
and α = {F ⊗F0 (A0)n} gives rise to the degree filtrations on B and A, respectively, defined by the

generating sets 1 ⊗ Y and 1 ⊗ X , with distβα∩B = distβ0
α0∩B . Therefore, B is a distorted subalgebra of the

free associative algebra A over an arbitrary field F . �
Example 6. In Umirbaev’s paper [20] there are examples of subalgebras in free Jordan algebras similar
to those associative in Theorem 1. As we noted at the end of Section 2.1, there is no problem with
the Intersection Problem in the case of free Jordan algebras of finite rank, since the variety of Jordan
algebras is defined within the variety of all linear algebras by homogeneous identical relations. Thus
we conclude that free Jordan algebras of finite rank contain finitely generated distorted subalgebras.

Example 7. It is well known (and follows from Schreier rewriting) that any finitely generated subgroup
of a free group of finite rank is undistorted. The same is true in the case of any semigroup A with
finite generating set X and balanced defining relations, that is relations of the form u = v where
u, v ∈ W (X) have equal lengths: �(u) = �(v). In such a semigroup the length �(g) of any element g
is well defined and for any two elements g,h ∈ A one has �(gh) = �(g)+ �(h). If B is a subsemigroup
of A generated by a subset Y and g1 g2 . . . gn is an element of B then its length with respect to
X will be at least n, proving that B is undistorted in A. Thus it follows from Theorem 4 that there
exist (semi)group algebras of (semi)groups without distorted sub(semi)groups, which have subalgebras whose
distortion function is not even bounded by any recursive function. As shown in Proposition 3, this cannot
happen for commutative (semi)groups.
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2.3. Free Lie algebras

Let L = L(X) be a free Lie algebra over a field F with free generating set X = {x1, . . . , xm}. One
can view L as a subalgebra in free associative algebra A(X) generated by X , with respect to the
bracket operation [a,b] = ab − ba. Thus the degree degX f of an element f ∈ L(X) is its degree as an
element of A(X). Each element f has its leading part Lp( f ), which is the homogeneous component
of maximal degree.

Theorem 5. The embedding of a finitely generated subalgebra in a finitely generated free Lie algebra has no
distortion.

Proof. By Shirshov–Witt’s theorem [1, Chapter 3] any subalgebra B of a free Lie algebra L is itself
free. Moreover, one can choose a free generating set Y in B so that the set Y = {Lp(y) | y ∈ Y } is the
free generating set of the subalgebra it generates in L.

Now let us assume that B is a finitely generated subalgebra of L(X) and that Y = { f1, . . . , fn} is
the set of free generators of B . Let the degrees of Lp( f1) = f ′

1, . . . , Lp( fn) = f ′
n be d1, . . . ,dn , respec-

tively.
Let us consider another free Lie algebra L(Z) ⊂ A(Z), where Z = {z1, . . . , zn}. In addition to the

ordinary degree filtration defined by Z , with degree function degZ , we can endow L(Z) with another
filtration, with degree function dg, defined on the words in Z by induction on the length as follows.
We set dg z1 = d1, . . . ,dg zk = dk , for the letters of the alphabet Z . If w = uv is a word of degree
> 1 then by induction dg u and dg v are already defined and we set dg uv = dg u + dg v . Given an
element h(z1, . . . , zn) ∈ A(Z) which is a linear combination of words u1, . . . , us , with nonzero coeffi-
cients, we set dg h(z1, . . . , zn) = max{dg u1, . . . ,dg us}. Finally, we denote by Lp′(h) the “leading part”
of h(z1, . . . , zn) with respect to the new degree dg, that is, the homogeneous component of the above
decomposition of degree dg h(z1, . . . , zn).

Now, for any nonzero Lie polynomial h(z1, . . . , zn) we consider the equality g(x1, . . . , xm) =
h( f1, . . . , fn). Then the leading part of g(x1, . . . , xm) will be Lp′(h)( f ′

1, . . . , f ′
n). This polynomial in

X is nonzero since { f ′
1, . . . , f ′

n} is a free generating set.
It follows that degX g = dg h � degZ h. Let α be the degree filtration of L(X) defined by X and β

the degree filtration of B defined by Y = { f1, . . . , fn}. We just showed that distβα∩B(n) � n. Thus B is
an undistorted subalgebra in L(X). �
Remark 2. Since the universal enveloping algebra U (L(X)) is isomorphic to the free associative al-
gebra A(X) (see, e.g. [1, Chapter 3]) and by Theorem 4 free associative algebras of rank � 2 have
distorted subalgebras, it follows that universal enveloping algebras of Lie algebras without distorted
subalgebras can have distorted subalgebras. This is quite similar to the case of (semi)groups and their
(semi)group algebras (see Remark 7 above). However, in both cases just mentioned, the situation is
much better when we consider the connection of the distortion of H in G for a finitely generated
subgroup H of a finitely generated group G or a finitely generated subalgebra H in finitely generated
Lie algebra G with the distortion of a respective subalgebra F [H] in the group algebra F [G] or U (H)

in the universal enveloping algebra U (G). In the case of groups this is described in our simple Propo-
sition 3 above, where it was shown that distH

G = distF [H]
F [G] . The case of Lie algebras requires greater

effort, and this will be done in the next subsection of the paper.

2.4. Universal enveloping algebras

If L is a Lie algebra with a finitary filtration α = {Ln} then its universal enveloping algebra U (L) is
naturally endowed with a finitary filtration U (α) = {U (L)n} where

U (L)n =
∑

n +···+n �n

Ln1 . . . Lnm .
1 m
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If L is finitely generated and M a finitely generated subalgebra of L, then one can speak about
the distortions distM

L and distU (M)
U (L)

. In the case of groups vs. group rings, as shown in Proposition 3,
similarly defined distortions are simply equal. In this subsection we will show first that we always
have distM

L � distU (M)
U (L)

and later that this inequality can be strict. For sharper results we need the
following.

Definition 5. Given a function f : N → N, we say that f is superadditive if for any natural n and m we
have f (n) + f (m) � f (n + m). For any function f : N → N we set f (n) = maxn1+···+nt=n{ f (n1) + · · · +
f (nt)} and call f the superadditive closure of f .

Clearly, f is the least superadditive function that majorates f . It is easy to check that if f � g then
f � g . This allows us to correctly define [ f ] by setting [ f ] = [ f ]. If B is a finitely generated subalgebra

of a finitely generated algebra A then the distortion distB
A is called superadditive if distB

A = distB
A .

The main result of this subsection is as follows.

Theorem 6. Let M be a finitely generated subalgebra of a finitely generated Lie algebra L. Suppose U (M) is the
universal enveloping algebra of M naturally embedded in the universal enveloping algebra of L. Then

distU (M)
U (L) = distM

L .

Proof. Let L be a finitely generated Lie algebra with linearly independent generating set S =
{a1, . . . ,an}, M a finitely generated subalgebra, with a finite generating set T . One can always as-
sume that T ⊂ S . We denote by α the degree filtration of L defined by S , β the degree filtration of
M defined by T and f = distβα∩M . By claim (5) in Proposition 1 and claim (i) in Proposition 2 this
particular choice of degree filtrations does not affect our conclusion about the connection between
distU (M)

U (L)
and distU (M)

U (L)
.

We have Span{T } ⊂ Span{S}, for the linear spans of T and S . Let us select linear bases in the terms
of α and β , as follows. Suppose that α has this form: Span{S} = L1 ⊂ L2 ⊂ · · · . One can choose the
pairs of sets Cn ⊂ Bn such that Bn is a basis of Ln , and Cn a basis of M ∩ Ln , for all n = 1,2, . . . , by
induction on n. Then B = ⋃∞

i=1 Bi is a basis of L, which contains a basis C = ⋃∞
i=1 Ci of M as a subset.

If we totally order B in some way then 1 and the monomials b1 . . .bs with b1 � · · · � bs , called PBW-
monomials, form a basis of U (L), called PBW-basis (PBW stands for Poincaré–Birkhoff–Witt). Those of
the above PBW-monomials in which all b1, . . . ,bs are in C form a PBW-basis for U (M) (see the details
in [1, Chapter 1]). Let us assign weight 0 to 1 and weight m = m1 + · · · + ms to each PBW-monomial
u = b1 . . .bs , where bi ∈ Bmi , i = 1, . . . , s. Having done so, one can assign weight to each w ∈ U (L)

as the maximum of weights of PBW-monomials in its unique expression with nonzero coefficients
through PBW-basis.

Let us now consider a product of degree s in U (L) of the form u = b1 . . .bs in U (L) where bi ∈ Bmi ,
for all i = 1, . . . , s. We claim that one can write u as the linear combination of PBW-monomials of
weight at most m = m1 + · · · + ms with respect to B . This is true by definition if b1 � · · · � bs . But if
b j > b j+1, for some j, then, since {Ln} is a filtration, [b j,b j+1] = ∑t

i=1 ξib′
i , where all ξi ∈ F , for all i,

and each element b′
i ∈ B has weight at most m j + m j+1. We then can write

b1 . . .b jb j+1 . . .bs = b1 . . .b j+1b j . . .bs + b1 . . . [b j,b j+1] . . .bs

= b1 . . .b j+1b j . . .bs +
t∑

i=1

ξib1 . . .b′
i . . .bs.

All the monomials on the right-hand side of this equation have weight at most m1 +· · ·+ms . If all
of them are PBW then we are done. Otherwise, we apply the same transformation to those monomials
which are not PBW. After finite number of steps, the process terminates and our claim follows.
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Let us now consider an associative word w = y1 . . . yd of length d and its value u = s1 . . . sd , where
each factor is an element of the generating set S of L, S = B1. Then, by the above, u can be written as
a linear combination of PBW-monomials in B , each having weight at most d. Finally, if g(y1, . . . , yn)

is an associative polynomial of degree d then it follows that g(s1, . . . , sn) can also be written as a
linear combination of PBW-monomials in B each of weight at most d.

Now suppose g(s1, . . . , sn) ∈ U (M), where g(y1, . . . , yn) is an associative polynomial of degree d.
In this case all PBW-monomials in the expression of g(s1, . . . , sn) through PBW-basis B of U (L) are
actually PBW-monomials in C . Suppose, c1 . . . ct is one of these monomials. Then c1 � · · · � ct and
the sum of the weights of c1, . . . , ct is at most d. If ck has weight wk then we must have ck ∈ Lwk ⊂
M f (wk) where f is the distortion function for M in L. Being a Lie polynomial in the generating set T
of M , ck is an associative polynomial in the generating set T of U (M), of degree � f (wk). Therefore,
c1 . . . ct is the value of a polynomial of degree at most f (w1)+· · ·+ f (wt) � f (d) with respect to the
generating set T of U (M). We have proved that if the degree of an element of U (M) with respect to
the generating set S of U (L) is n then its degree with respect to the generating set T of U (M) is at
most f (n).

Now we need to prove that for each natural n there is an element in U (M) whose degree with
respect to S is at most n and with respect to T is at least f (n). For a fixed n > 0, let us consider
an arbitrary partition of n as the sum of positive integral summands n = n1 + · · · + nm . In each Lni

we choose an element ci ∈ C , which has degree f (ni) with respect to T . Such element exists by the
definition of the distortion function f . It is allowed to take c j = ci if n j = ni . We reorder the elements
c1, . . . , cm to make sure ci � c j if i < j.

Let us consider the PBW-monomial c1 . . . cm . By the choice of ci ∈ Lni , its degree in U (L) with
respect to S is at most n = n1 + · · · + nm . Proving by contradiction, let us assume that the degree
of this monomial with respect to T is less than d = f (n1) + · · · + f (nm), that is, c1 . . . cs is a linear
combination of monomials h(s1, . . . , st) in T such that deg h(y1, . . . , yt) < d. Let us write h(s1, . . . , st)

as a linear combination of PBW-monomials in C . As before, the weight of each monomial after rewrit-
ing in terms of PBW-basis does not increase, if compared with the sum of the weights of the factors
in h(s1, . . . , st). Therefore, the resulting weight will be less than d because the original weight was
less than d. But the final result of our reductions is our PBW-monomial c1 . . . cm , whose weight is
f (n1) + · · · + f (nm) = d, a contradiction. Thus, for a given n we have found an element in U (M) of
degree at most n with respect to S whose degree with respect to T is at least f (n1) + · · · + f (nk).
Because the partition of n was arbitrary, we have obtained that the distortion function of U (M) in
U (L) is at least f (n), as claimed. �
2.4.1. Examples of subalgebras with non-superadditive distortion

In this excerpt we would like to complement Theorem 6 by exhibiting an example of a Lie algebra
L and its subalgebra M such that distM

L �= distU (M)
U (L) . By Theorem 6 we only need to provide an example

of a subalgebra M of a Lie algebra L such that the distortion distM
L is not superadditive. Actually, such

examples can be given not only in the case of Lie algebras but also in the case of associative or Jordan
algebras, etc.

Let ϕ,ψ be two maps on the set S = {v(0), v(1), . . .}, given by ϕ(v(i)) = v(i + 1), for all i, and
ψ(v( j − 1)) = v( j2) if j = 22i

, for i = 0,1, . . . , otherwise, ψ(v( j − 1)) = v(0). These settings define
the action of the free monoid W (a,b) on S: a acts as ϕ and b as ψ . Let Sn ⊂ S be the ball of
radius n with center v(0) for this action, that is, the set of all elements w(v(0)), where w is of
length at most n in W (a,b). Let Q n be the ball of radius n with the same center, for the action
of the free submonoid W (a). The distortion function for the action of W (a) with respect to the
action of W (a,b) by definition equals f (n) = min{m | Sn ⊂ Q m}. Now S

22i contains ψ(v(22i − 1)) =
v(22i+1

), and v(22i+1
) ∈ Q

22i+1 \Q
22i+1 −1

. It follows that f (n) � n2 for n = 22i
. But if m ∈ [n,n2 − 1],

and v(m) results from v(0) without transformations of the form v(22i − 1) → v(22i+1
), then it is

easy to estimate that we will need to apply ϕ and ψ more times compared to the case where this
transformation has been applied. (Using this transformation saves 22i+1 − 22i

applications of ϕ and
all other possible applications of ψ save less than 22i

. Here we take into account that all v(i) where
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i ∈ [n,n2 − 1) are mapped by ψ to v(0).) It follows that if n = 22i
and m ∈ [n,n2 − 1] then the vector

with the greatest label in Sm is v( f (n) + (m − n)) and so f (m) = f (n) + m − n � f (n) + m.
Now let us assume that g : N → N is a superadditive function and f is equivalent to g , that is,

f (n) � tg(tn) and g(n) � t f (tn) for some positive integer t . We choose n = 22i
> t4(t2 + 1). If m =

t2(t2 + 1)n then n � m < n2, and we can write

(
t2 + 1

)
f (n) � t

(
t2 + 1

)
g(tn) � tg

((
t2 + 1

)
tn

)
� t2 f

(
t2(t2 + 1

)
n
)

= t2 f (m) � t2( f (n) + m
)

and so f (n) � t2m = t4(t2 + 1)n. Since f (n) � n2, we immediately arrive at a contradictory inequality
n � t4(t2 + 1). Thus the distortion function f (n) is not equivalent to a superadditive function.

Example 8. In each of the cases of associative, Lie or Jordan algebras, there exists a finitely generated
algebra L with a finitely generated subalgebra M such that distM

L is not superadditive.

Proof. Let us consider a linear space V over a field F with basis S from the above example and
extend by linearity the maps ϕ and ψ to linear transformations of V . Then V naturally becomes a
left module over the free associative algebra A = A(x, y) over F with x acting as ϕ and y as ψ .
The linear space T = A ⊕ V becomes an associative algebra if we keep the operations of A, the left
action of A on V and additionally set v1 v2 = 0 and vg = 0, for all and v1, v2, v ∈ V and g ∈ A,
with free term zero. One can then make T into a Lie algebra, respectively, Jordan algebra, if one sets
[a,b] = ab − ba, respectively, a ◦ b = ab + ba. Since the argument that follows is similar for all three
cases, let us consider Lie algebras. Let L = L(x, y) ⊕ V be a Lie algebra generated by x, y, v(0) and
M = Span{x} ⊕ V a (Lie) subalgebra of L generated by x, v(0) (it is natural to call Lie algebras like
M cyclic, see also Section 4.3). The mth term of the degree filtration β of M defined by {x, v(0)}
is Span{x} ⊕ Span{Q m}. The intersection of the nth term of the degree filtration α of L defined by
{x, y, v(0)} with M is Span{x} ⊕ Span{Sn}. Therefore, distβα∩M = f , the function from our previous
example. We know that f is not equivalent to any superadditive function. �

This result and Theorem 6 allow one to produce the following.

Example 9. There exist a finitely generated Lie algebra L and its finitely generated subalgebra M such
that distU (M)

U (L) �= distM
L .

Proof. This follows because one can choose L and M as in Example 8 so that distM
L is not superaddi-

tive and at the same time, by Theorem 6, distU (M)
U (L) is always superadditive. �

3. Realizing tame filtrations as degree filtrations under embeddings

In this section we obtain our central results concerning tame filtrations in both associative and
Lie algebras. We show that any tame filtration of a countably-dimensional algebra B can be obtained
by restriction from a degree filtration of a finitely generated algebra A, where B is embedded as a
subalgebra. Then we prove that actually A can be chosen simple.

One general remark about the statements and proofs of our theorems in this and the next section
refers to “if and only if” claims. As we noted in Introduction, the restriction of a tame filtration of
an algebra to a subalgebra is always a tame filtration. Therefore, when we claim that a filtration β

of an algebra B is a tame filtration if and only if β is equivalent (or equal) to the restriction α ∩ B
of a degree filtration of an algebra A where B is embedded as a subalgebra we actually do not need
to proof the “if” part. So in each such theorem we will be proving the “only if” part, without further
comment.
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3.1. Composition lemmas for associative and Lie algebras

Let A(X) be the free associative algebra with free generating set X . Given a nonzero polynomial
f ∈ A(X), the highest word, with respect to Shortlex, which enters f with nonzero coefficient is
called the leading term or the leading word of f and is denoted by f . We call f monic if the coefficient
of f in f is 1.

In the definitions and lemma that follow, the total order on W (X) does not need to be Shortlex,
however it must be a semigroup order, that is, u � v must imply uw � v w and wu � w v , for any
word u, v, w ∈ W (X). The remainder of this subsection can be traced back to [6] (see also [8]).

Definition A. Let W (X) be given a semigroup total ordering, f and g two monic polynomials in A(X),
with leading words f and g . Then, there are two kinds of compositions of f and g:

(i) If w is a word such that w = f a = bg for some a,b ∈ W (X) with deg( f )+deg(g) > deg(w), then
the polynomial ( f , g)w = f a − bg , is called the intersection composition of f and g , with respect
to w .

(ii) If w = f = agb for some a,b ∈ W (X), then the polynomial ( f , g)w = f − agb is called the inclu-
sion composition of f and g , with respect to w .

Notice that the leading word of ( f , g)w is strictly less than the leading word of f a or gb in the
first case and of f in the second.

Definition B. A set of monic polynomials S is closed under compositions or is a Groebner–Shirshov set if
any composition ( f , g)w of elements f , g ∈ S can be written in A(X) as ( f , g)w = ∑

αiai f ibi , where
f i ∈ S , αi ∈ F , and the leading word ai f ibi of each ai f ibi is strictly less than w .

Composition Lemma for Associative Algebras . Let S be a subset of the free associative algebra A(X) over
a field F , consisting of monic polynomials, I a two-sided ideal generated by S, A = A(X)/I . Then the following
conditions are equivalent:

(i) S is a Groebner–Shirshov set.
(ii) For any element f ∈ I we have f = asb for some s ∈ S and a,b ∈ W (X).

(iii) The set of cosets represented by reduced words {u + I | u ∈ W (X), u �= asb, s ∈ S, a,b ∈ W (X)} is a
basis of A.

In the case of Lie algebras the notion of a set of Lie polynomials closed under composition is
defined as follows. We always view a free Lie algebra L(X) as a Lie subalgebra in A(X) generated by
X under the bracket operation [a,b] = ab − ba. The elements of L(X) are called Lie polynomials in X .
The leading word f of a Lie polynomial f ∈ L(X) is defined because f is an element of A(X). Also
we call a Lie polynomial monic if it is monic as an associative polynomial.

The elements of A(X) resulting from X by repeated application of the bracket operation only are
often called (higher) commutators. Forgetting brackets on a commutator c produces a unique word w ,
which is called the (associative) carrier of c.

If X is totally ordered then there is so called Shirshov order � on W (X) which is lexicographic
unless we compare a word with its proper prefix; in that case the prefix is greater than the word.
This order induces an order on the set of commutators: [u] � [v] if and only if u � v . With each
word w ∈ W (X) one can associate the set C(w) of its cyclic permutations. If w is greater than any
other word in C(w), we call w regular. If f ∈ L(X) then f is always regular. In particular, if c is a
commutator then c is regular.

A special set of commutators forms a basis of the vector space L(X) over F . Its elements, called
basic commutators, are constructed using induction by degree. The elements of X are basic commu-
tators of degree 1. Suppose we have defined basic commutators of degree < n. Let c,d be any basic
commutators of degrees k,n − k < n, satisfying
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(i) d ≺ c;
(ii) if c = [c1, c2] then c2 � d.

In this case, we declare [c,d] a basic commutator of degree n. For the basic commutators, the leading
word and the associative carrier are the same thing, and the map c → c is the bijection between the
set of basic commutators and the set of regular words. In particular, if [c,d] is a basic commutator
then [c,d] = cd. The existence of inverse to the above map means that on any regular word one can
set brackets so that we obtain a basic commutator.

To formulate an important Special Bracketing Lemma by Shirshov (see [6, Lemma 3.10]), we need
the following notation. Let u and v be regular associative words u = avb, a,b ∈ W (X). Suppose we
have turned u in a basic commutator by setting brackets in such a way that one pair of matching
brackets embraces a subword vc of u where b = cd. Symbolically, we write [u] = [a[vc]d]. Let us
write c = c1 . . . cm where all ci are regular and c1 � · · · � cm . Afterwards, we set brackets in a unique
way on v and each ci to obtain basic commutators [v], [c1], . . . , [cm]. Next we form the (left-normed)
commutator w = [. . . [[v], [c1]], . . . , [cm]] and replace [vc] by w in [u]. The resulting commutator will
be denoted by κ(a, v,b). If now g is a monic Lie polynomial with leading word v included as above
in a regular associative word u then we proceed exactly as before but when we form w we replace
[v] by g . The resulting Lie polynomial will be denoted by σ(a, g,b).

If we use this notation then the following is true.

Special Bracketing Lemma . Let u and v be two regular associative words such that u = avb, a,b ∈ W (X).

(i) In the unique setting of brackets on u which makes it into a basic commutator two pairs of matching
brackets are set as follows: [u] = [a[vc]d], where b = cd, c,d ∈ W (X).

(ii) If we use the bracketing of (i) to form the commutator σ(a, [v],b), as described before this lemma, then
σ(a, [v],b) = u.

We will use the above notation in the definitions and lemma that follow.

Definition C. Let f and g be two monic Lie polynomials in L(X) ⊂ A(X). Then there are two kinds
of Lie compositions:

(i) If w = f = agb for some a,b ∈ W (X), then the polynomial 〈 f , g〉w = f − σ(a, g,b) is called the
composition of inclusion of f and g with respect to w .

(ii) If w is a word such that w = f b = ag (then w has to be regular!), for some a,b ∈ W (X), with
deg( f ) + deg(g) > deg(w), then the polynomial 〈 f , g〉w = σ(1, f ,b) − σ(a, g,1) is called the
composition of intersection of f and g with respect to w .

Notice that the leading word of 〈 f , g〉w is strictly less than that of f in the first case and each of
f b or ag in the second.

Definition D. A nonempty set S ⊂ L(X) of monic Lie polynomials is closed under composition or is a
Groebner–Shirshov set if any composition h = 〈 f , g〉w of f , g ∈ S with respect to w can be written as
h = ∑

i αiσ(ai, si,bi) where si ∈ S , αi ∈ F , ai,bi ∈ W (X) and ai sibi < w , for all i.

Proposition GS . A set S ⊂ L(X) ⊂ A(X) is Groebner–Shirshov in L(X) if and only if it is such in A(X).

Composition Lemma for Lie Algebras . Let S ⊂ L(X) ⊂ A(X) be a nonempty set of Lie polynomials in X.
Let I be the Lie ideal generated by S in L(X) and J the two-sided associative ideal generated by S in A(X).
Then the following conditions are equivalent:

(i) S is a Groebner–Shirshov set in L(X).
(ii) For any elements f ∈ J we have f = asb for some s ∈ S and a,b ∈ W (X).
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(iii) The cosets [u] + I , such that u is a regular word in W (X), without subwords s where s ∈ S, form a basis
in factor-algebra L(X)/I .

(iv) The cosets u + J , u a word in W (X) without subwords s where s ∈ S, form a basis in factor-algebra
A(X)/ J .

3.2. Tame filtrations in associative algebras

Let B be a subalgebra in a free associative algebra A = A(X), #X > 1, generated by a set M
of words such that no nonempty suffix of any word in M is a prefix of another word in M and
also none of the words in M is a subword of another word in M. We call this condition “non-
overlapping”. Such sets exist and, moreover, one can choose M so that the growth of the number of
elements in the set Mn of words of degree � n in M is a function that majorates an exponential
function cn , with c > 1, for all sufficiently large n (“exponential sets”). As an example of such set in
the case where there are only two variables, one can consider the set of all words x3 ywxy3, where
ywx has no subwords x3 or y3. But if we do not restrict the number of variables, then, given any
natural c, we can produce a non-overlapping set M with #Mn � cn , for all n � 1 if we proceed in
the following way. We choose X with #X = c + 2, select two letter x and y and consider the set M
of all words xwy such that w does not depend on x, y. For this set M, we would have #Mn � cn ,
for any n > 2. But since we also want to have #M1 � c and #M2 � c2 we set d = c2, and add to
X new variables z1, . . . , zc , z(1)

1 , . . . , z(1)

d , u(2)
1 , . . . , u(2)

d and to M new words of length one: z1, . . . , zc

and of length two: z(1)
1 z(2)

1 , . . . , z(1)

d z(2)

d .
Notice that from the “non-overlapping” property of M, it is immediate that the set U of products

of words in M (including the empty word 1) is a free submonoid U ∼= W (M) and the linear span
B of U is the free unital associative algebra B ∼= A(M). Two easy properties of U are as follows.
If u ∈ U and u = avb, where also v ∈ U , then a,b ∈ U . Also if u, v, w ∈ W (X), w �= 1 and v w, wu ∈ U
then u, v, w ∈ U . Another remark is that any total order on W (X) induces a total order on U .

Now notice that given a total semigroup ordering of the words in a free associative algebra, any
ideal I has a Groebner–Shirshov basis. This is simply any basis S of I consisting of monic polynomials
and such that the leading words of different elements of the basis are different. So if I is an ideal in
B = A(M), with induced order from W , then there is Groebner–Shirshov basis S of I , as an ideal
of B.

Lemma 3. Let M be a non-overlapping set in the free associative algebra A(X) of rank � 2, B = alg M, I an
ideal of B, S a vector space basis of I consisting of monic polynomials such that the leading words of different
elements are different. Consider the ideal J = idA I of A generated by I . Then the leading word of each element
of J contains the leading word of an element in S , as a subword.

Proof. We would easily derive this by Composition Lemma for Associative Algebras (Section 3.1)
provided that we have checked that the set S is closed under composition. For the intersection com-
position, we need to take two polynomials f , g ∈ S and assume that there are words a,b ∈ W (X)

such that w = f a = bg . Since f , g ∈ U , by one of the above mentioned properties of M, it follows
that a,b ∈ U ⊂ B. Then both f a and bg are in I . Each can be written as a linear combination of
elements of S with leading word w in both cases. As a result, ( f , g)w = ∑

αi f i where each f i is in
S and f i < w , for all i. Therefore, S is closed under the intersection composition. For the inclusion
composition, suppose that w = f = agb, for a,b ∈ W (X). Then, as before, a,b ∈ U ⊂ B and so both f
and agb are in I . The same argument, as just before, shows that S is closed also under the inclusion
composition ( f , g)w = f − agb. Now the conditions of Composition Lemma for Associative Algebras
are satisfied. As a result, the leading word f of every polynomial f ∈ J contains as a subword a
leading word g of a polynomial g ∈ S ⊂ I . �

Adopting the notation of the previous lemma, let us assume that f ∈ J ∩ B. In this case, f is the
product of words in M and also by this lemma, f = agb, g ∈ S . Since g is also a product of words
in M, it follows that a and b are products of words in M. Finally, agb ∈ I and then f − agb ∈ J ∩ B
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with a lesser leading word. Using induction by leading word shows that f ∈ I . We now can conclude
that J ∩ B = I . Actually, this result is a particular case (when f ∈ B ∩ J ) of the following.

Lemma 4. Let f be a polynomial in B. Then in the coset f + I there is a polynomial f0 , such that f0 � h, for
any polynomial h in the coset f + J . In particular, J ∩ B = I .

Proof. Let f0 be a polynomial in f + I with leading word minimal possible in A. Proving by contra-
diction, let us assume that there is h ∈ f + J , such that h < f0. Let us apply Lemma 3 and Composition
Lemma for Associative Algebras to f0 − h, which is a nonzero element of J . We have f0 − h = agb,
where g ∈ I . But f0 − h = f0 ∈ B, hence, as earlier, a,b are products of elements in M and then
agb ∈ I . It follows that f0 can be replaced by a difference f0 − agb whose leading word is lower, in
contradiction with the choice of f0. �

One of the simplest non-overlapping sets of words in the variables {x, y, z} is the set M = {xyi z |
i = 0,1,2, . . .}. This set can be used to prove that any countably-dimensional algebra B can be embedded
in a finitely generated algebra (A.I. Malcev’s result, see [13]). Indeed, let b0,b1,b2, . . . be a subset of
B that generates B . Consider B = alg M ⊂ A(x, y, z). As noted above, B is a free associative algebra
with free generating set M. Then the map xyi z �→ bi , i = 0,1,2, . . . , extends to an epimorphism
ν : B → B . Let I be the kernel of ν , J the two-sided ideal of A generated by I , A = A/ J and μ the
natural epimorphism μ : A → A/ J . By Lemma 4, we have J ∩ B = I and so the well-defined map
ϕ : B → A given by ϕ(b) = μ(ν−1(b)) is the desired embedding of B in a 3-generator algebra A.

For our argument in Section 4, we need a modification of this general result, as follows.

Proposition 4. Suppose B is an arbitrary unital countable F -algebra with a finite generating set S and
b1,b2, . . . is an arbitrary enumeration of all of its elements (each element may occur infinitely many times)
such that degS bi � i, for all i = 1,2, . . . Then there exists a unital finitely generated F -algebra A containing
B as an undistorted subalgebra and elements a,b, c ∈ A, such that 1 = ac and bi = abic (i = 1,2, . . .).

Proof. The argument preceding the statement of this proposition applies, with b0 = 1. If we select in
A = A/ J three elements a = μ(x), b = μ(y), c = μ(z) and identify B with its image under embedding
ϕ then we will have ac = 1 and abic = bi ∈ A, for all i = 1,2, . . . , as needed.

To prove the undistortedness of this embedding, we recall the generating set S in B and choose
the generating set T = {a,b, c} for A. Let β = {Bn} be the degree filtration of B defined by S and
α = {An} the degree filtration of A defined by T . We select u ∈ B and assume u ∈ An . In this case,
there is f (x, y, z) ∈ A of degree n such that u = f (a,b, c). By Lemma 4 then there is f0(x, y, z) ∈ B
whose degree with respect to {x, y, z} is at most n and such that f0(x, y, z) + I = u. In this case we
can rewrite f0(x, y, z) in terms of the free generating set M of B: f0(x, y, z) = g(xz, xyz, . . . , xyk z).
Each monomial of g has the form xyi1 z . . . xyim z and i1 + · · · + im + 2m � n. Each such monomial
will map under ϕ to bi1 . . .bim and this element has degree at most i1 + · · · + im � n with respect

to the generating set S of B . Hence u = ϕ(g) ∈ Bn . Thus, distβα∩B(n) � n, and the embedding has no
distortion. �

We now prove the main result of this subsection.

Theorem 7. Let B be a unital associative algebra over a field F .

(1) A filtration β on B is tame if and only if β ∼ α ∩ B where α is a degree filtration on a unital 2-generator
associative algebra A where B is embedded as a subalgebra.

(2) A filtration β on B is tame if and only if β = α ∩ B where α is a degree filtration on a unital finitely
generated associative algebra A where B is embedded as a subalgebra.
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Proof. If B is a subalgebra in a finitely generated algebra A, and β ∼ α ∩ B where α is a degree
filtration of A then, as noted in Introduction just after Definition 2, β is tame. This proves the “if”
parts in claims (1) and (2).

Let us now prove the “only if” part in claim (1). Suppose that β = {Bn} is a tame filtration on
a unital associative algebra B . We will use the notation of the first two paragraphs of the current
subsection. Notice that the subalgebra B defined earlier is a free graded subalgebra in a graded algebra
A and that M is a free graded generating set of B. We write A = ⊕∞

m=0 A(m) , where A(m) is the
linear span of words of length m in X . Since B is generated by words, we have B = ⊕∞

m=0 B(m) where
B(m) = B ∩ A(m) . These gradings induce filtrations: the degree filtration with terms An = ⊕n

m=0 A(m)

on A and a tame filtration with terms Bn = ⊕n
m=0 B(m) on B. We also set M(m) = M ∩ A(m) .

Since the growth of the sequence {#M(n)} majorates an exponential function, there is a positive
integral constant C such that dim Bn � #M(Cn) � dim BCn , for any n. This allows us to define an
epimorphism ν : B → B so that for each n = 1,2, . . . , Span{ν(M(Cn))} = Bn . We also may assume
that ν(M(k)) = 0, for the values of k not divisible by C . Since M(Cn) ⊂ BCn we have Bn ⊂ ν(BCn). The
converse inclusion is also easy. Indeed,

ν(BCn) = Span

{ ∑
l1+···+ls=Cn

ν
(

M(l1)
) · · ·ν(

M(ls)
)}

= Span

{ ∑
k1+···+kt=n

ν
(

M(Ck1)
) · · ·ν(

M(Ckt )
)}

⊂
∑

k1+···+kt=n

Bk1 . . . Bkt ⊂ Bn.

So we have Bn = ν(BCn).
Now let I be the kernel of ν . If J is the ideal of A generated by I then by Lemma 4, B ∩ J = I . Let

us set A = A/ J and suppose that μ is the canonical epimorphism from A to A. The degree filtration
of A induces the degree filtration on A given by An = (An + J )/ J , for n = 0,1,2, . . . . The natural
embedding ϕ : B → A is given by ϕ(u) = μ(ν−1(u)). We identify B with its image in A, using ϕ . To
complete the proof of our theorem, it is sufficient to show that Bn = B ∩ ACn .

Since BCn ⊂ ACn and for any u ∈ Bn we have u = ν(b) = b + I , where b ∈ BCn ⊂ ACn , we have
ϕ(u) = ν̃(ν−1(u)) = μ(b) = b + J ∈ ACn . Thus Bn ⊂ B ∩ ACn .

To prove the inverse inclusion, we pick μ(a) ∈ B ∩ ACn . Then a can be chosen in ACn and there
is u ∈ B such that μ(a) = ϕ(u) = μ(ν−1(u)). If u = ν(b), for some b ∈ B, then a + J = b + J . Using
Lemma 4, we can find b0 ∈ b + I such that b0 ∈ BCn . Then μ(a) = μ(b0) = ν(b0) ∈ ν(BCn) ⊂ Bn , and
so B ∩ ACn ⊂ Bn , as claimed. Now the proof of claim (1) is complete.

To prove the “only if” part in claim (2), notice that the previous proof works for any number
of elements in the set X , #X � 2. But if #X is big enough, as specified in the first paragraph of
this subsection, then the growth of the set M can be made faster than any exponential function.
Consequently, the constant C that was used to cover Bn by BCn can be take equal 1. In this case we
get Bn = B ∩ An and so the original tame filtration on B is simply the restriction of a degree filtration
on an appropriate finitely generated algebra A. This complete the proof of claim (2), hence of the
whole theorem. �

An argument very similar to the one used in the proof Theorem 7, allows one to derive the fol-
lowing result about the monoids.

Theorem 8. Let N be a countable monoid.

(i) There exist a 3-generator monoid M where N is embedded as a submonoid.
(ii) If N is finitely generated then the embedding of N in a 3-generator monoid M can be done without dis-

tortion.
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(iii) A filtration β on N is a tame filtration if and only if there is a finitely generated monoid M with a degree
filtration α such that β ∼ α ∩ N.

Proof. All claims follow if we replace the occurrences of the word “monoid” by the words “monoid
algebra”. Notice that free associative algebra A = F [W (X)], its free subalgebra B = F [W (M)] are
monoid algebras.

To prove claim (i) we have to use the argument preceding Proposition 3. If the elements
{b0,b1, . . .} are the elements in N then ν : B → B to W (M) is an epimorphism of monoids W (M)

to N . The kernel I of ν is then generated by the elements of the form u − v where u, v are some ele-
ments of M. The same elements generate J and thus A = A/ J is a monoid algebra of the 3-generator
monoid M = μ(W (X)). The restriction of ψ to N is an embedding of monoids from N to M , proving
claim (i).

To prove claim (ii) we have to apply Proposition 4 in conjunction with Proposition 3, which relates
the distortion of the embedding of monoids to that of respective monoid algebras.

To prove the claim (iii), we only need to note that tame filtrations on N come from a tame filtra-
tions on B = F [N] and the degree filtration on M comes from the degree filtration on W (X) defined
by X . Thus, these filtrations are merely the restrictions of the tame filtration of B to N and the degree
filtration of A to M , and the number of elements in the nth term of each of these filtrations for N
or M is the dimension of the respective filtrations for B and A. As a results, our claim about tame
filtration follows from Theorem 7. �
3.3. Tame filtrations in Lie algebras

Let X be a totally ordered finite set and A(X) the free associative algebra with X as the set of
free generators. Let x, y ∈ X and assume that X is ordered in such a way that x is greater than
any other letter in X . This ordering expands to one of the total orderings on W (X): Shortlex or
Shirshov ordering described in Section 3.1. As in the previous subsection, we will be using here an
exponentially growing non-overlapping set M in one of two forms: x3 ywxy3, where ywx has no
subwords x3 or y3, and also, provided that #X > 3, the set of all word xuy, where u ∈ W (X) is a
word without letters x and y. Notice that in either case M consists of regular words in the sense of
Section 3.1. Some of the properties of the words in the free semigroup W (M) have been indicated
in the first paragraphs of the previous subsection.

Now let N be the set of basic commutators obtained by setting brackets on the elements of M,
B the subalgebra in the free associative algebra A generated by M, and C the Lie subalgebra in
the free Lie algebra L = L(X) generated by N . As in the previous subsection, we have free monoid
U ∼= W (M), the free associative algebra B ∼= A(M) and now the free Lie algebra C ∼= L(N ).

Lemma 5. Let u ∈ W (M) be a regular associative word in W (X). If we set brackets on u in a unique way so
that the resulting word is a basic commutator [u] in L(X) then [u] ∈ L(N ).

Proof. Let us write w = w1 . . . wm , where each wi is an element of M. In the case where M is the
set of the first kind, the argument is as follows. We apply Shirshov’s method of bracketing (see [6,
Lemma 3.10]). It consists of subsequent iterations during each of which we find the smallest word v
among those already bracketed (as noted before Special Bracketing Lemma in Section 3.1, the words of
length 1 are already bracketed!). For each already bracketed subword u �= v we look at the maximal
number l of bracketed subwords equal v , which follow u, and introduce the bracketed subwords of
the next level by setting brackets on uvl in a left-normed way to obtain bracketing [[u, v], v, . . . , v︸ ︷︷ ︸

l

].

Suppose that after t iterations of the process the brackets respect the decomposition w = w1 . . . wm .
Let us assume to the contrary that after the next iteration, the brackets have been set to give the
commutator [[u, v], v, . . . , v︸ ︷︷ ︸

l

], whose associative carrier contains a suffix of wk and a prefix of wk+1.

Since the maximal letter x cannot be the last letter of the regular word v , the subword v . . . v must
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contain the prefix x3 of wk+1. Since uv . . . v is regular, it follows that x3 is a prefix of u. Now since
v . . . v contains x3 but does not end by x, it follows that v itself must contain x3. But v is regular and
so x3 must be the prefix of v . As a result, u = wk and v is a prefix of wk+1. But Shirshov’s bracketing
assumes that v is the smallest of the words already bracketed in course of the first t iterations (but
before the (t + 1)st begins!). This means that after t steps, our word is of the form [v1] · · · [vt], where
each vi is not less than v , hence x3 is the prefix of vi . But then v1 = w1, v2 = w2, . . . , which is what
we want.

In the case of M of the second kind the argument goes through if we replace x3 by x. �
This lemma and its proof allow one to modify Special Bracketing Lemma (Section 3.1).

Corollary 2. Let u, v ∈ W (M) be regular associative words, u = avb where a,b ∈ W (X). Suppose g ∈ L(N )

has leading word v. Then σ(a, g,b) is an element of the Lie ideal of L(N ) generated by g.

Proof. First of all, by the properties of the set M we have that a,b ∈ M. Using the same method of
choosing the smallest letter, etc., as in the previous lemma, we can see that throughout the process
of forming κ(a, v,b) = [a[[v], [c1], . . . , [cn]]d] all commutators arising are in L(N ) and then when we
replace [[v], [c1], . . . , [cn]] by g we obtain the desired property of σ(a, g,b). �

We now denote by I an ideal of Lie algebra C , J the two-sided (associative) ideal of A generated
by I , and K the ideal of Lie algebra L, generated by I . Using Zorn’s lemma, one can choose a linear
basis S of I in such a way that different elements of S have different leading words. Each element
in S is a linear combination of basic commutators and so these leading words are regular associative
words.

Lemma 6. Let I , J and K be ideals in C , A and L, respectively, as just defined, and f ∈ J or f ∈ K , f �= 0.
Then the leading word f has a subword equal to the leading word of an element in S .

Proof. Since K ⊂ J , we only need to consider the case where f ∈ J . Then, by Composition Lemma for
Associative Algebras (Section 3.1), we need to check that S is closed under associative compositions.
In view of Proposition GS (Section 3.1), it is sufficient to check this claim for Lie compositions of two
elements in S .

First, let us consider the inclusion composition 〈 f , g〉w for two elements f , g ∈ S where w =
f = ugv , for some u, v ∈ W (X). Since f ∈ W (M), it follows that in this case also u, v ∈ W (M).
By Corollary 2, σ(u, g, v) is an element of I . As such, σ(u, g, v) can be written as a linear combi-
nation of elements of S , with a leading basic commutator c. The leading basic word of σ(u, g, v) is
then c and hence by Special Bracketing Lemma (Section 3.1), c = ugv = f . It follows then that the
leading basic commutator in the expression of f is also c and then 〈 f , g〉w = σ(u, g, v)− f is a linear
combination of elements in S , strictly less than f .

Second, let us consider the composition of intersection 〈 f , g〉w for two elements f , g ∈ I where
w = f u = v g , for some u, v ∈ W (X). Again, using the same argument, u, v ∈ W (M). By Corollary 2,
σ(1, f , u) is in the ideal of L(N ) generated by f and σ(v, g,1) is in the ideal of L(N ) generated
by g . Each of those ideals is in I . As in the previous case, then each of σ(1, f , u), σ(v, g,1) is a linear
combination of elements of S . By Special Bracketing Lemma (Section 3.1) the leading words of both
Lie polynomials are the same. When we form the composition 〈 f , g〉w = σ(1, f , u) − σ(v, g,1), we
observe that this is a linear combination of elements of S whose leading words are strictly smaller
than w .

To comply with Definition D (Section 3.1), let us notice that for any s ∈ S we always have
σ(1, s,1) = s. In that case, for both types of composition, we have

〈 f , g〉w =
∑

αi si =
∑

αiσ(1, si,1)
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where each si ∈ S satisfies si < s. In this case also 1 · si · 1 < s and by Definition D, we have that S is
closed under composition.

Now we conclude that S is a Groebner–Shirshov basis for J and by Composition Lemma for Asso-
ciative Algebras (Section 3.1) our claim follows. �

The next lemma is an analogue of Lemma 4. We will need it to prove a Lie analogue of Theorem 7.

Lemma 7. Let f ∈ C and f0 be an element of minimal degree in f + I . Then deg f0 � deg h, for any h ∈ f + J ,
hence deg f0 � deg g for any g ∈ f + K .

Proof. Arguing by contradiction, we consider f0 − h ∈ J . By Lemma 6, f0 = f0 − h contains as a
subword the leading word f of an element f ∈ I . We have f0 = u f v . Since f0 ∈ C , we have that
f ∈ W (M). As before, then also u, v ∈ W (M). In this case again by Corollary 2, the special bracketing
on w = u f v produces an element σ(u, f , v) ∈ I whose leading word is the same as that of f0.
Subtracting σ(u, f , v) from f0 we find an element of f0 + I whose leading word is strictly smaller
than that of f0, which is a contradiction. �

As in the case of associative algebras, an immediate corollary is the following. Recall that I is an
ideal of C = L(N ), K the Lie ideal of L(X) generated by I and J the two-sided associative ideal of
A(X) generated by I .

Lemma 8. J ∩ C = I = K ∩ C .

The next result and its proof are Lie algebra analogues of Theorem 7. This is the best result about
general tame filtrations on Lie algebras in this paper. Notice that if a Lie algebra H is a Lie subalgebra
in an associative algebra R with tame filtration {Rn} then {H ∩ Rn} is always a tame filtration in H .

Theorem 9.

(1) A filtration χ on a Lie algebra H is tame if and only if χ ∼ γ ∩ H where γ is the degree filtration on a
2-generator Lie algebra G where H is embedded as a subalgebra, if and only if χ ∼ ρ ∩ H where ρ is the
degree filtration on a 2-generator associative algebra R where H is embedded as a Lie subalgebra.

(2) A filtration χ on a Lie algebra H is tame if and only if χ = γ ∩ H where γ is the degree filtration on a
finitely generated Lie algebra G where H is embedded as a subalgebra, if and only if χ = ρ ∩ H where ρ is
the degree filtration on a finitely generated associative algebra R where H is embedded as a Lie subalgebra.

Proof. As in all similar theorems (see notes after Definition 2 and just before this theorem), it suffices
to prove the “only if” claim in both (1) and (2). Let us start with claim (1). Suppose χ = {Hn} is a tame
filtration of H . Similarly to the approach of Theorem 7, we consider the free associative algebra A(X),
#X = 2, the non-overlapping set M whose growth majorates an exponential function, the set N
of basic commutators obtained by setting brackets of words from M, a free associative algebra B ∼=
A(M) and a free Lie algebra C ∼= L(N ). The natural degree filtrations {An} of A(X) and {Ln} of L(X)

by restriction induce tame filtrations {Bn} on B and {Cn} on C .
Using the same constant C and the argument that follows in Theorem 7, we define an epimor-

phism θ : C → H such that Hn = θ(CCn). Let I be the kernel of this homomorphism, K the Lie ideal
of L(X) generated by I and J the two-sided associative ideal generated by I . We set G = L(X)/K
and R = A(X)/ J . Both these algebras have degree filtrations γ = {Gn} and ρ = {Rn} defined by the
natural images of X . By Lemma 8, H naturally embeds in both G and R and using Lemmas 7 and 8 in
place of Lemma 4 allows us to conclude that χ ∼ γ ∩ H and χ ∼ ρ ∩ H . This takes care of claim (1).

Now since constant C in our present proof is the same as in the proof of Theorem 7, we can
easily pass from present claim (1) to present claim (2) in the same manner as we did in the case of
associative algebras. �
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3.4. Undistorted embeddings in simple algebras

In this subsection we will discuss the possibility of undistorted embedding of an algebra as a
subalgebra in a simple algebra. Note the many important results about embedding of algebras in
simple algebras have been obtained by L.A. Bokut’, starting with [5], and his coauthors. One of the
most up-to-date sources, which also contains an extensive list of references, is [7] (the behavior of
filtrations is not among the questions studied in those papers).

Theorem 10. Any finitely generated associative, respectively, Lie algebra can be embedded without distortion
in a 2-generator simple associative, respectively, Lie algebra.

Proof. First let B be a finitely generated associative algebra with generators a1, . . . ,am and β = {Bn}
the respective degree filtration. Let us add to the above generators two more: x, y, and consider
an algebra A given by the set of generators a1, . . . ,am, x, y, and a set of defining relations which
is the union of the set S of ALL relations of B and a set R of additional relations which we are
going to define next. By α = {An} we denote the degree filtration of A defined by the generating set
{a1, . . . ,am, x, y}.

To start with, we consider an auxiliary set M in alphabet {x, y} satisfying the same conditions as
the set M in Section 3.2: no word in M is a proper subword of another word in M and no proper
prefix of a word in M can be a proper suffix of another word in M. Next we introduce a well-order
on the words in free monoid W (a1, . . . ,am, x, y) as follows. First we set a1 < a2 < · · · < am < x < y.
For words of arbitrary length, we write u < u′ if either the length of u is less than the length of u′
and in the case of equality, if u is lesser than u′ lexicographically (ShortLex).

Now let { f1, f2, . . .} be the list of all monomials in a1, . . . ,am , x, y. We will introduce defining
relations, two at a time, for each i = 1,2, . . . , provided that f i has no subwords equal to the leading
words of relations in S and previously introduced relations of the set R under construction. If this
condition is met, we first introduce a new relation ui f i vi = 1, where the “wings” ui �= vi are arbitrary
words in M such that the length of each of the ui and vi is at least twice the degree of f i and of
any of previously introduced relations, with the exception of the relations from S . Then we introduce
u′

i f i v ′
i = 0 with the same conditions on the new “wings” u′

i �= v ′
i and additionally we will require that

the length of each of the new wings u′
i, v ′

i is at least two lengths of each of the old ones.
Notice that S ∪ R is complete under composition (see Definition A). Indeed, the set of “old” rela-

tions S was complete from start, as the set of ALL relations of B . Any “new” relation, that is, from R,
has the form u f v − g , where g is one of polynomials 0 or 1. The leading word of such relation is
u f v , where u, v are monomials in x, y. Therefore no partial overlapping with the leading words of the
“old” relations is possible. It could be possible that a leading word of an “old” relation is a subword
in f . But we deliberately excluded such monomials f in the process of construction of R. Finally, the
leading words of “new” relations cannot overlap or be subwords of each other, thanks to the choice
of the set M of words in the variables x, y. Thus, the closure of S ∪ R under composition is itself, as
needed.

To proceed further, first notice that A is nonzero. Indeed, since 1 does not contain any leading
words of the relations in S ∪ R, by Composition Lemma for Associative Algebras (Section 3.1) it
follows that 1 �= 0 and so A �= {0}. To show that A is simple, it is sufficient to find, for each nonzero
in A polynomial f , two monomials u, v such that u f v = 1. Let us write f as a linear combination of
monomials f (i) not containing leading words of relations in S ∪ R. If the number of summands in
this expression is 1 then by our construction, there are u, v ∈ U such that S ∪ R contains u f v = 1.
Then the ideal I of A containing f must contain 1 and thus be equal to the whole of A.

Let us now assume that f is a linear combination of monomials f (1), f (2), . . . , f (n) of the form
f = λ1 f (1) + λ2 f (2) + · · · + λn f (n) where all coefficients λ1, . . . , λn are nonzero and f (1) > f (2) >

· · · > f (n), in the sense of the ordering introduced in the second paragraph of the present proof. One
of the relations introduced by us was u(1) f (1)v(1) = 0. Then u(1) f v(1) will be the linear combina-
tion

u(1) f v(1) = λ2u(1) f (2)v(1) + · · · + λnu(1) f (n)v(1) ∈ I
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of less than n summands. We need to show that none of the monomials u(1) f (i)v(1), i = 2, . . . ,n,
in the previous equation contains a leading word of a relation in S ∪ R, as a subword. Proving by
contradiction, let us assume, say, that u(1) f (2)v(1) contains such leading word w . If w has no let-
ters x, y then w is a subword in f (2), which is impossible. Otherwise, w = u fi v , for some i, where
the “wings” u and v are in the set of non-overlapping words M. As just above, we cannot have
w completely inside f (2) and so either u has overlapping with u(1) (hence, equal to u(1)) or v
has overlapping v(1) (hence, equal to u(1)), or both. In either case, by the nature of defining rela-
tions in R, we must have f i = f (1) and w = u(1) f (1)v(1). Since this is a subword of u(1) f (2)v(1),
the length of f (2) must be at least the length of f (1). Since f (1) > f (2), f (2) cannot be longer
than f (1). So their lengths are the same and hence f (1) = f (2), a contradiction.

As a result, our ideal I generated by f contains a linear combination of n − 1 nonzero monomials
with nonzero coefficients which allows us to apply induction and conclude that I = A.

To prove that the embedding of B in A is undistorted it is sufficient to show that if f (a1, . . . ,am) ∈
Bk \ Bk−1 for some k and f (a1, . . . ,am) = g(a1, . . . ,am, x, y) then g(a1, . . . ,am, x, y) /∈ Ak−1. In our
proof by contradiction, we will additionally assume without loss of generality that f (a1, . . . ,am) is
different in B from a polynomial with lesser leading word. Since the difference h = g(a1, . . . , x, y) −
f (a1, . . . ,am) equals 0 in A, we can apply Composition Lemma for Associative Algebras (Section 3.1),
and then the leading word of h must contain as a subword the leading word of one of defining
relations. Now by our assumption, g(a1, . . . ,am, x, y) ∈ Ak−1. Hence the leading word of h equals the
leading word of f and then f equals in B to a polynomial with lesser leading word, which is a
contradiction.

Similar construction applies also in the case of Lie algebras. Again, given a Lie algebra M with
generators a1, . . . ,am , m � 2, and ALL defining relations S , we add two new variables x, y and define
a Lie algebra L by generators a1, . . . ,am, x, y and a set of defining relations S ∪ R, where R is defined
as follows. We enumerate all basic commutators in a1, . . . ,am, x, y as g1, g2, . . . . Then consider the
set M = {xt(xy)t y2 | t = 2,3,4, . . .}, similar to the language P in [2, Theorem 1], satisfying the non-
overlapping condition. Next we totally order the free monoid W (a1, . . . ,am, x, y) so that x is the
largest variable. We can easily observe that M consists of regular words. Afterwards, we impose
brackets on (regular) words of the set M to produce the set N of basic commutators [u], for u ∈ M.

Now for each gi such that gi has no subwords equal to the leading words of relations in S and
already introduced relations of R, we add to R the total number of m + 3 relations as follows.
We consider 2(m + 3) words u( j)

i , v( j)
i ∈ M, j = 0,1, . . . ,m + 2, satisfying the following conditions.

The length of each of u(0)
i , v(0)

i is at least twice the length of gi or of any of previously introduced

relations except those in S . Also the length of each of u( j)
i and v( j)

i is at least twice the length of

each of u( j−1)

i or v( j−1)

i , for j = 1, . . . ,m + 2. Finally, we require that gi � v( j)
i ≺ u( j)

i , for all j. With

these conditions in place, all the commutators [u( j)
i ], [v( j)

i ] obtained by setting brackets on these
2(m + 3) words are basic. Also, by definition of basic commutators in Section 3.1, each commutator
[[[u( j)

i ], gi], [v( j)
i ]] is basic. Now the relations of R added on the ith step are [[[u(0)

i ], gi], [v(0)
i ]] = 0,

[[[u(1)
i ], gi], [v(1)

i ]] = a1, . . . , [[[u(m+2)
i ], gi], [v(m+2)

i ]] = y.
Notice that S ∪ R is closed under Lie composition (see Definition D). Indeed, the set of “old”

relations S was complete from start, as the set of ALL relations of M . Any “new” relation, that is
from R, has the form [[u, g], v] − h, where h is one of polynomials 0 or a1, . . . , y. The leading word
of this relation is ugv , where u, v ∈ M. Therefore no overlapping with the leading words of the “old”
relations is possible. It could be possible that a leading word of an “old” relation were a subword
in g . But we deliberately excluded such commutators g in the process of construction of R. Finally,
the leading words of “new” relations cannot overlap or be subwords of each other, thanks to the
choice of the set M of words in the variables x, y. Thus, the closure of S ∪ R under composition is
itself, as needed.

To proceed further, first notice that L is nonzero. Indeed, since x does not contain any leading
words of the relations in S ∪ R, by Composition Lemma for Lie Algebras (Section 3.1), it follows
that x �= 0 and so L �= {0}. To show that A is simple, it is sufficient, for each nonzero Lie poly-
nomial f , to find m + 2 monomials u(1), v(1), . . . , u(m+2), v(m+2) ∈ M such that [[[u(1)], f ], v(1)] =
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a1, . . . , [[[u(m+2)], f ], v(m+2)] = y. Notice that thanks to Composition Lemma for Lie Algebras (Sec-
tion 3.1), each elements of L is a linear combination of basic commutators g(i) such that g(i) has no
subwords equal to the leading words of relations in S ∪ R. If f is a basic commutator itself, then by
our construction, such u(1), v(1), . . . , u(m+2), v(m+2) ∈ M exist and then the ideal I of L containing f
must contain all generators of L, hence be equal to the whole of L.

Any element f ∈ L can be written as a reduced linear combination f = λ1 g(1) + λ2 g(2) + · · · +
λn g(n) of basic commutators g(1), . . . , g(n) with nonzero coefficients which additionally satisfies
g(1) > g(2) > · · · > g(n) and such that none of g(1), g(2), . . . , g(n) contains a leading word of a
relation in S ∪ R, as a subword. We need to prove that if a reduced linear combination as above is an
element of an ideal I of L then I = L. Let us use induction by n. We already handled the case n = 1.
Now suppose we already sorted out the case of linear combinations of length at most n − 1 and we
now deal with a linear combination f of length n > 1, as before.

Now one of the relations introduced by us was [[[u(1)], g(1)], [v(1)]] = 0, for appropriate
u(1), v(1) ∈ M. Let us set f ′ = [[[u(1)], f ], [v(1)]]. Then

f ′ = λ2
[[[

u(1)
]
, g(2)

]
,
[
v(1)

]] + · · · + λn
[[[

u(1)
]
, g(n)

]
,
[
v(1)

]] ∈ I.

Since by construction, g(2) < g(1) � v(1) ≺ u(1), all commutators on the right-hand side
of the latter equation are basic. The leading words of these commutators are regular words
u(1)g(2)v(1), . . . , u(1)g(n)v(1). As in the case of associative algebras, none of these leading
words contains the leading word of a defining relation in S ∪ R, as a subword. We also have
[[[u(1)], g(2)], [v(1)]] > · · · > [[[u(1)], g(n)], [v(1)]]. As a result, any ideal I containing f contains
also f ′ which is a reduced linear combination of length n − 1. This allows us to apply induction
hypothesis and conclude that I = L.

The undistortedness of the embedding of M in L follows by exactly the same argument, as in the
“associative portion”, if we apply Composition Lemma for Lie Algebras (Section 3.1) in place of its
associative counterpart. �

In combination with our previous results, the theorem just proved yields the following.

Corollary 3. A filtration β on a unital associative, respectively, Lie algebra B over a field F is tame if and only
if β ∼ α ∩ B where α is a degree filtration on a finitely generated simple unital associative, respectively, Lie
algebra A over F .

Proof. As usual, no need to prove the “if” claim of the theorem. Using Theorem 7 in the case of
associative algebras and Theorem 9 in the case of Lie algebras, we embed B in a finitely generated
(associative, Lie) algebra C with a degree filtration γ = {Cn} so that β ∼ γ ∩ B . This would mean
that distβγ ∩B � t · id, for some integer t . Afterwards, using Theorem 10, we embed C in a simple

(associative, Lie) algebra A with degree filtration α so that γ ∼ α ∩ C . Then distγα∩C � u · id, for some

other integer u. It remains to apply claim (3) of Proposition 1 to see that distβα∩B � (tu) · id. Thus
β ∼ α ∩ B , as claimed. �
Remark 3. A quick look at our proof of Theorem 10 reveals that we can replace the word “simple” in
the statement by “divisible” which we understand as follows. A unital algebra A is “divisible” if for
any nonzero a there exist p,q ∈ A such that paq = 1. Such algebras form a subclass of the class of
simple algebras defined within first order logic. It is known that simple algebras do not form such a
class. Note that the embeddings suggested in [5] also enjoy this property.

4. Undistorted embeddings in finitely presented algebras

As we noted in Introduction, not every tame filtration β of an infinite-dimensional finitely gen-
erated algebra B is equivalent to the intersection α ∩ B where α is a degree filtration of a finitely
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presented algebra A where B is embedded as a subalgebra. This explains the necessity of restrictions
we impose on algebras and their filtrations in this section.

For example, if a finitely generated algebra B is embedded as a subalgebra in a finitely presented
algebra A, both over a constructive field F , then it is well known that B can be defined by a recur-
sively enumerable set of defining relations. So to cover all important cases we have to impose the
condition of recursive enumerability of defining relations of B . Then, by the above remark, there are
two many tame filtration on a given infinite(-dimensional) algebra, so we have to select a reason-
ably narrow countable subset of filtrations β for which we could expect the desired results true (see
constructive filtrations below).

Finally, a very strong practical reason is that, in general, the embedding theorems of algebras
in finitely presented algebras are known only in few cases, like groups (Higman’s theorem [10]),
semigroups (Murskii’s theorem [15]) and associative algebras (Belyaev’s theorem [4]). Unfortunately,
Lie algebras are not on this list (see this story in [11]).

In the case of an algebra B without the structure of a vector space (such as semigroups or groups,
etc.) the constructivity of a finitary filtration β = {Bn} means that there exists an algorithm that lists
out the pairs (bi,degβ bi), containing all elements of B . In the case of linear algebras, this list must
contain all pairs (bi,degβ bi) where bi ’s are all elements of a β-basis B. Here by β-basis B of B we
mean a union B = ⋃

n Bn where Bn is a basis of Bn containing Bn−1.
We have the following “constructive” modifications of our results in the previous section. They

serve as a tool in the proof of Theorems 12 and 14, the latter being our central result in this section.

Lemma 9. Let B be an associative algebra over a field F with a recursively enumerable set of defining relations.
A constructive filtration β on B is a tame filtration if and only if β = α ∩ B where α is a degree filtration
on a finitely generated associative algebra A with recursively enumerable set of defining relations, where B is
embedded as a subalgebra.

Proof. We simply have to adapt the proof of Theorem 7 but notice that the homomorphism ϕ in
the proof follows the algorithm of enumerating the elements of the β-basis B (with their β-degrees).
Now the defining relations of A are the defining relations of B in which the elements of the free
generating set M of B are replaced by their expressions as words in X . Since by construction we
have an algorithm for enumeration of the preimages under ϕ of the elements of B , and an algorithm
for enumeration of the defining relations for B , we have an algorithm for enumeration of defining
relations for A. �

Similarly, in the case of monoids, the adaptation of the proof of Theorem 8, gives the following.

Lemma 10. Let N be a recursively presented monoid. A constructive filtration β on N is a tame filtration if and
only β ∼ α ∩ N where α is the degree filtration in a finitely generated monoid M with recursively enumerable
set of defining relations, where B is embedded as a submonoid.

We start our treatment of the possibility of writing tame filtration in terms of degree filtrations of
finitely presented algebras with the case of monoids.

4.1. Monoids

Suppose a monoid M is given by a set of generators X and a recursively enumerable set of rela-
tions. In the paper [15] it is proven that M embeds in a finitely presented monoid M ′ with a set of
generators X ′ that includes X . Actually, a more precise result is true.

Theorem 11. Any finitely generated monoid M with a recursively enumerable set of defining relations can be
embedded in a finitely presented monoid M ′ as an undistorted submonoid.

Proof. We will use the argument from [15]. However, since we need additional information about the
lengths | |X and | |X ′ of the words in monoids M and M ′ arising in Murskii’s proof with respect to
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their generating sets X and X ′ , respectively, we need few comments about the course of Murskii’s
proof.

The alphabet X ′ includes, in particular, a copy X̃ of alphabet X , hence each word p in alphabet X
has a copy p̃. The next claim is contained in [15, Lemmas 3.3 and 3.1]. In monoid M ′ , if a word p in
alphabet X is equal to a word w in alphabet X ′ then w = p0u1 p1u2 . . . pl so that:

(1) Each pi is a word in the alphabet X .
(2) After deleting from each ui some subwords we obtain a word u′

i , containing a subword of the
form q̃i , where qi is a word in alphabet X such that the following holds:

(3) The word p0q1 p1 . . .ql pl equals p in monoid M .

Using (1)–(3), one can compare the length |p|X of an element of M , represented by a word p and
the length |w|X ′ , where w represents the same element in M ′ . We have:

|p|X � |p0|X + |q1|X + · · · + |pl|X � |p0|X ′ + |q1|X ′ + · · · + |pl|X ′

� |p0|X ′ + |u′
1|X ′ + · · · + |pl|X ′ � |p0|X ′ + |u1|X ′ + · · · + |pl|X ′ = |w|X ′ .

Since w is an arbitrary word equal p in monoid M ′ , we have an inequality |p|X � |p|X ′ , that is,
what we wanted to achieve. �

If we combine Theorem 11 with Lemma 10, and use claim (3) of Proposition 1, then we obtain the
following.

Theorem 12. A constructive filtration β on a monoid N is tame if and only if β ∼ α ∩ N where α is a degree
filtration on a finitely presented monoid M where N is embedded as a submonoid.

We now switch to unital associative algebras.

4.2. Unital associative algebras

In this subsection we consider unital associative algebras with recursively enumerable set of defin-
ing relations over fields finitely generated over prime subfield.

It was proven in a paper by Belyaev [4] that every associative algebra A with a recursively enu-
merable set of defining relations, over a unital commutative and associative ring K or a field K that
is finitely generated over its prime subfield, can be isomorphically embedded in a finitely presented
algebra B over K . Belyaev’s proof does not guarantee that the embedding is undistorted, and neither
is it unital. In what follows, we base on Belyaev’s proof to produce a new proof ensuring that both
properties are satisfied.

Theorem 13. Let B be an arbitrary finitely generated unital associative algebra with a recursively enumerable
set of defining relations, over a field F which is finitely generated over prime subfield. Then there exists a finitely
presented unital associative F -algebra A in which B is contained as an undistorted unital subalgebra.

To prove this theorem we will need to review and modify several Belyaev’s preliminary results.

Lemma 11. Let X be an alphabet that includes letters a1, . . . ,an, b1, . . . ,bn. Suppose I is a two-sided ideal
of a free unital associative algebra A(X) over a field F with free generating set X . Let ϕ be a homomorphism
of unital algebras ϕ : alg{a1, . . . ,an} → alg{b1, . . . ,bn} such that ϕ(ai) = bi , for i = 1, . . . ,n, and ϕ(I ∩
alg{a1, . . . ,an}) ⊂ I . Consider X1 = X ∪{x, y, z, β1, . . . , βn} and naturally embed A(X) in A(X1). Then there
is a two-sided ideal I1 in A(X1) containing all elements:

(i) xzy − 1;
(ii) xai zy − bi (i = 1, . . . ,n);
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(iii) ai z − zβi (i = 1, . . . ,n);
(iv) xzβiβ j − bi xzβ j (i, j = 1, . . . ,n),

such that I1 ∩ A(X) = I . In addition, if f ∈ A(X) and f0 ∈ f + I is such that degX f0 � degX g, for all
g ∈ f + I , then degX1

f0 � degX1
h, for all h ∈ f + I1 .

Proof. It will be convenient, for our further argument, to extend ϕ to a linear transformation of the
vector space A(X). Given a word in β in the free monoid W (β1, . . . , βn), we denote by β(a) the result
of replacing each βi by ai (i = 1, . . . ,n) in β . We define I1 in A(X1) as the ideal generated by I , all el-
ements in (iii) and (iv) in the statement of lemma and also all elements xwzβ y −ϕ(wβ(a)) where w ,
respectively, β run through all words in W (X), respectively, W (β1, . . . , βn). Thus, the element of the
latter kind include (i) and (ii), for obvious choices of w and β .

We prove our lemma arguing by contradiction. Let us choose f ∈ A(X) and f0 ∈ f + I of the
least degree d possible in f + I . Assume that there is an element h ∈ A(X1) of strictly lesser degree
representing f0 + I1. Let us consider the difference v = f0 − h. Then v ∈ I1 \ {0} and so v can be
written as a linear combination, with coefficients in F , of the elements of the form

v1uv2, w1
(
xwzβ y − ϕ

(
wβ(a)

))
w2, w1(ai z − zβi)w2, w1(xzβiβ j − bixzb j)w2 (3)

where u ∈ I , v1, v2, w1, w2 ∈ W (X1). We may assume that v1 has no suffix, and that v2 has no prefix
which is a letter of X .

Let us view x, respectively, y as a left, respectively, right parenthesis. In a word w ∈ W (X1) with
“properly” arranged parentheses, these are naturally divided into pairs (x, y), a left parenthesis x and
its corresponding right parenthesis y. The depth of a fixed pair (x, y) is the difference between the
number of occurrences of x and y to the left of x in (x, y). If w has a pair of parentheses with depth
s but no pair with depth s + 1, then the number s is called the rank of w . If w has no parentheses,
its rank is zero. It is easy to observe that if in the expression for v we group together the monomials
with “properly” arranged parentheses, then we again obtain a linear combination of the elements (3).
Since in the expression for v = f0 −h there are no monomials of degree � d with improperly arranged
brackets, if we write v as a linear combination of elements of the form (3), then all monomials of
degree � d with such “parentheses” cancel, while the terms of degree < d can be included in h
(remember that we proceed in our proof “by contradiction”!), which changes v . As a result, from the
very beginning, we may assume that in our linear combination of the elements (3), we do not have
monomials with “improperly” arranged parentheses.

Let s be the largest number such that the expression for v involves words of rank s. If s = 0 then
an argument similar to the one just given allows us to assume that z is not present in our expression
(those monomials of degree � d with z cancel out and those of degree < d can be included in h).
Thus v is a linear combination of the elements v1uv2, where v1, v2 ∈ W (X ∪ {β1, . . . , βn}) (this case
was omitted in [4]). However, all v1uv2 where v1 v2 /∈ W (X) of degree d must cancel because we do
not have such monomials in v = f0 − h. Those with degree < d can be moved to h. Now we have
v ∈ I and then h = f0 − v = f0 mod I . Since deg h < d, we obtain a contradiction with the choice
of f0.

Now suppose s > 0. We will show that v has a presentation of the same form, in which all words
have rank less than s. The proof of our lemma will then be complete by induction on s.

A word w ∈ W (X1) with properly arranged parentheses is called good if its rank is either less
than s, or else equal to s but for any pair (x, y) of depth s − 1 the subword starting at x and ending
at y, for these x, y, equals xuzβ y with u ∈ W (X) and β ∈ W (β1, . . . , βn). Otherwise we call w bad.

If we examine the elements of the last three types in (3), we quickly observe that, in each type,
both summands are good or bad words at the same time, which makes some of elements in (3)
(including the first type) good and some bad. Since f0 ∈ A(X), the linear combination b of all bad
summands has degree strictly less than d, so replacing h by h − b removes all bad summands from
our expression for v . So in our argument by contradiction we can assume that we do not have bad
summands in the expression for v through (3).
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In each word w ∈ W (X1) of rank s and degree � d in this expression of v for each pair (x, y) of
depth s − 1 we replace the subwords xuzβ y for these x, y by ϕ(uβ(a)). Since these subwords cancel
while reducing to f0 −h, they should cancel also if we replace the respective subwords xuzβ y by any
symbol ? not in X1. Therefore, the linear combination v will not change if we replace everywhere
these subwords by ϕ(uβ(a)). (Again, those w with degree < d will be moved to h.)

We again obtain an expression for v and now we are going to show that this, as before, is a linear
combination of elements (3). Since the ranks of words in the new expression are less than s, this will
complete the proof of the lemma.

Consider a summand v1uv2 where u ∈ I . Suppose u = ∑
i αi wi where αi ∈ F and wi ∈ W (X).

Clearly, the ranks of all of the words v1 wi v2 are the same. If their common rank is equal to s, then
under the replacement described above the words wi ∈ W (X) are affected only when v1 = v ′

1x, v2 =
zβ yv ′

2. Now after the replacement, we have

∑
i

αi v ′′
1ϕ

(
wiβ(a)

)
v ′′

2 = v ′′
1

(∑
i

αiϕ
(

wiβ(a)
))

v ′′
2.

But
∑

i αi wiβ(a) ∈ I , and by our hypothesis about ϕ ,
∑

i αiϕ(wiβ(a)) ∈ I .
Consider a summand w1(xwzβ y − ϕ(wβ(a)))w2. If in the word w1ϕ(wβ(a))w2 the subword

ϕ(wβ(a)) occurred within a pair of depth s − 1, then clearly in the word w1xwzβ yw2 the pair (x, y)

would have depth s, which is impossible. Therefore, obviously, after the replacement the expression
under consideration either vanishes or keeps the same form.

Consider a summand w1(ai z − zβi)w2. It suffices to look at the case where w1 = w ′
1xw , w2 =

β yw ′
2 and this pair (x, y) has depth s − 1. If this is the case, after the replacement, we arrive at

w ′′
1ϕ

(
waiβ(a)

)
w ′′

2 − w ′′
1ϕ

(
wai(βiβ)(a)

)
w ′′

2.

Since (βiβ)(a) = aiβ(a), this expression vanishes.
Finally, consider a summand w1(xzβiβ j − bi xzβ j)w2. Again, it suffices to look at the case where

w2 = β yw ′
2 and the pair considered (x, y) has depth s − 1. After the replacement we obtain

w ′′
1ϕ

(
(βiβ jβ)(a)

)
w ′′

2 − w ′′
1biϕ

(
(β jβ)(a)

)
w ′′

2.

This expression also vanishes, since by the choice of ϕ(w) we have

ϕ
(
(βiβ jβ)(a)

) = bib jbi1 . . .bik = biϕ
(
(β jβ)(a)

)
,

if β = βi1 . . . βil . Now the proof is complete. �
It will be useful to restate Lemma 11 without involving free algebras.

Lemma 12.

(1) Let A be an algebra with two subalgebras alg{a1, . . . ,an} and alg{b1, . . . ,bn} such that there is an algebra
homomorphism

ϕ : alg{a1, . . . ,an} → alg{b1, . . . ,bn}

satisfying ϕ(ai) = bi , i = 1, . . . ,n. Then A can be embedded without distortion in an algebra A1 , whose
generators are those of A and some x, y, z, β1, . . . , βn, and whose defining relations of are those of A and
a finite number of relations (i) through (iv) from Lemma 11.
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(2) If A1 is any algebra with elements a1, . . . ,bn, x, y, z, . . . , βn satisfying (i) through (iv) from Lemma 11,
and f (a1, . . . ,an) = 0 is a relation in A1 then also f (b1, . . . ,bn) = 0 is a relation of A1 .

Proof. Claim (1) is just a restatement of Lemma 11. To prove claim (2), it is sufficient to check that the
mapping ϕ : alg{a1, . . . ,an} → alg{b1, . . . ,bn} given by ϕ(a) = xayz is a homomorphism of algebras.
Since ϕ is linear, we only need to check the claim when a = ai1 . . .aik :

ϕ(ai1ai2 . . .aik ) = xai1ai2 . . .aik zy = xzβi1βi2 . . . βik y

= bi1 bi2 . . .bik−1 xaik zy = bi1 bi2 . . .bik = xai1 zyxai2 zy . . . xaik zy

= ϕ(ai1)ϕ(ai2) . . . ϕ(aik ),

also, applying relation xzy = 1, we easily derive ϕ(1) = 1. �
The next result is a slight modification of Belyaev’s lemma devoted to the development of the

technique which allows one to switch from “additive” defining relations of an associative algebra to
“multiplicative” ones.

Lemma 13. Let f (i, j) be a recursive function defined for i, j = 1,2, . . . , i �= j such that f (i, j) = f ( j, i).
Suppose that Y ⊆ N

2 is a recursively enumerable set and Q a unital algebra over a field F with generators
x, y, z and defining relations

{
xyi z + xy j z = xy f (i, j)z

∣∣ i �= j; i, j = 1,2, . . .
} ∪ {

xyi z = xy j z
∣∣ (i, j) ∈ Y

} ∪ {xz = 1}.

Then there exists an algebra Q 1 over a field F with the following properties:

(1) Q 1 has a finite number of generators and a recursively enumerable set of defining relations, one of which
has the form α + β = γ and the others are equalities of words in an appropriate alphabet.

(2) Q is a subalgebra of Q 1 and the degree of any element in Q , with respect to the generating system of Q ,
cannot decrease when we consider this element as an element of Q 1 , with respect to a generating system
of Q 1 .

Proof. Let us define an increasing sequence of natural numbers

n2(1),n3(1),n3(2),n4(1),n4(2),n4(3),n5(1),n5(2),n5(3),n5(4), . . .

by setting n2(1) = f (1,2) and if n j(i) immediately follows after nk(l) then we set n j(i) =
max{nk(l) + 1, f (i, j)}. We also define n j(i) for j � i by setting n j(i) = ni+1( j). Now for i < j we
set s(i, j) = s( j, i) = n j(i).

Thus, for any n ∈ N there exists at most one pair (i, j), 1 � i < j, such that n = s(i, j) = s( j, i).
With this choice we would automatically have ni( j) � i − 1, for all j.

Let us define the desired algebra Q 1 by the set of generators {x, y, z, u,α,β,γ } and the set of
defining relations

{
xyi z = xy j z

∣∣ (i, j) ∈ Y
} ∪ {

xyi z = xuni( j)εi j z
∣∣ i, j = 1,2, . . .

}
∪ {

xy f (i, j)z = xus(i, j)γ z
∣∣ i �= j = 1,2, . . .

} ∪ {xz = 1} ∪ {α + β = γ }.

Here εi j equals α if i + j is even and β if i + j is odd.
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First we note that the defining relations of Q 1 imply those of Q . Indeed, if i < j, then it follows
from the relations of Q 1 that

xyi z + xy j z = xuni( j−1)εi, j−1z + xun j(i)εi j z = xus(i, j)(εi j + εi, j−1)z

= xus(i, j)γ z = xy f (i, j)z.

Now consider the ideal I1 of the free F -algebra A(x, y, z, u,α,β,γ ) generated by the relations
of Q 1. Any element of this ideal can be written as a linear combination of the elements of the form

w1
(
xyi z − xy j z

)
w2

(
(i, j) ∈ Y

)
, w1

(
xyi z − xuni( j)εi j z

)
w2,

w1
(
xu f (i, j)z − xys(i, j)γ z

)
w2 (i �= j), w1(xz − 1)w2, w1(α + β − γ )w2, (4)

where w1, w2 ∈ W (x, y, z, u,α,β,γ ).
By a reduction of a word w ∈ W (x, y, z, u,α,β,γ ) we will mean the simultaneous replacement

in w all subwords of the following forms:

– xunαz by xyi z, where i is such that n = ni( j) and i + j is even or
– xunβz by xyi z, where i is such that n = ni( j) and i + j is odd or
– xunγ z by xy f (i, j)z, where i �= j is such that n = s(i, j) or
– xz by 1.

It should be stressed, that the kind of replacement we apply is fully defined, that is, knowing the
word uniquely defines by what word it has to be replaced. For instance, xunαz should be replaced
using the reduction in the first line, etc.

As in Lemma 11, we proceed by contradiction. Again, suppose we have v = f0 − h, with the same
conditions on f0 and h. The reductions of the four kinds just described should be applied to the
monomials of degree � d. The monomials of the form (4) of degree < d should be attributed to h.
It is important here that when we apply reduction, the degree of monomials does not increase. This
follows from the choice of numbers s(i, j) = n � max{ f (i, j), i − 1}.

Having completed all reductions, we arrive at v which is the linear combinations of the words of
the form w1(α + β − γ )w2. It follows that the leading word of the polynomial f (which does not
depend on α,β,γ ) cannot cancel, which is a contradiction. Thus the proof is complete. �

Now we proceed to the proof of Theorem 13.

Proof. Suppose B is an arbitrary unital countable F -algebra, S a finite generating set for B and
b1,b2, . . . an arbitrary enumeration of all of its elements (each element occurs at least twice). It is
easy to see that after a possible renumeration we can have degS bi � i, for all i = 1,2, . . . . By Corol-
lary 4, there exists a unital F -algebra C with three generators a,b, c, with a recursively enumerable
set of defining relations, such that B ⊂ C , 1 = ac, bi = abic, for i = 1,2, . . . , and this embedding has
no distortion.

Let Y = {(i, j) | abic = ab jc}. Then Y ⊂ N
2 is a recursively enumerable set. Let f (i, j) be a recursive

function, defined for all i, j ∈ N with i �= j, such that f (i, j) = f ( j, i) and

abic + ab jc = ab f (i, j)c in C .

Consider the F -algebra Q with generators x, y, z and defining relations

{
xyi z + xy j z = xy f (i, j)z

∣∣ i �= j; i, j = 1,2, . . .
} ∪ {

xyi z = xy j z
∣∣ (i, j) ∈ Y

}
.
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By Lemma 13, Q is contained as an undistorted subalgebra in an F -algebra Q 1 which has a recur-
sively enumerable set of defining relations

Σ(x, y, z, u,α,β,γ ) ∪ {α + β = γ }, (5)

where Σ contains only word equalities in x, y, z, u,α,β,γ .
Next we consider the tensor product Q 1 ⊗ C , where Q 1 is embedded as the set of elements

{q1 ⊗ 1 | q1 ∈ Q 1} and C as the set of elements {1 ⊗ c | c ∈ C}. Both embeddings are easily seen to be
undistorted.

There exists a homomorphism of algebras ϕ : Q → C . By claim (1) of Lemma 11, Q 1 ⊗ C can
be embedded as undistorted subalgebra in an F -algebra Q 2 with additional finite set of defining
relations.

Now let us consider the monoid G with generators x′, y′, z′, u′,α′, β ′, γ ′ and set of defining rela-
tions Σ(x′, y′, z′, u′,α′, β ′, γ ′). By Theorem 11, there exists a finitely generated monoid G1 containing
G as an undistorted submonoid, with a finite set of defining relations

Σ1
(
x′, y′, z′, u′,α′, β ′, γ ′). (6)

Let F [G] denote the monoid algebra G . By Proposition 3, F [G] is a unital undistorted subalgebra
of F [G1]. By claim (1) of Lemma 11, Q 2 ⊗ F [G1] can be embedded as an undistorted subalgebra in
an F -algebra Q 3 with additional finite set of defining relations.

At this stage of the proof, we have obtained a chain of undistorted embeddings

B → C → C ⊗ Q 1 → Q 2 → Q 2 ⊗ F [G1] → Q 3.

We know that all additive relations of B , denoted by R(B,ad), follow from the set of all additive
relations abic + ab jc = ab f (i, j)c (the addition table) of C , denoted by R(C,ad, left). Next we identify
C with C ⊗ 1 in C ⊗ Q 1, and denote by R(C,ad, right) the relations of the set R(C,ad, left) written in
terms of generators x, y, z. The relations in R(C,ad, right) follow from some set Σ ∪ {r} of relations
of Q 1 identified with 1 ⊗ Q 1, where Σ consists only of some equalities of words while {r} is the
set of just one singular relation. By claim (2) of Lemma 11 all relations in R(C,ad, left) follow from
relations of Q 2 of the form Σ ∪ R2 where R2 is a finite set.

Next, all relations Σ(x′, . . .) of F [G] follow from a finite number of relations of F [G1] and hence,
again by claim (2) of Lemma 11, all relations Σ(x, . . .) of Q 2 follow from a finite number of relations
of Q 3. As a result, all relations in R(B,ad) follow from a finite number of relations of Q 3.

A similar, actually, even simpler, argument works for the multiplication table R(B,mul) of B . In-
deed, let H be a monoid given by relations abicab jc = abg(i, j)c, where g is a recursive function, whose
existence follows from the recursive enumerability of the set of relations bib j = bk in B . We embed
Q 3 in Q 3 ⊗ F [H]. By Theorem 11 and Proposition 3 F [H] is embedded without distortion in a finitely
presented monoid algebra F [H1], and Q 3 is undistorted in Q 3 ⊗ F [H1]. By claims (1) and (2) of
Lemma 11 this tensor product can be embedded without distortion in an algebra Q 4 in such a way
that all relations in R(B,mul) follow from a finite number of relations of Q 4.

Finally, let us notice that all relations of B follow from its addition and multiplication tables and
finitely many relations of the form αx = x′ , where α is a generator of F , x a generator of B (and
x′ ∈ B). Thus, all relations of B follow from a finite number of relations of an algebra Q 4, where B is
contained as subalgebra. By claim (viii) of Proposition 2, B is an undistorted subalgebra in an algebra
A given by these relations of algebra Q 4. �

This theorem allows us to prove our final result characterizing tame filtrations in associative alge-
bras.
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Theorem 14. Let R be a unital associative algebra over a field F , which is finitely generated over prime subfield.
A constructive filtration ρ on R is a tame filtration if and only if β ∼ α ∩ R where α is a degree filtration on a
finitely presented unital algebra A in which R is embedded as a unital subalgebra.

Proof. As in several cases before, we can restrict ourselves to the proof of “only if” portion of the
statement. Using Theorem 9, we can embed R without distortion in a finitely generated algebra B
presented by a recursively enumerable set of relations in such a way that ρ ∼ β ∩ R where β is a
degree filtration on B . By definition then distρβ∩R � t · id, for some t ∈ N. Then we use Theorem 13 and
embed B without distortion in a finitely presented algebra A with a degree filtration α. This allows us
to write distβα∩B � t · id. Now by claim (3) in Proposition 1, we can write distρα∩R � distβα∩B ◦distρβ∩R �
t2 · id or that α ∩ R � ρ . Using claim (iv) in Proposition 2, we obtain ρ ∼ α ∩ R . The proof is now
complete. �
4.3. More examples: distortion of “cyclic” subalgebras

We start this subsection by exhibiting the variety of tame degrees on associative and Lie algebras
of particularly simple form. Using the results on the distortion in groups [16], one can show that for
any real number θ such that 0 < θ < 1 there is a tame degree on F [x], which is equivalent to nθ

(where n is the ordinary degree of a polynomial). As it turns out, these degrees come from the tame
degrees on the free monoid W (x). In the remainder of the subsection, we show that actually, there
are tame filtrations (hence tame degrees) on F [x] that are not induced by tame filtrations on W (X).

Let B = F [x] be the polynomial algebra in one variable. Consider any function ϕ on {0,1, . . .}
which is positive on {1,2, . . .}. Let us define on B a “degree-like” function dϕ( f ) = ϕ(deg( f )). Setting
Bϕ

n = { f ∈ B | dϕ( f ) � n} defines a filtration on B provided that ϕ is subadditive, that is, ϕ(a + b) �
ϕ(a) + ϕ(b).

If the ratio ϕ(n)
logn cannot be separated from 0 when n grows indefinitely then for any k > 0 there

is n = n(k) such that Bn contains all polynomials f with deg f > exp(kn); then {Bn} is not a tame
filtration.

But if log n = O (ϕ(n)), for a subadditive function ϕ , as above, then {Bn} is a tame filtration.
By Theorem 7, B can be embedded in a 2-generator algebra Aϕ with a degree filtration {Aϕ

n } so
that {B ∩ Aϕ

n } ∼ {Bϕ
n }. In this case, the degree of a polynomial f ∈ F [x] with respect to the generators

of A will be a function equivalent to ϕ(deg( f )). For example, we may choose ϕ = (log n)μnν , where
0 < ν < 1.

If ϕ is computable then by Theorem 14 such degree-like functions can be achieved in finitely
presented algebras. For example, we can get the degree function for F [x] in the form (log n)μnν ,
where 0 < ν < 1 in a finitely presented algebra provided that μ and ν are constructive real numbers
(say, π − e, etc.).

A similar example can be obtained in the case of Lie algebras. Let M be an abelian Lie algebra with
basis {a0,a1,a2, . . .}. We form a semidirect product L = F x⊕ M of this algebra with a one dimensional
algebra F x so that [x,ai] = ai+1 (similar algebras have been introduced in Section 2.4.1). However, in
this case, using Theorem 9, we can only guarantee an embedding in a finitely generated Lie algebra,
which does not need to be finitely presented.

It is obvious that any subadditive “degree-like” function dϕ defines filtration not only on F [x] but
also on monoid W (x) and, conversely, is defined by its restriction to this monoid. But one should
not think that even in a “simple” case like F [x], all tame filtrations are equivalent to “degree-like”
filtrations, that is, filtrations extending the filtrations of W (x).

Proposition 5. There exist a family of pairwise inequivalent tame filtrations on F [x], labeled by nonzero ele-
ments of F , none being an extension of a tame filtration on W (x), naturally embedded in F [x].

Proof. We start with an infinite increasing sequence of natural numbers d1 = 1,d2,d3, . . . such that
dn+1

d → ∞. There is n0 such that max{ dm
m ,1} < dn

n for all n � n0 and all m < n.

n
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Let us consider a polynomial ring F [y1, . . . , ys, . . .] in the set {y1, . . . , ys, . . .} of weighted vari-
ables such that the weight of each ys is s. This assignment of the weight to the variables leads
to a well-defined assignment of the weight to each polynomial G(y1, . . . , ys) ∈ F [y1, . . . , ys, . . .]. Let
us fix λ ∈ F and consider polynomials f λ

n (x) = xdn + λxdn−1, for all n = 1,2, . . . . Since f1 = x + λ,
any polynomial f = f (x) ∈ F [x] can be written as f (x) = G( f λ

1 (x), . . . , f λ
s (x)), where G(y1, . . . , ys) ∈

F [y1, . . . , ys, . . .]. Let D( f ) be the minimum of the weights of all polynomials G(y1, . . . , ys) such
that f (x) = G( f λ

1 (x), . . . , f λ
s (x)). Clearly, setting Bλ

n = { f | D( f ) � n} defines a filtration βλ = {Bλ
n} on

B = F [x]. Let us denote by pn the number of monomials of weight n in F [y1, . . . , ys, . . .]. The set
of such monomials is the disjoint union S1 ∪ · · · ∪ Sn where the monomials in S1 contain y1, the
monomials in S2 do not contain y1 but contain y2, etc. Thus, pn � pn−1 + pn−2 + · · · + p0 and using
induction by n, we easily obtain pn � 2n . It follows that βλ is a tame filtration of B = F [x].

Now let us estimate from below the βλ-degree (we will be simply saying λ-degree and write degλ)
of f = f μ

n (= xdn + μxdn−1), where n > n0 and μ �= λ. Suppose that f = G( f λ
1 (x), . . . , f λ

s (x)) where
the weight of G(y1, . . . , ys) is minimal possible, as above. We need to consider three cases.

Case 1: s < n. When we replace in G(y1, . . . , ys) each ym by f λ
m , we obtain a polynomial whose

degree does not exceed max{ d1
1 , . . . , ds

s } times the weight of G(y1, . . . , ys). Since dm
m � dn−1

n−1 , we con-

clude that the weight of G(y1, . . . , ys) cannot be less than cn = dn
dn−1/(n−1)

. It follows that the λ-degree

of f μ
n cannot be less than cn . Since dn

dn−1
→ ∞, we have cn

n → ∞, for such n.

Case 2: s = n. In this case, G(y1, . . . , yn) = yt
n gt + yt−1

n gt−1 + · · · , where t > 0, each g j is a poly-
nomial in y1, . . . , yn−1 and gt is nonzero. Then, as in the previous case, we replace all y1, . . . , yn by
f λ
1 , . . . , f λ

n and obtain f μ
n . If gt is not a constant or if t > 1 then the leading term (as a polynomial

in x) resulting from the first summand, has degree greater than dn . This term can get canceled with a
term arising in another gm( f λ

1 , . . . , f λ
n−1) only when the degree of gm( f λ

1 , . . . , f λ
n−1) is at least dn and

then, as in the previous case, the weight of gm and G cannot be less than cn . Now if t = 1 and g1 is
a constant c �= 0, then the first summand produces cf λ

n and in order to obtain f μ
n on the left-hand

side, the weight of g0 (hence of G(y1, . . . , yn)) must be greater or equal to dn−1
dn−1/(n−1)

= cn − o(1).

Case 3: s > n. Then G = yt
s gt + yt−1

s gt−1 +· · · , where t > 0, each g j is a polynomial in y1, . . . , ys−1
and gt is nonzero. In this case, the same argument as in Case 2 shows that the weight of G(y1, . . . , ys)

is at least cs and cs
s > cn

n .

As a result, in any case, degλ f μ
n grows faster than n (in the sense that degλ f μ

n
n → ∞), while

degμ f μ
n � n. It follows that βλ

� βμ if λ �= μ, as claimed.
In a particular case where μ = 0, we also have the following. If we restrict any βλ with λ �= 0

to W (x), we obtain a filtration β whose extension to F [x], viewed as monoid algebra, produces a
filtration β ′ = F [β], for which degβ ′ f λ

i � degβ ′ xdi = degβ f 0
i = degλ f 0

i grows faster than degλ f λ
i .

Since the restriction of β ′ to W (x) coincides with β , it follows that βλ is not equivalent to any
filtration, which is extended from W (x). In other words, βλ is not a “degree-like” filtration, for any
λ �= 0. �

Our last remark is as follows.

Remark 4. By Theorem 7, if we fix λ ∈ F then every filtration βλ on B = F [x] is a restriction of a
degree filtration αλ of certain finitely generated algebra Aλ where B is contained as a subalgebra.
However, none of Aλ can be chosen commutative. Indeed, by Theorem 3 about the embeddings in
the commutative case, the embedding B ⊂ Aλ is undistorted. If β is the standard degree filtration on
B = F [x] then by claim (i) of Proposition 2, αλ ∩ B ∼ β . It follows that βλ ∼ β , which was proven
impossible because β is the extension of the standard degree filtration of W (x) while degλ f λ

n � n

and deg f λ
n = dn where dn

n → ∞ as n → ∞.
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