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Abstract

We determine the critical blow-up exponent for a Keller–Segel-type chemotaxis model, where
the chemotactic sensitivity equals some nonlinear function of the particle density. Assuming some
growth conditions for the chemotactic sensitivity function we establish an a priori estimate for
the solution of the problem considered and conclude the global existence and boundedness of
the solution. Furthermore, we prove the existence of solutions that become unbounded in finite
or infinite time in that situation where this a priori estimate fails.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Chemotaxis is the influence of chemical substances in the environment on the move-
ment of mobile species. This can lead to strictly oriented movement or to partially
oriented and partially tumbling movement. The movement towards a higher concen-
tration of the chemical substance is termed positive chemotaxis and the movement
towards regions of lower chemical concentration is called negative chemotactical move-
ment. Chemotaxis is an important means for cellular communication. Communication
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by chemical signals determines how cells arrange and organize themselves, like for
instance in development or in living tissues.
In the present paper we consider the problem

ut = �u − ∇ · (f (u)∇v), in �× (0, T ),

vt = �v − v + u, in �× (0, T ),

�
�N

u|�� = 0, �
�N

v|�� = 0,

u|t=0 = u0, v|t=0 = v0




(1)

in a bounded domain� ⊂ Rn with smooth boundary, wheref ∈ C1+�([0,∞)) (for
some� > 0) satisfiesf (0) = 0; the initial datau0 and v0 are assumed to be non-
negative, whereu0 ∈ C0(�̄) with mass

� :=
∫
�

u0,

and v0 ∈ ⋃q>n W1,q(�). The symbol �
�N

denotes the derivative with respect to the

outer normal of��. This problem is a version of the well-known Keller–Segel model
in chemotaxis. The functionu(x, t) describes the particle density at timet, at position
x ∈ �; v(x, t) is the density of the external chemical substance.
The classical chemotaxis model — the so-called Keller–Segel model — has been

extensively studied in the last few years (see[17,18] for a recent survey article).
The functionf (u) denotes a chemotactic sensitivity function. In general, this function
depends on the particle density and the external signal. In the present paper, however,
we will assume that it only depends on the particle densityu. For f (u) = u system
(1) equals the most common formulation of the Keller–Segel model. One interesting
question in connection with this version of the model is the possibility that the solution
of the Keller–Segel model might become unbounded in finite or infinite time forn = 2
or n�3 (see [12,15,17,19,26,36] and the references therein).
As mentioned, the chemotactic sensitivity function, in general, may depend on the

particle densityu and the chemoattractantv, and it is known that it plays a crucial
role in the asymptotic behavior of the solution. There have been several attempts to
introduce certain reasonable effects into the Keller–Segel equations that might prevent
blow-up like volume-filling and quorum sensing aspects. The volume filling aspect is
reflected as a certain dependence of the chemotactic sensitivity function on the particle
densityu, which leads to bounded global-in-time solutions of (1). This has been done
for example by Hillen and Painter in [13,33].
However, to our knowledge it has never been analyzed whether the solution of system

(1) might become unbounded iff (u) equals other powers ofu, i.e. f (u) = u� with
some� > 0. Of course, this question is more motivated from the mathematical point
of view than from the biological one, but it will help to get more insights in the
understanding of the blow-up mechanism of the problem. Furthermore, the functional
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forms in the most common version of the Keller–Segel model are based on simplifying
assumptions made by Nanjundiah in[31]. The original paper by Keller and Segel [21]
allows more general functional forms. In the present paper we will look at this aspect
more carefully and we will determine the critical exponent� which decides whether
unbounded solutions can exist or not in dependence of the spatial dimension. Of course,
according to the known results, it seems to be clear that forn = 2 or n�3 there exist
solutions of (1) that become unbounded for� > 1. It is known that forn�3 and�
is a sphere there exist radially symmetric solutions of a simplified parabolic–elliptic
version of (1) that blow up in finite time if� = 1 (see [2,9–12,19,24,25,36]). For the
full system (1) no such results are known. However, what happens ifn�2 and� < 1?
While for � = 1 andn = 1 there is no possibility that the solution of this simplified

parabolic–elliptic version of (1) blows up, there exists a threshold value for the initial
data in spacial dimensionn = 2 that decides whether the solution can blow up or exists
globally in time (see for instance [20]). In casen�3 and� is a sphere there is no
such threshold. Thus one wonders whether the existence of unbounded solutions of (1)
with � ∈ R+ depends on the exponent�. Furthermore, one might expect that the expo-
nent for which unbounded solutions might exist will depend on the underlying space
dimension. Therefore we ask, motivated from the mathematical point of view, whether
one can determine the “right” blow-up exponent in dependence of the underlying space
dimension.
Our main results in connection with this question are the following:

• If f (s)�cs� for all s �1 and some� < 2
n
then all solutions are global and uniformly

bounded. Furthermore, for given� > 0 and � ∈ (0,1) there exists a constant
c(�, �) > 0 such that the solution satisfies the a priori estimate

‖u(t)‖L∞(�) + ‖v(t)‖L∞(�) �c(�, �)
(
1+ K̄m(�) e−�t

)
∀t ��,

where K̄(�) := maxt∈[ �
4 ,�]
(
‖u(t)‖L∞(�) + ‖∇v(t)‖L2(�)

)
and � is some positive

constant (cf. Theorem4.1).
• If f (s)�cs� for all s �1 and some� > 2

n
(and n�2) then this a priori estimate

fails to be true (Theorem5.1).

As a conclusion we remark that� = 2
n
is critical with respect to the validity of this

estimate. However, if� is a ball inRn we can go even further. In this situation we
have the following blow-up result:

• If f (s)�cs� for some � > 2
n
and � is a ball in Rn, n�2, then (1) possesses

unbounded solutions, provided that one of the following — technical — assumptions
is satisfied:
◦ � > 2 (and nothing else, cf. Theorem6.1),
◦ � ∈ (1,2), n ∈ {2,3} and f fulfills an additionalupper growth estimate (Theorem
6.2),

◦ � ∈ ( 2
n
,1) if n ∈ {2,3} and � ∈ ( 2

n
, 2

n−2) if n�4; in both cases also an upper
growth condition has to be imposed onf (Theorem6.3).
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Therefore, we see that� = 2
n
has been uniquely detected to be the critical blow-up

exponent forn�2. The proof of this blow-up result generalizes some ideas that have
been used in[19] to establish the existence of unbounded solutions of system (1)
for � = 1 and a simply connected domain� ⊂ R2 with smooth boundary��. An
alternative proof of the blow-up result presented in [19] has been given in [36].
Beside these blow-up results forn�2, we will see that forn = 1 the functionv is

uniformly bounded inW1,2(�) for all times — a fact that follows from analyzing a
Lyapunov functional available for system (1) (see the remark following Lemma 5.1).
Accordingly, for n = 1 the solution exists globally in time (and remains uniformly
bounded) independent of the choice of�.

2. Preliminaries

Let us first collect some tools that will frequently be used in the sequel (see, for
instance, [4,5,8,23,37]).
In several places we shall need the following derivate of Poincaré’s inequality:

‖u‖W1,p(�) �c
(
‖∇u‖Lp(�) + ‖u‖Lq(�)

)
∀u ∈ W1,p(�)

with arbitraryp > 1 andq > 0. Also, an essential role will be played by the Gagliardo–
Nirenberg interpolation inequality

‖u‖Lp(�) �c‖u‖a
W1,q (�)

· ‖u‖1−a
Lr (�)

∀u ∈ W1,q(�),

which holds for allp, q �1 satisfyingp(n − q) < nq and all r ∈ (0, p) with

a =
n
r
− n

p

1− n
q
+ n

r

∈ (0,1).

(In fact, the classical version in Theorem I.10.1 in[5] is stated only forr �1, but this
restriction can easily be removed upon an application of Hölder’s inequality.)
For p ∈ (1,∞), let A := Ap denote the sectorial operator defined by

Apu := −�u for u ∈ D(Ap) :=
{
� ∈ W2,p(�)

∣∣∣∣ �
�N

�|�� = 0

}
.

The fact that the spectrum ofA is ap-independent countable set of positive real numbers
0= 	0 < 	1 < 	2 < · · · entails the following consequences:
(i) The operatorA + 1 possesses fractional powers(A + 1)
, 
�0, the domains of

which have the embedding properties

D((Ap + 1)
) ↪→ W1,p(�) if 
 >
1

2
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and

D((Ap + 1)
) ↪→ C�(�̄) if 2
− n

p
> ��0. (2)

(ii) The analytic semigroup(e−tA)t �0 (which is independent ofp in the sense that

e−tAp u = e−tAq u

wheneveru ∈ Lp(�) ∩ Lq(�) satisfies

‖(A + 1)
e−t (A+1)u‖Lp(�) �ct−
e−�1t‖u‖Lp(�)

for all u ∈ Lp(�), any t > 0 and some�1 > 0.
(iii) For each t > 0 the operatore−tA mapsLp(�) into Lq(�), with norm controlled

according to

‖e−tAu‖Lq(�) �ct
− n
2 ( 1

p
− 1

q
)‖u‖Lp(�)

for all t ∈ (0,1) and 1�p < q < ∞. (For p > 1 this actually is implied by (ii)
via a standard interpolation argument; in the non-standard borderline casep = 1
this requires a pointwise estimate on the corresponding Green’s function which is
provided by Theorem 2.2 in[23].)

(iv) When restricted to the orthogonal complement of the null space ofA, e−tA decays
exponentially with time in the sense that for all

u ∈ L
p
⊥(�) :=

{
� ∈ Lp(�)

∣∣∣∣
∫
�

� = 0

}
,

we have‖e−tAu‖Lp(�) �ce−�2t‖u‖Lp(�) for any t > 0 and some�2 > 0.

As a consequence of (ii) and (iii), we have for all 1�p < q < ∞ andu ∈ Lp(�) the
generalLp − Lq estimate

‖(A + 1)
e−tAu‖Lq(�) �ct
−
− n

2 ( 1
p
− 1

q
)
e(1−	)t‖u‖Lp(�), (3)

for any t > 0 and 
�0 with some	 > 0. After diminishing 	 if necessary, from
(ii)–(iv) we obtain for all 1�p < q < ∞ and u ∈ L

p
⊥(�) the restricted counterpart

‖(A + 1)
e−tAu‖Lq(�) �ct
−
− n

2 ( 1
p
− 1

q
)
e−	t‖u‖Lp(�) (4)

for t > 0 and
�0.
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Unlike (A+1)
, the divergence operator∇· does not commute withe−tA. However,
in estimates for expressions like‖e−tA∇·w‖, this operator does not behave much worse
than (A + 1)

1
2 , as stated by the following:

Lemma 2.1. Let 
�0 and p ∈ (1,∞). Then for all ε > 0 there existsc(ε) > 0 such
that for all w ∈ C∞

0 (�) we have

‖(A + 1)
e−tA∇ · w‖Lp(�) � c(ε)t−
− 1
2−εe−	t‖w‖Lp(�)

� c(ε)t−
− 1
2−ε‖w‖Lp(�) ∀t > 0. (5)

Accordingly, for all t > 0 the operator(A + 1)
e−tA∇· admits a unique extension to
all of Lp(�) which, again denoted by(A+1)
e−tA∇·, satisfies(5) for all w ∈ Lp(�).

Proof. Writing

�̄ := 1

|�|
∫
�

�

for � ∈ L1(�), we have

‖�− �̄‖
Lp′ (�)

�2‖�‖
Lp′ (�)

for all � ∈ Lp′
(�), where 1

p
+ 1

p′ = 1. Consequently, employing the notation

C∞⊥,N (�̄) :=
{
� ∈ C∞(�̄)

∣∣∣∣
∫
�

� = 0 and
�

�N
�|�� = 0

}

we find that

‖(A + 1)
e−(t−s)A∇ · w‖Lp(�)

= sup
�∈C∞

0 (�)

‖�‖
Lp′ (�)

�1

∣∣∣∣
∫
�

(A + 1)
e−tA(∇ · w) · (�− �̄) + �̄ ·
∫
�

(A + 1)
e−tA∇ · w

∣∣∣∣

= sup
�∈C∞

0 (�)

‖�‖
Lp′ (�)

�1

∣∣∣∫
�

(A + 1)
e−tA(∇ · w) · (�− �̄)

∣∣∣

� sup
�∈C∞⊥,N (�̄)

‖�‖
Lp′ (�)

�2

∣∣∣∫
�

(A + 1)
e−tA(∇ · w)�
∣∣∣ = sup

�∈C∞⊥,N (�̄)

‖�‖
Lp′ (�)

�2

∣∣∣∫
�

w∇(A + 1)
e−tA�
∣∣∣
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�c‖w‖Lp(�) · sup
�∈C∞⊥,N (�̄)

‖�‖
Lp′ (�)

�2

∥∥∥(A + 1)
+
1
2+εe−tA�

∥∥∥
Lp′ (�)

�ct−(
+ 1
2+ε)e−	t · ‖w‖Lp(�)

by (4). Here we have tacitly used the facts thatAp andA2 coincide for ∈ C∞(�̄),
that A2 is self-adjoint inL2(�), and that

‖∇‖Lp(�) �c(ε)‖(A + 1)
1
2+ε‖Lp(�)

for all ε > 0 and any ∈ D(Ap) (Lemma ii.17.1 in[5]). This proves the lemma. �

3. Local existence and uniqueness of classical solutions

Let us first establish the existence of a local-in-time smooth solution by employing
Banach’s fixed point theorem. The proof that the solution isclassical is the only place
in this work where Hölder regularity off ′ is required.
Before we state our result let us briefly mention, that the existence of local-in-

time smooth solutions for a quite general version of the Keller–Segel model has been
established by Yagi in [39]. However, Yagi does not considered chemotactic sensitivity
functions which depend on powers of the particle density. Therefore, we cannot apply
his results and have to present our own local existence result.

Theorem 3.1. Supposeq > n, and thatu0 ∈ C0(�̄) andv0 ∈ W1,q(�) are nonnegative
in �. Then there existsTmax�∞ (depending on‖u0‖L∞(�) and ‖v0‖W1,q (�) only) and
exactly one pair(u, v) of nonnegative functions

u ∈ C0([0, Tmax);C0(�̄)) ∩ C2,1(�̄× (0, Tmax)),

v ∈ C0([0, Tmax);C0(�̄)) ∩ L∞
loc([0, Tmax);W1,q(�)) ∩ C2,1(�̄× (0, Tmax))

that solves(1) in the classical sense. IfTmax < ∞ then

lim
t→Tmax

(
‖u(t)‖L∞(�) + ‖v(t)‖W1,q (�)

)
= ∞. (6)

Moreover, the solution(u, v) satisfies the mass identities

∫
�

u(t) =
∫
�

u0 ∀t ∈ (0, Tmax) (7)
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and

∫
�

v(t) =
∫
�

u0 +
(∫

�
v0 −

∫
�

u0

)
e−t ∀t ∈ (0, Tmax). (8)

Proof. Existence: The existence proof follows a standard contraction argument. We
extend f to all of R by defining f (s) := f ′(0) · s for s < 0, wherebyf becomes an
element ofC1+�(R). With numbersT ∈ (0,1) and R > 0 to be fixed below, in the
Banach space

X := C0([0, T ];C0(�̄)) × L∞((0, T );W1,q(�))

we consider the closed set

S :=
{
(u, v) ∈ X | ‖(u, v)‖X �R

}

and claim that forR sufficiently large andT small enough, the map

�(u, v)(t) :=
(
�1(u, v)(t)

�2(u, v)(t)

)
:=
(

e−tAu0 −
∫ t

0 e−(t−s)A∇ · (f (u(s))∇v(s)) ds

e−t (A+1)v0 +
∫ t

0 e−(t−s)(A+1)u(s) ds

)
,

for t ∈ [0, T ], is a contraction fromS into itself.
To see this, we first observe that, for(u, v) ∈ S, �1(u, v) is continuous on[0, T ] with

values inC0(�̄), becauseu0 ∈ C0(�̄) and e−tA is strongly continuous inC0(�̄) due
to the maximum principle. Also,�2(u, v) is bounded on(0, T ) as aW1,q(�)-valued
function. This is a consequence of the fact that‖e−t (A+1)v0‖W1,q (�) �c‖v0‖W1,q (�)

which is valid for q = 2 (by a simple energy argument) andq = ∞ (cf. [22, pp.
478 ff.]) and thus, via a standard interpolation technique, also forq ∈ (2,∞) (see
e.g. Theorem 9.8 in [7]). In the casen = 1 a differentiation of the heat equation with
respect tox (involving zero Dirichlet boundary data) shows that the same estimate even
holds for all q > 1.
Next, we letM(R) := ‖f ‖L∞((−R,R)) andL(R) > 0 denote a Lipschitz constant for

f on (−R, R) and fix 
 ∈ ( n
2q , 12) as well asε ∈ (0, 12 − 
).

Since D((Aq + 1)
) ↪→ C0(�̄) in this case, we can estimate with the aid of
Lemma 2.1

‖�1(u, v)(t)‖
C0(�̄)

� ‖e−tAu0‖C0(�̄)

+c

∫ t

0

∥∥∥(A + 1)
e−(t−s)A∇ · (f (u(s))∇v(s))

∥∥∥
Lq(�)

ds
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� ‖u0‖C0(�̄)
+ c

∫ t

0
(t − s)−
− 1

2−ε‖f (u(s))∇v(s)‖Lq(�) ds

� ‖u0‖C0(�̄)
+ cM(R)RT

1
2−
−ε ∀t ∈ [0, T ]. (9)

Moreover, picking� ∈ (12,1) we have, using (2),

‖�2(u, v)(t)‖W1,q (�) � ‖e−t (A+1)v0‖W1,q (�)

+c

∫ t

0
‖(A + 1)�e−(t−s)(A+1)u(s)‖Lq(�) ds

� c‖v0‖W1,q (�) + c

∫ t

0
(t − s)−�‖u(s)‖Lq(�) ds

� c‖v0‖W1,q (�) + cRT 1−� ∀t ∈ [0, T ]. (10)

From (9) and (10) it results that�S ⊂ S if we choose firstR large and thenT small.
With this value ofR fixed (but T still at our disposal), we proceed to check that for
all (u, v), (ū, v̄) ∈ S,

‖�1(u, v)(t) −�1(ū, v̄)(t)‖
C0(�̄)

�c

∫ t

0

∥∥∥(A + 1)
e−(t−s)A∇ · [f (u(s))∇v(s) − f (ū(s))∇v̄(s)]
∥∥∥

Lq(�)
ds

�c

∫ t

0
(t − s)−
− 1

2−ε‖f (u(s))∇v(s) − f (ū(s))∇v̄(s)‖Lq(�) ds

�c
(
L(R)R + M(R)

)
T

1
2−
−ε‖(u, v) − (ū, v̄)‖X ∀t ∈ [0, T ]

and

‖�2(u, v)(t) −�2(ū, v̄)(t)‖W1,q (�)

�c

∫ t

0
‖(A + 1)
e−(t−s)(A+1)(u(s) − ū(s))‖Lq(�) ds

�c

∫ t

0
(t − s)−�‖u(s) − ū(s)‖Lq(�) ds

�cT 1−�‖(u, v) − (ū, v̄)‖X ∀t ∈ [0, T ],

so that� is shown to be a contraction ifT is sufficiently small. From Banach’s fixed
point theorem we therefore obtain the existence of(u, v) ∈ X satisfying (u, v) =
�(u, v).
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Since the above choice ofT depends only on‖u0‖L∞(�)+‖v0‖W1,q (�), it is clear by a
standard argument that(u, v) can be extended up to someTmax�∞, where necessarily
(6) holds in case ofTmax < ∞. Clearly, u and v are weak solutions — in the natural
sense defined in [22, p. 136] — of their respective equations in (1).
Regularity: Since v0 ∈ W1,q(�) ↪→ C0(�̄), the relationv = �2(u, v) immediately

shows thatv ∈ C0([0, Tmax);C0(�̄)). Relying on this, the inclusionsu, v ∈ C2,1(�̄ ×
(0, Tmax)) result from straightforward regularity arguments including standard semigroup
techniques, parabolic Schauder estimates (Theorem IV.5.3 in [22]) and Lemma 2.1.
We now can apply the comparison principle for classical sub- and supersolutions of

scalar parabolic equations to conclude first thatu�0 (becauseu ≡ 0 is a subsolution
of the first in (1) due tof (0) = 0) and then thatv�0 (since we know thatu�0,
whencev ≡ 0 is a subsolution of the second in (1)).
Properties (7) and (8) easily follow by integrating the PDEs in (1) in space.
Uniqueness: Let us finally prove uniqueness of solutions in the indicated class by

assuming there were two different solutions(u, v) and (ū, v̄) on some interval[0, T ].
Letting w := u − ū and z := v − v̄, for t ∈ (0, T ) we obtain upon subtracting the
respective equations in (1) and performing obvious testing procedures the identities∫

�
z2t +

d

dt

[1
2

∫
�
|∇z|2+ 1

2

∫
�

z2
]
=
∫
�

wzt

= −
∫
�
∇w · ∇z −

∫
�

wz +
∫
�

w2 (11)

and

1

2

d

dt

∫
�

w2+
∫
�
|∇w|2 =

∫
�
[f (u)∇v − f (ū)∇v̄] · ∇w. (12)

Sinceu and ū are bounded on�×[0, T ], we have|f (u)−f (ū)|�L|w| andf (ū)�M

in this region with some positiveL andM, whence

∣∣∣∫
�
[f (u)∇v − f (ū)∇v̄] · ∇w

∣∣∣� 1

4

∫
�
|∇w|2+ c

(
L2
∫
�

w2|∇v|2+ M2
∫
�
|∇z|2

)
.

(13)

As
∫
� u(t) = ∫� ū(t) ≡ ∫� u0 for all t by (7), we have

∫
� w(t) ≡ 0 and hence the

standard Poincaré inequality ensures that‖w‖W1,2(�) �c‖∇w‖L2(�). Therefore, once
again relying on the fact thatq > n, we can estimate with the help of the Hölder and
the Gagliardo–Nirenberg inequality

∫
�

w2|∇v|2 �
(∫

�
|∇v|q

) 2
q ·
(∫

�
|w| 2q

q−2
) q−2

q � c‖∇z‖
2n
q

L2(�)
· ‖w‖

2(q−n)
q

L2(�)

� ε‖∇z‖2
L2(�)

+ c(ε)‖w‖2
L2(�)

, (14)
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whereε > 0 is arbitrary. Moreover,

−
∫
�
∇w · ∇z� 1

4

∫
�
|∇w|2+

∫
�
|∇z|2 (15)

and

−
∫
�

wz� 1

2

∫
�

w2+ 1

2

∫
�

z2, (16)

so that adding (11) to (12) yields, taking into account (12)–(16) and omitting positive
terms,

d

dt

(∫
�
|∇z|2+

∫
�

z2+
∫
�

w2
)
�c
(∫

�
|∇z|2+

∫
�

z2+
∫
�

w2
)

∀t ∈ (0, T ).

Now Gronwall’s lemma says thatz ≡ w ≡ 0, as desired. �
The local-in-time existence and uniqueness of a solution for system (1) with n = 2

and � = 1 has also been established by Gajewski and Zacharias in [6] and — as
already mentioned — by Yagi in [39]. However their results cannot be applied to our
generalized system.

4. Boundedness in case of subcritical growth

Let us first look a little bit closer at that situation that we will later call the case of
subcritical growth for the chemotactic sensitivityf (u). Therefore, we now assume that
f satisfies the one-sided growth condition

f (s)�c0s
� ∀s ∈ (1,∞) (17)

for some c0 > 0 and some� > 0 (which will actually throughout this section be
supposed to fulfill� < 2

n
). Since f is continuous, we of course may equivalently —

and more conveniently for our proofs — require

f (s)�c0(s + 1)� ∀s > 0 with � ∈
(
0,
2

n

)
(18)

for somec0 > 0.
Also for convenience in notation, let us abbreviate

� := max
{
‖u0‖L1(�), ‖v0‖L1(�)

}
.



D. Horstmann, M. Winkler / J. Differential Equations 215 (2005) 52–107 63

The main result of this section, the a priori estimate in Theorem4.1, will be obtained
as the final in a series of steps. The basic idea is to use theL1(�)-bounds (8) and
— mainly — (7) as the initializing information in an iterative bootstrap procedure,
which at its starting point uses both equations in (1) (see Lemma 4.3), but then alter-
nately exploits the second (Lemma 4.1) and the first equation (Lemma 4.4) in (1) to
successively establish estimates in higherLp spaces. The complete iteration is carried
out in Lemma 4.5 which will reach allp < ∞, while the final step towardsL∞ is
accomplished in Theorem 4.1.
The first auxiliary lemma asserts that an a bound foru in L�(�) for t �� implies an

estimate forv in someW1,q(�) for all t bounded away from�. The proof exclusively
uses the second equation in (1). In this lemma, as throughout this section, all appearing
constants are independent ofTmax.

Lemma 4.1. Assume that there exist� ∈ (0,min{1, Tmax}) and � ∈ [1, n] such that

‖u(t)‖L�(�) �c1 ∀t ∈ [�, Tmax).

Then for any� ∈ (0, Tmax− �),

‖v(t)‖W1,q (�) �c(q, �, �, �)(1+ c1) ∀t ∈ [�+ �, Tmax)

holds for all q > 1 satisfying

q <
n�

n − �
.

Proof. We fix q <
n�

n−� = 1
1
�− 1

n

and choose some
 > 1
2 such that

q <
1

1
� − 1

n
+ 2

n
(
− 1

2)
. (19)

Applying (A + 1)
 to both sides of the representation formula

v(t) = e−(t−�)(A+1)v(�) +
∫ t

�
e−(t−s)(A+1)u(s) ds, t ∈ [�, Tmax),

we obtain in the caseq �2, using (3) and (8),

‖(A + 1)
v(t)‖Lq(�) � c(q)

∫ t

�
(t − s)

−
− n
2 ( 1�− 1

q
)
e−	(t−s)‖u(s)‖L�(�) ds

+c(t − �)
−
− n

2 (1− 1
q

)‖v(�)‖L1(�)
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� c�−
− n
2 (1− 1

q
)‖v(�)‖L1(�) + c · c1

∫ ∞

0
�−
− n

2 ( 1�− 1
q

)
e−	� d�

� c(q, �, �, �)(1+ c1) ∀t ∈ [�+ �, Tmax),

because
 + n
2(1� − 1

q
) < 1 due to (19). As 
 > 1

2 entailsD((Aq + 1)
) ↪→ W1,q(�)

by (2), the claim follows. �
In the proof of Lemma 4.3 we need the following elementary variant of Young’s

inequality, the proof of which is left to the reader.

Lemma 4.2. Let r and s be nonnegative real numbers satisfyingr + s < 2. Then for
any ε > 0 there exists a constantcε > 0 such that

arbs �ε(a2+ b2) + cε ∀a, b > 0.

We now see how theL1-bound (7) can be improved to anL�-estimate for some
� > 1 by using both equations in (1) simultaneously. Here the condition� < 2

n
plays

an essential role. A simplified variant of our procedure was performed in [29].

Lemma 4.3. Supposen�2 and f satisfies(18) with some� < 2
n
. Then there exist

� > max

{
2− 2

n
,2− 2�

}

and � > 0 such that for all� ∈ (0,min{1, Tmax}) we have

‖u(t)‖L�(�) �c(�, �)

(
1+
(
‖u(�)‖L�(�) + ‖∇v(�)‖

2
�

L2(�)

)
e−�t

)
∀t ∈ [�, Tmax).

(20)

Proof. With � > max{1,2− 2�} to be fixed below, we multiply the first in (1) by
(u + 1)�−1 and the second in (1) by(−�v) to obtain for t ∈ [�, Tmax), using (18),

1

�
d

dt

∫
�

(u + 1)� + (�− 1)
∫
�

(u + 1)�−2|∇u|2 = (�− 1)
∫
�

(u + 1)�−2f (u)∇u∇v.

Now we see that∫
�

(u + 1)�−2f (u)∇u∇v � c0

∫
�

(u + 1)�+�−2|∇u∇v|

� 1

2

∫
�

(u + 1)�−2|∇u|2+ c20

2

∫
�

(u + 1)2�+�−2|∇v|2
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and

1

2

d

dt

∫
�
|∇v|2+

∫
�
|�v|2+

∫
�
|∇v|2 = −

∫
�

u�v � 1

2

∫
�
|�v|2+ 1

2

∫
�

u2. (21)

Writing w := (u + 1)
�
2 , we conclude that

1

�
d

dt

∫
�

w2+ 2(�− 1)

�2

∫
�
|∇w|2� (�− 1)c20

2

∫
�

w
2(2�+�−2)

� |∇v|2. (22)

By Hölder’s inequality, we have

∫
�

w
2(2�+�−2)

� |∇v|2�‖w‖
2(2�+�−2)

�

L
2p(2�+�−2)

� (�)

· ‖∇v‖2
L2p

′
(�)

for any p > 1, where 1
p
+ 1

p′ = 1. Now if

− n�
2p(2�+ �− 2)

< 1− n

2
(23)

and

p(2�+ �− 2) > 1, (24)

we can use the Gagliardo–Nirenberg inequality and the Poincaré inequality to estimate

‖w(t)‖
2(2�+�−2)

�

L
2p(2�+�−2)

� (�)

� c‖w(t)‖
2(2�+�−2)

� a

W1,2(�)
· ‖w(t)‖

2(2�+�−2)
� (1−a)

L
2
� (�)

� c(�)
(
‖∇w(t)‖

2(2�+�−2)
� a

L2(�)
+ 1
)

∀ t ∈ (0, Tmax)

with

a =
n�
2 − n�

2p(2�+�−2)
1− n

2 + n�
2

∈ (0,1),

where we observe that

‖w(t)‖
2
�

L
2
� (�)

= ‖u0‖L1(�) + |�| ∀t ∈ (0, Tmax) (25)
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due to the mass conservation property (7). Next, from Lemma 4.1 (applied to� := 1)
we have

‖∇v(t)‖Lq(�) �c(q, �, �) ∀t ∈ [�, Tmax)

for any q < n
n−1 and thus, if

p′ <
n

n − 2
, (26)

we can again employ the Gagliardo–Nirenberg inequality to obtain

‖∇v(t)‖2
L2p

′
(�)

� c‖∇v(t)‖2b
W1,2(�)

· ‖∇v(t)‖2(1−b)

Lq(�)

� c(�, �)‖�v(t)‖2b
L2(�)

∀t ∈ [�, Tmax) (27)

with

b =
n
q
− n

2p′

1− n
2 + n

q

∈ (0,1).

(Note here that ifq < n
n−1 then q < 2 and hence 2p′ > q.) In deriving the second

inequality in (27) we have used that−� acts as an isomorphism from

D :=
{
� ∈ W2,2(�)

∣∣∣∣ ��

�N
|�� = 0 and

∫
�

� = 0

}

to L2(�); therefore, sincev(t) − v̄(t) is in D with v̄(t) := 1
|�|
∫
� v(t), it follows that

‖∇v(t)‖W1,2(�) = ‖∇(v(t) − v̄(t))‖W1,2(�) � ‖v(t) − v̄(t)‖W2,2(�)

� c‖�(v(t) − v̄(t))‖L2(�) = c‖�v(t)‖L2(�).

As a result, we see that

∫
�

w
2(2�+�−2)

� (t)|∇v(t)|2�c(�, �)(‖∇w(t)‖r
L2(�)

+ 1) · ‖�v(t)‖s
L2(�)

for all t ∈ [�, Tmax), where

r = 2(2�+ �− 2)

�
a = (2�+ �− 2)n − n

p

1+ (�− 1) n
2
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and

s = 2b =
2n
q
− n

p′

1− n
2 + n

q

.

Thus, if r + s < 2, that is, if

�(�, �, p, q) := (2�+ �− 2)n − n
p

1+ (�− 1) n
2

+
2n
q
− n

p′

1− n
2 + n

q

< 2, (28)

then Lemma4.2 says that∫
�

w
2(2�+�−2)

� (t)|∇v(t)|2� �− 1

2�2

∫
�
|∇w(t)|2+ 1

4

∫
�
|�v(t)|2+ c(�, �) (29)

for all t ∈ [�, Tmax). As to the right-hand side of (21), we interpolate similarly and
recall (25) to obtain∫

�
u2(t)�‖w(t)‖

4
�

L
4
� (�)

� c‖w(t)‖
4
� d

W1,2(�)
‖w(t)‖

4
� (1−d)

L
2
� (�)

� c(�)
(
‖∇w(t)‖

4
� d

L2(�)
+ 1
)

∀t ∈ (0, , Tmax)

with

d = n�

4(1− n
2 + n�

2 )
∈ (0,1),

provided that� > 2n−4
n
. If even

� > 2− 2

n
(30)

then 4
�d < 2 and therefore by Young’s inequality

∫
�

u2(t)� �− 1

2�2

∫
�
|∇w(t)|2+ c(�) ∀t ∈ (0, Tmax). (31)

Let us summarize: Adding (21)–(22) and using (29) and (31), we conclude that if (23),
(24), (26), (28) and (30) are satisfied then

d

dt

(1
�

∫
�

w2+ 1

2

∫
�
|∇v|2

)
+
(�− 1

�2

∫
�
|∇w|2+ 1

2

∫
�
|�v|2

)

�c(�, �) ∀t ∈ [�, Tmax).
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Since

∫
�
|∇w|2�c

(∫
�

w2− 1

)

by the Poincaré inequality and

∫
�
|�v|2�c

∫
�
|∇v|2

(see the remark following (27)), Gronwall’s lemma yields

∫
�

w2(t) +
∫
�
|∇v|2(t)

�c(�, �)

(
1+
(∫

�
w2(�) +

∫
�
|∇v|2(�)

)
e−�̃(t−�)

)
∀ t ∈ [�, Tmax)

for some�̃ > 0. In particular, in this case

∫
�

(u + 1)�(t)�c(�, �)

(
1+
(∫

�
(u + 1)�(�) +

∫
�
|∇v|2(�)

)
e−�̃t

)
∀t ∈ [�, Tmax)

holds. Since this implies the desired estimate, all that remains to be shown is that (23),
(24), (26), (28) and (30) can be fulfilled simultaneously.
To this end, we observe that (23) is equivalent to

p <
n�

(n − 2)(2�+ �− 2)
,

while (24) and (26) mean

p >
n

2
and p >

1

2�+ �− 2
,

so that (23), (24) and (26) can be achieved for somep ∈ (1,∞) (that will be fixed
henceforth) if and only if n�

n−2 > 1 – which is trivial for � > 1 — and

(n − 4)� < 2(n − 2)(1− �).

Since� < 2
n
, this is satisfied whenever eithern�4 or � < 2 (n−2)2

n(n−4) and thus particularly
if � < 2. Accordingly, we need to verify that (28) holds with someq < n

n−1 and some
� ∈ (max{2− 2

n
,2− 2�},2). To see this, we first assume 2− 2��2− 2

n
and consider
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the limit q → n
n−1 and � → 2− 2

n
to obtain for the left-hand side in (28)

�
(
�,2− 2

n
, p,

n

n − 1

)
= (2�− 2

n
)n − n

p

1+ n−2
n

· n
2

+ 2(n − 1) − n + n
p

1− n
2 + n − 1

= 4�− 8

n
+ 2.

Since � < 2
n
, we thus have�(�, �, p, q) < 2 for � and q sufficiently close to 2− 2

n

and n
n−1, respectively. If 2− 2� > 2− 2

n
, however, then similarly

�(�,2− 2�, p,
n

n − 1
) = 2

(
1− 2

n
+ 1

p

)
< 2

due top > n
2, whence we conclude that�(�, �, p, q) < 2 for � close to 2−2� > 2− 2

n
and q near n

n−1. Upon these respective choices of�, estimate (20) is thereby proved

for any value of� ∈ (0, 2
n
). �

The next lemma uses only the first equation in (1) to derive from given bounds for
u and v a better one foru.

Lemma 4.4. Suppose u and v satisfy the estimates

‖u(t)‖L�0(�) �c1 and ‖∇v(t)‖Lq0(�) �c1 ∀t ∈ [�, Tmax) (32)

for some� ∈ (0,min{1, Tmax}), c1 > 0 and numbers�0�1 and q0 > 2 satisfying

( n

q0
− 1
)
�0 < n(1− �). (33)

Then for any� > max{�0,2− 2�} which fulfills

( n

q0
− 1
)
� < (n − 2)(1− �), (34)

there exist positive constantsc(�), m = m(�) and � = �(�) such that

‖u(t)‖L�(�) �c(�)
(
1+ cm

1 + ‖u(�)‖L�(�)e
−�t
)

∀t ∈ [�, Tmax)

holds.

Proof. Throughout the proof, bym we denote a generic positive constant which
may vary from line to line and which depends only on�. Similar to the proof of
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Lemma4.3, we test the first in (1) by(u+ 1)�−1 and writew := (u+ 1)
�
2 to see that

d

dt

1

�

∫
�

w2+ 2

�− 1
�2
∫
�
|∇w|2

� (�− 1)c20
2

∫
�

w
2(2�+�−2)

� |∇v|2

� (�− 1)c20
2

(∫
�
|∇v|q0

) 2
q0
(∫

�
w

2q0(2�+�−2)
(q0−2)�

) q0−2
q0

�c(�)(1+ cm
1 )‖w‖

2(2�+�−2)
�

L

2q0(2�+�−2)
(q0−2)� (�)

∀ t ∈ [�, Tmax). (35)

As (34) is equivalent to

− (q0 − 2)n�
2q0(2�+ �− 2)

< 1− n

2
,

we may apply the Gagliardo–Nirenberg and the Poincaré inequality in estimating

‖w(t)‖
2(2�+�−2)

�

L

2q0(2�+�−2)
(q0−2)� (�)

� c(�)‖w(t)‖
2(2�+�−2)

� a

W1,2(�)
· ‖w(t)‖

2(2�+�−2)
� (1−a)

L
2�0
� (�)

� c(�)(1+ cm
1 )
(
‖∇w(t)‖

2(2�+�−2)
� a

L2(�)
+ 1
)

∀ t ∈ [�, Tmax),

(36)

where we have used that

‖w(t)‖
2�0
�

L
2�0
� (�)

�c(1+ cm
1 )

for t ∈ [�, Tmax) by (32), and have set

a =
n�
2�0

− (q0−2)n�
2q0(2�+�−2)

1− n
2 + n�

2�0

∈ (0,1).

Since (33) means that

(2�+ �− 2)
n

�0
− q0 − 2

q0
n < 2− n + n�

�0
,
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we have

2(2�+ �− 2)

�
a =

(2�+ �− 2) n
�0
− q0−2

q0
n

1− n
2 + n�

2�0

< 2,

so that Young’s inequality applied to (36) yields

‖w(t)‖
2(2�+�−2

�

L

2q0(2�+�−2)
(q0−2)� (�)

� �− 1

�2

∫
�
|∇w(t)|2+ c(�)(1+ cm

1 ) ∀ t ∈ [�, Tmax).

Inserted into (35), this entails, again by the Poincaré inequality,

1

�
d

dt

∫
�

w2 � −�− 1

�2

∫
�
|∇w|2+ c(�)(1+ cm

1 )

� −�
∫
�

w2+ c(�)(1+ cm
1 ) ∀t ∈ [�, Tmax)

with some� > 0. In view of Gronwall’s lemma, this shows that

∫
�

(u + 1)�(t)�
(∫

�
(u + 1)�(�)

)
e−��(t−�) + c(�)(1+ cm

1 ) ∀ t ∈ [�, Tmax)

and thereby proves the lemma.�

We have now collected all the elements for the announced iteration process.

Lemma 4.5. Supposen�1 and f satisfies(18)with some� < 2
n
. Then for any� > 2− 2

n
and all � > 0 there existc(�, �, �) > 0, m = m(�) > 0 and � = �(�) > 0 such that

‖u(t)‖L�(�) �c(�, �, �)
(
1+ Km(�)e−�t

)
∀t ∈ [�, Tmax), (37)

whereK(�) := max
t∈[ �

2 ,�]

(
‖u(t)‖L∞(�) + ‖∇v(t)‖L2(�)

)
.

Proof. Let us fix � and first consider the casen = 1. Since� < 2 and we may assume
that � > 1, there existsq0 > 2 such that

(
1

q0
− 1)�0 < 1− � and (

1

q0
− 1)� < −(�− 1)
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hold with �0 := 1. As

‖u(t)‖L�0(�) =
∫
�

u0 = � for t ∈ [0, Tmax)

and

‖v(t)‖W1,q0(�) �c(�, �) for t ∈ [�, Tmax)

by Lemma4.1, Lemma 4.4 implies that

‖u(t)‖L�(�) �c(�, �, �) for t ∈ [�, Tmax)

holds, which is obviously sharper than (37).
If n�2, however, we start by applying Lemma 4.3 to obtain some�0 > 2− 2

n
and

�0 > 0 such that

‖u(t)‖L�0(�) �c(�, �)
(
1+ K

2
�0 (�)e−�0�

)
∀t ∈ [ �

2
, Tmax), (38)

where we have estimated

‖u(
�
2

)‖L�0(�) + ‖∇v(
�
2

)‖
2
�0
L2(�)

�cK
2
�0 (�).

In the casen = 2 we then employ Lemma4.1 to achieve

‖∇v(t)‖Lq0(�) �c(�, �)
(
1+ K

2
�0 (�)e−�0�

)
for all t ∈ [�, Tmax)

and someq0 > 2–in fact, we may chooseq0 close to
2�0
2−�0

> 2. Then hypotheses (33)
and (34) of Lemma 4.4 are trivially fulfilled for arbitrarily large� and hence

‖u(t)‖L�(�) � c(�, �, �)

(
1+
(
K

2
�0 (�)e−�0�

)m̃ + ‖u(�)‖L�(�)e
−�̃t

)

� c(�, �, �)
(
1+ Km(�)e−�t

)
∀t ∈ [�, Tmax)

holds with suitablem and �.
Finally, if n�3 we use the same basic idea, but this time we have to apply Lem-

mas 4.1 and 4.4 several times to obtain (37) after a finite number of steps. In or-
der to prepare our bootstrapping procedure, we leta0, a1, a2, . . . ∈ R ∪ {+∞} be
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defined by

a0 := �0 and ak :=
{

(n−2)(1−�)
n−2ak−1 if ak−1 < n

2,

+∞ else,

and claim that there existsk0 ∈ N such that

a0 < a1 < · · · < ak0 = +∞.

Indeed, supposeak−1 < n
2 for all k ∈ {1, . . . , k1} and somek1 ∈ N. Then, since� < 2

n
,

ak

ak−1
>

(n − 2)(1− 2
n
)

n − 2ak−1
= (n − 2)2

n2− 2nak−1
> 1,

provided that(n− 2)2 > n2− 2ak−1 or, equivalently,ak−1 > 2− 2
n
. As this is true for

k = 1, it follows by induction thata0 < a1 < · · · < ak1. Hence, ifak were finite for
all k ∈ N, we would haveak ↗ a∞� n

2 as k →∞ and thus

a∞ = (n − 2)(1− �)

n − 2a∞
,

that is,

a∞ = n − (n − 2)(1− �)

2
<

n − (n − 2)(1− 2
n
)

2
= 2− 2

n
< a0,

contradicting the monotonicity of(ak)k∈N. Therefore we must haveak0 = +∞ for
somek0 ∈ N.
By a continuity argument, it is thus possible to choose positiveε1, . . . , εk0 such that

the numbers�1, . . . , �k0
∈ R defined by

�k :=
(n − 2)(1− �)

2− 2�k−1
− εk, k = 1, . . . , k0,

satisfy �0 < �1 < . . . < �k0−1 < n
2 and �k0

> �.
Now for k = 1, . . . , k0 we let

q̄k−1 := n�k−1
n − �k−1

.

Then

q̄k−1 > 2 ∀k = 1, ..., k0, (39)
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because�k−1��0 > 2− 2
n
and therefore

q̄k−1− 2= (n + 2)�k−1− 2n

n − �k−1
>

(n + 2) · 2(n−1)
n

− 2n

n − �k−1
= 2(n − 2)

n · (n − �k−1)
�0.

Furthermore,

( n

q̄k−1
− 1
)
�k−1 < n(1− �) ∀k = 1, . . . , k0, (40)

for �k−1 > 2− 2
n
and � < 2

n
imply

( n

q̄k−1
− 1
)
= n − 2�k−1 < n − 4(n − 1)

n
< n − n�.

Finally,

( n

q̄k−1
− 1
)
�k < (n − 2)(1− �) ∀k = 1, . . . , k0, (41)

since by construction of�k,

�k <
(n − 2)(1− �)

n − 2�k−1
�k−1 =

(n − 2)(1− �)
n

q̄k−1 − 1
.

Due to (39) – (41) it is possible to fixq0, . . . , qk0−1 such that

2< qk−1 < q̄k−1,
( n

qk−1
− 1
)
�k−1 < n(1− �) (42)

and

( n

qk−1
− 1
)
�k < (n − 2)(1− �) (43)

for all k = 1, . . . , k0. Furthermore, we choose any sequence of numbers�0, . . . , �k0

satisfying �
2 = �0 < �1 < . . . < �k0 = �. We now claim that for anyk = 0, . . . , k0 we

have

‖u(t)‖L�k (�) �c(�, �)
(
1+ Kmk (�) e−�k t

)
∀t ∈ [�k, Tmax) (44)
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for appropriatemk > 0 and�k > 0, which will entail

‖u(t)‖L�(�) �c(�, �, �)
(
1+ Kmk0 (�) e−�k0 t

)

for all t ∈ [�, Tmax), because� < �k0
. In the casek = 0, (44) is implied by (38).

However, if

‖u(t)‖L�k−1(�) �c(�, �)
(
1+ Kmk−1(�) e−�k−1t

)
∀ t ∈ [�k−1, Tmax)

holds for somek ∈ {1, . . . , k0} and suitablemk−1 and �k−1 then, since�k−1 < n and

qk−1 < q̄k−1 = n�k−1
n − �k−1

,

Lemma4.1 (with � := �k − �k−1) yields

‖∇v(t)‖Lqk−1(�) �c(�, �)
(
1+ Kmk−1(�) e−�k−1t

)

for all t ∈ [�k, Tmax). Therefore, in view of (42) and (43), Lemma 4.4 provides some
m̃k and �̃k such that

‖u(t)‖L�k (�) � c(�, �)

(
1+
(
Kmk−1(�) e−�k−1t

)m̃k + ‖u(�k)‖L�k (�) e−�̃k

)

� c(�, �)
(
1+ Kmk (�) e−�k t

)
∀t ∈ [�k, Tmax)

is valid with certain constantsmk and �k, so that (44) has been proved. �
After the main work has been done now, the final step toL∞ (and even toC� spaces)

is now straightforward. Let us mention that the pure information ‘(u, v) is uniformly
bounded’ could alternatively obtained from the previous lemma and another iterative
procedure introduced in [1]. This iterative procedure has been used most commonly in
the literature related to the Keller–Segel chemotaxis system to establish the uniformly
boundedness of(u, v) for the case where� = 1 or where other chemotactic sensitivity
functions have been considered. We will mention some of this results in the concluding
section of the present paper.

Theorem 4.1. If n�1 and f satisfies(17) for some� < 2
n
then all solutions of(1) are

global in time and uniformly bounded. Moreover, given � > 0 and � ∈ (0,1) there
exist c(�, �) > 0, m > 0 and � > 0 such that

‖u0‖L1(�) �� and ‖v0‖L1(�) ��
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implies

‖u(t)‖L∞(�) + ‖v(t)‖L∞(�) �c(�, �)
(
1+ K̄m(�) e−�t

)
∀t ��; (45)

actually, we even have

‖u(t)‖
C�(�̄)

+ ‖v(t)‖
C2+�(�̄)

�c(�, �, �)
(
1+ K̄m(�) e−�t

)
∀t �� (46)

for any � ∈ (0,1), with m = m(�) and � = �(�). Here we have set

K̄(�) := max
t∈[ �

4 ,�]

(
‖u(t)‖L∞(�) + ‖∇v(t)‖L2(�)

)
.

Proof. SinceD((A + 1)
) ↪→ C�(�̄) andD((A + 1)1+
) ↪→ C2+�(�̄) for 
 ∈ (0, 12)

and p > 1 satisfying 2
 − n
p

> �, the proof of (46) will be accomplished if we can
show that

‖(A + 1)
u(t)‖Lp(�) �c(
, p, �, �)
(
1+ K̄m(�) e−�t

)
(47)

for all t ∈ [3�4 , Tmax), 
 ∈ (0, 12), p > 1 and

‖(A + 1)1+
v(t)‖Lp(�) �c(
, p, �, �)
(
1+ K̄m(�) e−�t

)
(48)

for all t ∈ [�, Tmax), 
 ∈ (0, 12), p > 1. (Note here that this particularly entails
Tmax = ∞ by Theorem3.1.) The constantsm and �, which depend on
 and p only,
may vary from line to line.
To see (47), we let� = ∫� u0, fix 
 andp > 1 and apply(A+ 1)
 to both sides of

the formula

u(t) − � = e−(t− �
2 )A(u(�/2) − �) −

∫ t

�
2

e−(t−s)A∇ · (f (u(s))∇v(s)) ds ∀t ∈ (
�
2

, Tmax),

which is valid because of the fact thate−tA� = � for all t > 0. By Lemmas4.5 and
4.1, we have

‖(u + 1)(t)‖L2p�(�) + ‖∇v(t)‖L2p(�) �c(p, �, �)
(
1+ K̄m(�) e−�t

)
∀t ∈ [ �

2
, Tmax).
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Using this, (4), Lemma 2.1 (with any fixedε ∈ (0, 12 − 
)) and the Hölder inequality,
we obtain

∥∥∥(A + 1)

(
u(t) − �

)∥∥∥
Lp(�)

�
∥∥∥(A + 1)
e−(t− �

2 )A(u(
�
2

) − �)

∥∥∥
Lp(�)

+
∫ t

�
2

∥∥∥(A + 1)
e−(t−s)A∇ · (f (u(s))∇v(s))

∥∥∥
Lp(�)

ds

�c(
, p)
(
t − �

2

)−
− n
2 (1− 1

p
)‖u( �

2) − �‖L1(�)

+c(
, p)

∫ t

�
2

(t − s)−
− 1
2−εe−	(t−s)‖(u + 1)�(s)∇v(s)‖Lp(�) ds

�c(
, p)��−
− n
2 (1− 1

p
)

+
∫ t

�
2

(t − s)
−
1
2−εe−	(t−s)‖(u + 1)(s)‖�

L2p�(�)
· ‖∇v(s)‖L2p(�) ds

�c(
, p)��−
− n
2 (1− 1

p
)

+c(
, p, �, �)

(
1+ K̄m(�) ·

∫ t

�
2

(t − s)−
− 1
2−εe−	(t−s)e−�s ds

)

�c(
, p, �, �)
(
1+ K̄m(�) e−�t

)
∀t ∈ [3�4 , Tmax)

with � > 0 small enough. This easily yields (47).
For the proof of (48) we use the result just obtained in applying(A+1)
+1 to both

sides of

v(t) = e−(t− 3�
4 )(A+1)v(

3�
4

) +
∫ t

3�
4

e−(t−s)(A+1)u(s) ds, t ∈ [3�
4

, Tmax).

From (3), (8) and (47), for any fixedε ∈ (0, 12 − 
) we infer that

‖(A + 1)
+1v(t)‖Lp(�) �
∥∥∥(A + 1)
+1e−(t− 3�

4 )(A+1)v(3�4 )

∥∥∥
Lp(�)

+
∫ t

3�
4

∥∥∥(A + 1)
+1e−(t−s)(A+1)u(s)

∥∥∥
Lp(�)

ds
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� c(
, p)
(
t − 3�

4

)−1−
− n
2 (1− 1

p
)‖v(

3�
4

)‖L1(�)

+c(
, p)

∫ t

3�
4

(t − s)1−εe−	(t−s)‖(A + 1)
+εu(s)‖Lp(�) ds

� c(
, p, �)�

+c(
, p, �, �)

(
1+ K̄m(�)

∫ t

3�
4

(t − s)−1+εe−	(t−s)e−�s ds

)

� c(
, p, �, �)
(
1+ K̄m e−�t

)
∀t ∈ [�, Tmax),

so that (48) follows and the proof is complete. �
As an interesting by-product of (46) we obtain some information on the�-limit sets

of solutions.

Corollary 4.1. Suppose f satisfies(17) with some� < 2
n
. Then for all� > 0 and any

� ∈ (0,1) there exists a ballBR(�,�) in C�(�̄)×C2+�(�̄) centered at zero, with radius
R(�, �) depending on� and � only, that has the following property: If u0 ∈ C0(�̄)

and v0 ∈ ⋃
q>n

W1,q(�) are such that

‖u0‖L1(�) < �

then the�-limit set

�(u0, v0) :=
{
(u∞, v∞) ∈ (L1(�))2 | ∃ tk →∞ such that

u(tk) → u∞ and v(tk) → v∞ a.e. in �
}

of the unique global solution(u, v) emanating from(u0, v0) satisfies

∅ != �(u0, v0) ⊂ BR(�,�).

Remark. Note particularly that the asymptotic boundR = R(�, �) does not in any
way depend onv0 (which is actually due to the absorption term−v in the second
equation of (1)). Also, the dependence onu0 is only through itsL1(�) norm. A result
of this type is (for any fixed�) the best that can be expected in the sense thatR
must depend at least on‖u0‖L1(�) since‖u∞‖L1(�) = ‖u0‖L1(�) holds for all elements
(u∞, v∞) ∈ �(u0, v0) due to (7) and, for instance, the equicontinuity property (46).
Particularly, there is no hope for a global attractor or only a uniformly absorbing
bounded set (in theL1 topology). For a result on the existence of a finite dimensional
attractor forn = 1 and� = 1 we refer the interested reader to [32].
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Proof. We fix an arbitrary� ∈ (0,1) and set� := 1
2 in (46) to obtain a constant

R(�, �) such that

lim sup
t→∞

(
‖û(t)‖

C�(�̄)
+ ‖v̂(t)‖

C2+�(�̄)

)
�R(�, �) (49)

holds for all solutions(û, v̂) of (1) evolving from initial data(û0, v̂0) with the property
that max{‖û0‖L1(�), ‖v̂0‖L1(�)}��.
Now let (u0, v0) be given with‖u0‖L1(�) < �, and let(u, v) denote the correspond-

ing solution. From (8) we know that‖v(t)‖L1(�) → ‖u0‖L1(�) as t →∞, whence there
existst0�0 such that‖v(t0)‖L1(�) ��. Settingû(t) := u(t0+t) and v̂(t) := v(t0+t) for
t �0, we see that(û, v̂) solves (1) with initial data(û0, v̂0) := (u(t0), v(t0)) satisfying
max{‖û0‖L1(�), ‖v̂0‖L1(�)}��. Therefore (49) yields the claim. �

5. The supercritical case: absence of the a priori estimate

Let us now turn to the case of supercritical growth off (u). The goal of the present
section is twofold: First, it explicitly shows that an apriori estimate as in Theorem 4.1
is not available iff (s) grows faster thans� for some� > 2

n
when n�2. Secondly, at

the same time it provides some useful preparations for the blow-up results to follow
in the subsequent sections.
Our method will strongly rely on the fact that (1) possesses a natural Lyapunov

functional (see [6,14,34] for more informations about Lyapunov functionals for Keller–
Segel-type models). Its definition involves the nonnegative function� : (0,∞) → R

given by

�(s) :=
∫ s

1

∫ �

1

d�
f (�)

, s > 0.

To be more precise, in the next lemma we shall see that

F (u, v) := 1

2

∫
�
|∇v|2+ 1

2

∫
�

v2−
∫
�

uv +
∫
�

�(u), 0�u ∈ C0(�̄), v ∈ W1,2(�),

acts as a Lyapunov functional for (1) in the following manner.

Lemma 5.1. If (u, v) is a classical solution of(1) in �× (0, T ) for someT �∞ then
we have

∫ t

s

∫
�

v2t +
∫ t

s

∫
�

f (u) ·
∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2+ F (u(t), v(t)) = F (u(s), v(s)) (50)

for all 0�s < t < T , provided that the initial data satisfyinf
x∈�

u0(x) > 0.
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Proof. Since u0 is strictly positive in �̄, the strong maximum principle guarantees
that u is positive in �̄ × [0, T ) and hence 1

f (u)
and�(u) are continuous functions in

�̄×[0, T ). Multiplying the second equation in (1) by vt and integrating by parts yields

∫ t

s

∫
�

v2t +
(
1

2

∫
�
|∇v|2+ 1

2

∫
�

v2
) ∣∣∣∣

t

s

=
∫ t

s

∫
�

uvt =
∫
�

uv

∣∣∣∣
t

s

−
∫ t

s

∫
�

utv.

We now use the first equation in (1) to calculate

∫ t

s

∫
�

utv = −
∫ t

s

∫
�

(�u − ∇ · (f (u)∇v)) · v =
∫ t

s

∫
�
∇u · ∇v −

∫ t

s

∫
�

f (u)|∇v|2.

Since

f (u)

∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2 = 1

f (u)
|∇u|2− 2∇u · ∇v + f (u)|∇u|2

and

∫
�

�(u)

∣∣∣∣
t

s

=
∫ t

s

∫
�

�′(u)ut =
∫ t

s

∫
�

�′(u)(�u − ∇ · (f (u)∇v))

= −
∫ t

s

∫
�

�′′(u)∇u · (∇u − f (u)∇v)

= −
∫ t

s

∫
�

1

f (u)
|∇u|2+

∫ t

s

∫
�
∇u · ∇v,

this gives

−
∫ t

s

∫
�

utv = −
∫ t

s

∫
�
∇u · ∇v +

∫ t

s

∫
�

1

f (u)
|∇u|2−

∫ t

s

∫
�

f (u)

∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2

=
∫
�

�(u)

∣∣∣∣
t

s

−
∫ t

s

∫
�

f (u)

∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2,
so that (50) even holds with equality. �

Remark. We notice that in the subcritical case whenf (s)�c1s
� ∀ s �1 with � < 2

n
,

for any � > 0 and� > 0 we can findc(�, �) > 0 such that

F (u(t), v(t))� − c(�, �) ∀t �� (51)
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holds for all solutions(u, v) with initial data fulfilling

max{‖u0‖L1(�), ‖v0‖L1(�)}��.

For n�2 this can be seen as follows (the proof in the casen = 1 is even simpler):
From the growth condition onf we gain�(s)�c2s

2−� − c3 for all s �1 with positive
c2 and c3. Thus, by Young’s inequality, we can findε > 0 small such that

∫
�

uv�ε

∫
�

u2−� + c(ε)

∫
�

v
2−�
1−� �

∫
�

�(u) + c + c

∫
�

v
2−�
1−� for all t > 0.

Now Lemma4.1 and the Sobolev embedding theorem tell us that

‖v(t)‖Lq(�) �c(q, �, �)

for all t �� and anyq < n
n−2. Therefore we can apply the Gagliardo–Nirenberg and

the Poincaré inequality to estimate

∫
�

v
2−�
1−� �c

(
‖v‖

2−�
1−� a(q)

W1,2(�)
+ 1
)
‖v‖

2−�
1−� (1−a(q))

Lq(�)

�c(q, �, �)
(
‖∇v‖

2−�
1−� a(q)

L2(�)
+ 1
)

∀ t ��,

wherea(q) =
n
q
− 1−�
2−� n

1− n
2+ n

q
. Since 2−�

1−�a(q) → n−2(2−�)

( n
2−1)(1−�)

< 2 asq → n
n−2, we can pickq

close to n
n−2 so as to achieve

∫
�

v
2−�
1−� �ε

∫
�
|∇v|2+ c(�, �, ε) ∀t ��

for any ε > 0. Upon an appropriate choice ofε this yields (51).

The key to our results on nonexistence of a priori bounds and on blow-up solutions
is the observation that for supercritical growth off, the functionalF is unbounded from
below in the following sense.

Lemma 5.2. Supposen�2 and

f (s)�c0s
� ∀s �1 (52)

holds with somec0 > 0 and some� > 2
n
. Then for any fixed� > 0 there existε0 > 0

and families(uε)ε∈(0,ε0) ⊂ W1,∞(�) and (vε)ε∈(0,ε0) ⊂ W1,∞(�) such thatuε > 0
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and vε > 0 in �̄,∫
�

uε = � ∀ε ∈ (0, ε0) and

∫
�

vε → 0 as ε → 0,

but

F (uε, vε) →−∞ as ε → 0. (53)

Actually, it is even possible to constructvε such that∫
�
|∇vε|2 →+∞ as ε → 0.

If � is a ball thenuε and vε can be chosen to be radially symmetric.

Remark. (1) In the one dimensional case, (53) cannot occur for any choice off. Then,
namely, the Sobolev and the Young inequality yield∫

�
uv��‖v‖L∞(�) �

1

4

∫
�
|∇v|2+ c�2

for all (u, v) ∈ L1(�) × W1,2(�) with
∫
� u and

∫
� v not exceeding�; thus,

F (u, v)� 1

4

∫
�
|∇v|2− c�2

holds for all (u, v) of this type, because��0.
(2) A result related to Lemma5.2 for the critical casen = 2 and� = 1 is already

known. One can find it in [15]. In that critical case one has to assume that theL1-norm
of u0 is sufficiently large to guarantee the existence of sequences(uε)ε∈(0,ε0) ⊂ L∞(�)

and (vε)ε∈(0,ε0) ⊂ W1,∞(�) such that

F (uε, vε) →−∞ and
∫
�
|∇vε|2 →+∞ as ε → 0.

Proof. After a translation of the coordinate axes we may assumeBR0 ⊂ � ⊂ BR1 with
certain radii 0< R0 < R1. Also, it is sufficient to consider the case when� /∈ {1,2}.
Then, namely, we have

�(s)� 1

c0

∫ s

1

∫ �

1
�−� d� = (s2−� − 1)

c0(1− �)(2− �)
− (s − 1)

c0(1− �)
�c
(
s2−� + s

)
(54)

for all s �1 due to (52).
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First, if n�3 we may additionally suppose� < 1 and then define

uε(x) :=



�
2|�| + aεε−n, |x|�ε,

�
2|�| + aεε
−n|x|−
, x ∈ � \ Bε

and

vε(x) :=
{

ε−�, |x|�ε,

ε�−�|x|−�, x ∈ � \ Bε,

for ε < ε0 := R0, where we fix


 > n, � ∈
(
max{n−2

2 , (1− �)n}, n − 2
)

and � > n,

which is possible sincen�3 and� > 2
n
. Moreover, we set

aε :=
�
2

�n

n
+ �n


−n

(
1− ( ε

R0
)
−n
)
+ ε
−n

∫
�\BR0

|x|−

,

where�n denotes the surface area of the unit ball inRn.
The choice ofaε was done in such a way that

∫
�

uε = �
2
+ aεε−n|Bε| + aεε
−n�n

∫ R0

ε

rn−1−
 dr + aεε
−n

∫
�\BR0

|x|−


= � ∀ε ∈ (0, ε0).

Observe thataε → n(
−n)

4
�n
as ε → 0 and henceaε is bounded above and below by

positive constants. Clearly,uε and vε belong toW1,∞(�) and are positive in�̄.
We now estimate the terms making upF (uε, vε) according to

∫
�
|∇vε|2 � �n

∫ R1

ε

rn−1(�ε�−�r−�−1)2 dr

= �2�n

2�+ 2− n
ε2�−2�

(
εn−2�−2− Rn−2�−2

1

)
� cεn−2�−2, (55)

∫
�

v2ε � ε−2� εn�n

n
+ �n

∫ R1

ε

rn−1(ε�−�r−�
)2

dr
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= �n

n
εn−2� + �n

2�− n
ε2�−2�

(
εn−2� − Rn−2�

1

)
�cεn−2�,

∫
�

uεvε �aεε−n−� εn�n

n
�cε−�

and, using (54),

∫
�

�(uε) =
∫
{uε<1}

�(uε) +
∫
{uε �1}

�(uε)� |�|�
( �
2|�|
)
+ c
( ∫

�
u2−�

ε + �
)
, (56)

because�′(s) is negative whenevers < 1. Since� < 1< 2− n

 , we have∫

�

(
uε − �

2|�|
)2−� = a2−�

ε ε−(2−�)n εn�n

n
+ �n

∫ R0

ε

rn−1(aεε
−nr−

)2−�

dr

+
∫
�\BR0

(
aεε
−n|x|−


)2−�

= a2−�
ε �n

n
ε−(1−�)n + a2−�

ε ε(
−n)(2−�)

∫
�\BR0

|x|−(2−�)


+�na2−�
ε ε(
−n)(2−�)

n − (2− �)


(
R

n−(2−�)

0 − εn−(2−�)


)

and thus ∫
�

u2−�
ε � c

∫
�

[( �
2|�|
)2−� +

(
uε − �

2|�|
)2−�
]

� c
(
1+ ε−(1−�)n + ε(
−n)(2−�)+n−(2−�)


)
� cε−(1−�)n

for all ε ∈ (0, ε0). We therefore obtain

F (uε, vε)�c
(
εn−2�−2+ ε−(1−�)n

)
− c̄ε−�

with positive constantsc and c̄, and henceF (uε, vε) →−∞ as ε → 0, provided that

� > max{0,−(n − 2�− 2), (1− �)n},

which however is guaranteed by our original choice of�. Moreover, we have∫
�

vε � �n

n
εn−� + �nε�−�

∫ R1

ε

rn−1−� dr = �n

n
εn−� + �n

�− n
ε�−�
(
εn−� − Rn−�

1

)
� cεn−� → 0
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as ε → 0, since� > n and � < n − 2< n, and (cf. (55))

∫
�
|∇vε|2��n

∫ R0

ε

rn−1(�ε�−�r−�−1)2dr �c(εn−2�−2− 1) →+∞

as ε → 0, because we have chosen� > n−2
2 . In the casen = 2 the construction is

similar, usinguε in the same form as before with arbitrary
 > n = 2, but setting

vε(x) :=



(
ln R1

ε

)1−�
, |x|�ε,(

ln R1
ε

)−�
ln R1

r
, x ∈ � \ Bε,

this time, where� ∈ (0, 12). Then

∫
�
|∇vε|2 � 2�

∫ R1

ε

r
((
ln

R1

ε

)−� 1

r

)2
dr = 2�

(
ln

R1

ε

)1−2�
,

∫
�

v2ε � 2�
∫ R1

0
r
((
ln

R1

ε

)−�
ln

R1

r

)2
dr → 0 asε → 0,

∫
�

uεvε � �aε

(
ln

R1

ε

)1−�
,

and since� > 1, (56) directly yields

∫
�

�(uε)�c.

Therefore� > 0 implies F (uε, vε) → −∞ as ε → 0, while
∫
� vε → 0 as ε → 0 is

obvious now and the additional property

∫
�
|∇vε|2�2�

∫ R0

ε

r
((
ln

R1

ε

)−� 1

r

)2
dr = 2�

(
ln

R1

ε

)−2�
ln

R0

ε
→+∞

as ε → 0 is fulfilled in virtue of � < 1
2. �

Now we are in the position to prove the absence of an a priori bound in the style
of that given by Theorem4.1, provided that the growth off at infinity is supercritical.

Theorem 5.1. If n�2 and there existsc0 > 0 such that

f (s)�c0s
� ∀s �1
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holds with some� > 2
n
then there does not exist an a priori estimate in the sense of

(45). More precisely, to any � > 0 there corresponds a sequence of solutions(uj , vj )

of solutions to(1) with initial data (u0,j , v0,j ) satisfying

‖u0,j‖L1(�) = � ∀ j ∈ N and ‖v0,j‖L1(�) → 0 as j →∞, (57)

such that

lim sup
t→Tmax,j

‖uj (t)‖L∞(�) →∞ as j →∞, (58)

whereTmax,j �∞ denotes the maximum existence time for(uj , vj ).

Proof. From Lemma5.2 we know that there exist sequences(u0,j )j∈N ⊂ W1,∞(�)

and (v0,j )j∈N ⊂ W1,∞(�) of strictly positive functions fulfilling (57) and

F (u0,j , v0,j ) →−∞ as j →∞.

Let (uj , vj ) denote the (classical) solution of (1) emanating from(u0,j , v0,j ), defined
in the maximal time interval(0, Tmax,j ).
If (58) was false, we could pass to a subsequence to obtain

lim sup
t→Tmax,j

‖uj (t)‖L∞(�) �c1 ∀j ∈ N

with somec1 > 0. In particular, this impliesTmax,j = ∞ for all j, because thenuj �2c1
holds in � × (T0,j , Tmax,j ) with someT0,j sufficiently close toTmax,j . We therefore
may modify f (s) beyond s = 2c1 so as to be constant for larges without touching
system (1) in � × (T0,j , Tmax,j ). Applying the results of Theorem 4.1 for sufficiently
small � = �j > 0 to (uj (· − T0,j ), vj (· − T0,j )), we infer that

lim sup
t→Tmax,j

(‖uj (t)‖
C�(�̄)

+ ‖vj (t)‖
C2+�(�̄)

) < ∞

for each j ∈ N and some� > 0, whence all(uj , vj ) must be global and, clearly,
bounded solutions of (1).
Repeating the latter argument withTmax,j = ∞ and �j = 1 this time, we obtain a

sequence(Tj )j∈N ⊂ (1,∞) and constants� > 0 andc2 > 0 independent ofj such that

‖uj (t)‖
C�(�̄)

+ ‖vj (t)‖C2+�(�) �c2 ∀ t ∈ (Tj ,∞). (59)

By the Arzelà–Ascoli theorem, for allj we can therefore extract a sequence(tj,k)k∈N ⊂
(0,∞) such that

uj (tj,k) → uj,∞ in C0(�̄) and vj (tj,k) → vj,∞ in C2(�̄) (60)
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as k →∞, whereuj,∞ !≡ 0 because
∫
� uj (tj,k) = � > 0 for all k. As

‖uj,∞‖
C�(�̄)

+ ‖vj,∞‖C2+�(�) �c2

by (59) and an elementary argument, we may now takej → ∞ along a suitable
subsequence to achieve

uj,∞ → u∞,∞ in C0(�̄) and vj,∞ → v∞,∞ in C2(�̄),

again withu∞,∞ !≡ 0 due to
∫
� uj,∞ ≡ �. In virtue of (60) and the Lyapunov property

of F (see Lemma 5.1), we infer that

F (u0,j , v0,j )�F (uj (tj,k), vj (tj,k)) → F (uj,∞, vj,∞) as k →∞

and hence, lettingj →∞,

F (u∞,∞, v∞,∞)� lim inf
j→∞ F (u0,j , v0,j ) = −∞,

which is absurd because
∫
� u∞,∞v∞,∞ must be finite. �

6. Blow-up

We shall now proceed to prove the existence of unbounded solutions under some ad-
ditional assumptions. Our approach is basically indirect: For certain sensitivity functions
f, we shall find some initial data (using Lemma5.2) for which it will be impossible
that the corresponding solution of (1) remains bounded for all times, so that it will
have to blow up either in finite or in infinite time. The contradiction to the boundedness
hypothesis for such solutions will mainly be gained by an energy argument, ‘energy’
here being measured in terms of the functionalF introduced in the previous section.
To become more concrete, the existence of the Lyapunov functionalF encourages

us to suspect a connection between the�-limit set of a supposedly bounded solution
of (1) and some kind of steady state solutions of (1). Here we also refer to related
results by Osaki and Yagi [32] forn = 1 and� = 1. Furthermore, some comments and
results on the convergence to steady-state solutions for general Keller–Segel-type mod-
els have been established for example in [14,34]. However, here we follow a slightly
different approach. Part of such a connection between the�-limit set of a suppoes-
edly bounded solution of (1) and some kind of steady state solutions is established
by the following lemma in which we use the strictly decreasing function� defined
by

�(s) :=
∫ 1

s

d�
f (�)

, s > 0.
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Lemma 6.1. Suppose(u, v) is a global bounded solution of(1) with initial data
(u0, v0) satisfyingu0 > 0 in �̄, and set� := ∫� u0. Then there existu∞ ∈ C0(�̄), v∞ ∈
C2(�), � ∈ R and a sequence of timestk →∞ such that

u(tk) → u∞ in C0(�̄), v(tk) → v∞ in C2(�̄), (61)

and (u∞, v∞, �) is a solution of the stationary problem

(S�)




−�v∞ + v∞ = u∞ in �,

�(u∞) + v∞ = � in �,

�
�N

v∞|�� = 0,∫
� u∞ = ∫� v∞ = �.

Proof. It is easy to see that it is sufficient to prove the claim with� replaced by

�̂(s) :=
∫ s0

s

d�
f (�)

,

where s0 := ‖u‖L∞(�×(0,∞)). In this case,�̂(u) is positive in�× (0,∞).
Since (u, v) is a global bounded solution andu0 > 0 in �̄, F (u, v) is uniformly

bounded from below for all times, whence Lemma5.1 says that

∫ ∞

0

∫
�

v2t +
∫ ∞

0

∫
�

f (u)

∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2 < ∞

and thus

∫
�

vt (tk) → 0 ask →∞ (62)

as well as

∫
�

f (u(tk))

∣∣∣ 1

f (u(tk))
∇u(tk) − ∇v(tk)

∣∣∣2 → 0 ask →∞ (63)

are valid for a suitable sequencetk → ∞. Again manipulatingf (s) for s > 2s0 to be
constant for larges, we may apply Theorem4.1 to extract a subsequence for which (61)
holds. In order to gain further information from (63), let us first construct a positive
nonincreasing� ∈ W1,∞((0,∞)) that fulfills

�(�(s))�f (s) ∀s ∈ (0, s0).
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This can, for instance, be achieved by defining

�(�) := f0(�−1(�)), � ∈ (0,∞),

where f0 ∈ W1,∞((0, s0)) is any nondecreasing minorant off on [0, s0] which is
positive in (0, s0]; for example, we may takef0(s) := min

�∈[s,s0]
f (�). Then, in fact,� is

positive on(0,∞) and we have

�′(�) = −f ′
0(�

−1(�)) · f (�−1(�))�0 as well as �(�(s)) = f0(s)�f (s)

for all s ∈ (0, s0), as desired.
Using this function�, we write

P (s) :=
∫ s

0

√
�(�) d�

for s > 0 and calculate

∣∣∣∇P (�(u) + v)

∣∣∣2 =
∣∣∣P ′(�(u) + v)

∣∣∣2∣∣∣∇(�(u) + v)

∣∣∣2 = �
(
�(u)+v

)∣∣∣ 1

f (u)
∇u−∇v

∣∣∣2

� �
(
�(u)

)∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2 � f (u)

∣∣∣ 1

f (u)
∇u − ∇v

∣∣∣2,
becausev is nonnegative. Therefore (63) implies

∫
�

∣∣∣∇P (�(u(tk)) + v(tk))

∣∣∣2 → 0 ask →∞,

whence

∫
�

∣∣∣P (�(u(tk)) + v(tk)) − mk

∣∣∣2 → 0 ask →∞ (64)

by the Poincaré inequality, wheremk is the real number defined by

mk := 1

|�|
∫
�

P (�(u(tk)) + v(tk)).

Extracting further subsequences, we may assume that the integrand in (64) tends to
zero a.e. in�, and thatmk → m∞ ∈ [0,∞] as k →∞. Thus,

P (�(u(tk)) + v(tk)) → m∞ a.e. in � as k →∞
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and accordingly

�(u(tk)) + v(tk) → � := P−1(m∞) ∈ [0,∞] a.e. in� as k →∞.

But � = +∞ actually is impossible since in such a case (61) would show thatu(tk) →
0 uniformly in � which contradicts the fact that

∫
� u(tk) = � for all k.

Now the validity of (S�) results from this, (61), (62) and (8). �
Combining the Lemmata 5.2, 6.1 and 5.1, we immediately obtain the following

Corollary 6.1. Let n�2 and f satisfyf (s)�c0s
� for all s �1 with somec0 > 0 and

� > 2
n
. If there exists� > 0 and a constant c such that

F (u, v)� − c (65)

is valid for all for all solutions (u, v, �) of (S�) then there exists a solution of(1)
which blows up. The same is true if� is a ball and (65) holds only for all radially
symmetric solutions of(S�).

In the sequel we shall derive from this some results on the existence of radial blow-up
solutions, assuming throughout thatf satisfies the supercriticality condition

f (s)�c0s
� ∀s �1

with somec0 > 0 and� > 2
n
. More precisely, we shall show that in some cases, under

relatively mild additional conditions onf (which will be stated when required) there
exists a (�-dependent) a priori bound from below forF (u, v) for all radially symmetric
solutions(u, v, �) of (S�).
For technical reasons, we shall treat the three cases� > 2, � ∈ (1,2) and� ∈ ( 2

n
,1)

separately. Before going into detail, let us state an easily obtained but rather helpful
information for the componentv of solutions of(S�). Although the result is standard
(cf. [3,16,19,36,38]), we include a short proof for the sake of completeness.

Lemma 6.2. Let n�2.

(i) For all s ∈ (1, n
n−1) there existsc = c(s) > 0 such that

‖v‖W1,s (�) �c(s)� (66)

holds for all solutions(u, v, �) of (S�).
(ii) For all q ∈ (1, n

n−2) there is c = c(q) > 0 with the property that any solution
(u, v, �) of (S�) satisfies

‖v‖Lq(�) �c(q)�.
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Proof. (i) Let s′ := s
s−1. Then s′ > n, so thatW1,s′(�) ↪→ L∞(�). Therefore testing

(S�) with arbitrary� ∈ W1,s′(�) gives

∫
�
∇v · ∇� =

∫
�

u�−
∫
�

v��2�‖�‖L∞(�) �c�‖�‖
W1,s′ (�)

.

Together with the Poincaré inequality this implies (66).
(ii) This is an easy application of the Sobolev embedding theorem to (66).�

6.1. The case� > 2

Let us start with the case� > 2 which is the easiest one and which requires no
further condition onf; that is, we suppose in this section that

f (s)�c0s
� ∀s �1 (67)

holds with somec0 > 0 and� > 2. We assume throughout that� = BR is a ball in
Rn, n�2, centered at zero, and we shall prove our first result on existence of blow-up
solutions which reads as follows.

Theorem 6.1. Suppose� = BR is a ball in Rn, n�2, and f satisfies(67) with some
c0 > 0 and � > 2. Then for any� > 0 there exist radially symmetric solutions(u, v)

of (1) which blow up and have mass
∫
� u(t) ≡ �.

For the proof we need the following lemma asserts that the componentv of a
solution (u, v, �) of (S�) has values of the same order as� in a set of uniformly
positive measure.

Lemma 6.3. If f satisfies(67) with some� > 2 then there exist� ∈ R and c > 0 such
that any radially symmetric solution(u, v, �) of (S�) satisfies

∣∣∣{v��− 2�}
∣∣∣�c. (68)

Proof. To make the proof more transparent, let us use

�̄(s) :=
∫ ∞

s

d�
f (�)

≡ �(s) + c1

with

c1 :=
∫ ∞

1

d�
f (�)

.
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Note thatc1 is finite due to� > 2. Then�̄ is positive and, by(S�),

�̄(u) + v ≡ �̄ := �+ c1 in �.

Clearly, the claim of the lemma will follow as soon as we have shown that there exist
�̄ > 0 andc > 0 such that

∣∣∣{v��̄− 2�̄}
∣∣∣�c.

holds for all radial solutions of(B�). For convenience in notation, throughout this proof
we shall omit the bars and thus again write�, � and � in place of �̄, �̄ and �̄. We
define

� := �
(

�
2|�|
)

> 0

and first observe that

sup
x∈�

v(x) > �− �, (69)

since otherwise we would have�(u) = �− v�� in � and hence

∫
�

u��−1(�) · |�| = �
2

< �,

a contradiction.
With this value of� fixed henceforth, we observe that (67) (together with the posi-

tivity of f (s) for s > 0) implies

�(s) =
∫ ∞

s

d�
f (�)

� 1

c0(�− 1)
s1−�

for all s ��−1(2�). Thus,

�−1(�)�c6�
− 1

�−1 ∀��2� (70)

holds with a suitablec6 > 0. Let us setw := � − v ≡ �(u). Then w + w(r) is a
positive radial function, and (69) says that ifw takes its minimum atr0 ∈ [0, R], we
havew(r0)��. We first consider the caser0� R

2 and claim that then

w(r)�2� ∀r ∈ [r0, r+] (71)
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holds with r+ := r0 + rR,�,�, where

rR,�,� := min

{
R

2
,

√√√√ (�− 2)�
�

�−1

2
2�−3
�−1 c6(�− 1)

}
.

In fact, if w < 2� throughout[r0, R] we are done. Otherwise there existsr1 ∈ (r0, R]
such thatw < 2� on (r0, r1) andw(r1) = 2�. We will show that

wr(r)�

√
2c6(�− 1)(2�)

�−2
�−1

�− 2
∀ r ∈ (r0, r1), (72)

from which it will result that

2� = w(r1)��+
√
2c6(�− 1)(2�)

�−2
�−1

�− 2
(r1− r0).

This in turn will imply

r1− r0�
√

�− 2

2c6(�− 1)(2�)
�−2
�−1

��rR,�,�

and thereby prove (71).
To see (72), we fixr ∈ (r0, r1) and may assumewr(r) > 0. Thenwr > 0 on (r̃, r),

where r̃ := max{� < r | wr(�) = 0}, and therefore

wrr = −vrr = u − v + n − 1

r
vr = �−1(w) − v − n − 1

r
wr ��−1(w)

� c6w
− 1

�−1 on (r̃, r),

where we have used (70) and the fact thatv is nonnegative. Consequently, after multi-
plying by wr �0 we obtain

1

2

(
w2

r (�) − w2
r (r̃)
)
� c6(�− 1)

�− 2

(
w

�−2
�−1 (�) − w

�−2
�−1 (r̃)

)
∀� ∈ (r̃, r).

As � > 2 andwr(r̃) = 0, this yields

1

2
w2

r (r)� c6(�− 1)

�− 2
w

�−2
�−1 (r)� c6(�− 1)

�− 2
(2�)

�−2
�−1
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and hence completes the proof of (72). Having thus shown (71), we now obtain

|{w�2�}|� |Br+ \ Br0| � |Br+−r0|� |BrR,�,� | =
�n

n
rn
R,�,�,

which yields the desired estimate in the caser0� R
2 .

If r0 > R
2 , however, we proceed similarly, claiming that instead of (71), w(r)

�2� holds for r ∈ [r−, r0], wherer− := r0 − rR,�,�, and replacingwr(r) by −wr(r)

in (72). �

Combining the above lemma with Corollary 6.1 we can now prove Theorem 6.1.

Proof of Theorem 6.1. In view of Corollary 6.1 it is sufficient to show that for any
� > 0 there existsc� > 0 such that

F (u, v)� − c� holds for all radial solutions(u, v, �) of (S�). (73)

To this end, we multiply the first in(S�) by v to obtain

∫
�
|∇v|2+

∫
�

v2 =
∫
�

uv,

so that

F (u, v) = −1
2

∫
�

uv +
∫
�

�(u).

Since� is nonnegative,v = �− �(u) and
∫
� u = �, this gives

F (u, v) = −�
2

∫
�

u + 1

2

∫
�

u�(u) +
∫
�

�(u)� − ��
2

− �
2

∫ ∞

1

d�
f (�)

.

for all solutions of(S�) — no matter whether radial or not. So if (73) were false, there
would exist a sequence of radial solutions(uk, vk, �k) of (S�) such that�k →+∞ as
k →∞. But then Lemma 6.3 states that for some� > 0,

∫
�

vk � |{vk ��k − 2�}|(�k − 2�) →∞ as k →∞,

which contradicts
∫
� vk = � for all k. Therefore (73) must be true. �
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6.2. The case1< � < 2

In this section we shall derive some blow-up results in space dimensionsn ∈ {2,3}
under less restrictive growth conditions onf. However, for technical reasons we shall
need that (67) be supplemented with an estimate frombelow for f (s) for large s. To
be more precise, throughout this section we will assume that

c0s
��f (s)�c1s

�+ ∀s �1 (74)

holds with

� ∈
{

(1,2] if n = 2,
(1,2) if n = 3

and �+ ∈
[
�, 1

2−�

]
. (75)

Note that, particularly, this admits the choice�+ = � and thereby covers the
homogeneous casef (s) = s� with � as indicated in (75). However, also rather strong
oscillations off are allowed.
Actually our method would apply to any� ∈ (1,∞) in the two dimensional case,

but in view of the previous section this would not provide any progress.
Our main result will be

Theorem 6.2. Assume that� = BR is a ball in Rn, wheren = 2 or n = 3, and that
f satisfies(74) with � and �+ fulfilling (75). Then for any� > 0 there exist radially
symmetric solutions(u, v) of (1) which blow up and have mass

∫
� u(t) ≡ �.

The proof of this theorem will be given in the end of this section; it will be prepared
by three lemmata for which we need some preliminaries.
As in the last section, we shall use the function

�̄(s) :=
∫ ∞

s

d�
f (�)

= �(s) + �, where� :=
∫ ∞

1

d�
f (�)

is finite due to� > 1. Then (74) implies that

cs1−�+ ��̄(s)�Cs1−� ∀s �1,

whence its inversē�−1 fulfills

a�−
1

�+−1 ��̄−1(�)�b�−
1

�−1 ∀��1 (76)

with certain positivea and b.
If (u, v, �) is any radial solution of(S�) thenw := �̄(u) is a positive solution of

�w = �̄−1(w) − v in �, (77)
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satisfying

∫
�

�̄−1(w) = � (78)

and

∫
�
|∇w|s =

∫
�
|∇v|s �c(s, �) ∀s <

n

n − 1
(79)

due to Lemma6.2. In contrast with the previous section, we now treatv as a nonnegative
perturbationof the equation�w = �̄−1(w) which is small in the sense that

∫
�

vq �c(q, �) ∀q <
n

n − 2
, (80)

also by Lemma6.2.
Our strategy roughly is as follows: As in the proof of Theorem 6.1, we only need to

show that the possible values of� in radial solutions(u, v, �) are bounded above. It is
sufficient for this purpose (cf. the proof of Theorem 6.2 below for details) to exclude
the possibility thatwk →+∞ as k →∞ a.e. in� for a sequence of correspondingly
transformed solutionswk of (77). As a starting point we may employ (78) which shows
that w must be ‘bounded’ at least at some point in�, so we will be successful if we
can control the growth ofw near such a point. In doing this, we shall go along a
remarkable indirection: We first prove alower bound for such a growth (using the
bound for f from above in (74)) to derive from this (and the left inequality in (74))
the desired upper bound.

Lemma 6.4. Let � = BR be a ball inRn, n ∈ {2,3}, and suppose f and�, �+ satisfy
(74) and (75). Then there existR0 ∈ (0, R) and C0 > 0 such that for any radial
solution (u, v, �) of (S�), the functionw = �̄(u) satisfies

w(r)�C0r
2(�+−1)

�+ ∀r ∈ (0, R0). (81)

Remark. Actually, this lemma only requires the right inequality in (74) and thatw and
v satisfy (77) and (80).

Proof. The proof will consist of three steps. Throughout, let us writep := 1
�+−1 and


 := 2
p+1 ≡ 2(�+−1)

�+ .
Step1: We first claim that there existsC1 > 0 (depending on�+, a, � andR only)

with the property that wheneverr0 ∈ (0, R
2 ) is such thatw(r0)�C1r



0 then there exists

r1 ∈ (r0,2r0) with w(r1)�C1r


1 .
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This can be seen as follows. SupposeC1 is a positive number such that our claim
does not hold forC1. Here we may assume thatC1R


�1, so that, according to (76),

�̄−1(w)�aw−p whenever w(r)�C1r

. (82)

Then there existsr0 > 0 with w(r0) = C1r


0 but

w(r) < C1r

 ∀r ∈ (r0,2r0). (83)

Integrating (77), that is,

1

rn−1 (rn−1wr)r = �̄−1(w) − v, r ∈ (0, R),

twice with respect tor, we successively obtain

rn−1wr(r) = r̄n−1
0 wr(r̄0) +

∫ r

r̄0

�n−1�̄−1(w(�)) d�−
∫ r

r̄0

�n−1v(�) d�, (84)

for 0� r̄0 < r �R, and thus, using (82),

C1

(
(2r0)


 − r


0

)
� w(2r0) − w(r0)

� rn−1
0 wr(r0) ·

∫ 2r0

r0

�1−n d�+ a

∫ 2r0

r0

�1−n

∫ �

r0

�n−1w−p(�) d� d�

−
∫ 2r0

r0

�1−n

∫ �

r0

�n−1v(�) d� d�

=: I1+ I2+ I3. (85)

In order to estimate from below the terms on the right, let us first fix someε ∈
(0,4− n − 
), which is possible due to (75). (Indeed, the inequality
 ≡ 2− 2

�+ <

4− n is trivial if n = 2, while for n = 3 it is guaranteed by the fact that�+ < 2.)
Using q := n

n−2+ε
in (80), we then infer that

∫ r

0
�n−1v(�)d��

( ∫ r

0
�n−1vq(�)d�

) 1
q ·
( ∫ r

0
�n−1d�

) 2−ε
n

�cr2−ε ∀ r ∈ (0, R), (86)

where c denotes a generic constant independent ofw. Inserted into (84), this gives
(with r̄0 := 0)

wr(r)� − cr3−n−ε ∀r ∈ (0, R) (87)
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and thus

I1 = r0wr(r0) ·
∫ 2

1
�1−nd�� − cr4−n−ε

0 . (88)

As to I3, (86) entails

I3� − c

∫ 2r0

r0

�3−n−ε d� = −cr4−n−ε
0 .

We now use (83) to estimate

I2 � a

∫ 2r0

r0

�1−n

∫ �

r0

�n−1 · (C1�
)−p d� d�

= aC
−p+
1

n − p


∫ 2r0

r0

�1−n(�n−p
 − r
n−p

0 ) d�

= aC
−p+
1

n − p


(22−p
 − 1

2− p

−
∫ 2

1
�1−nd�

)
r
2−p

0 . (89)

Sincen�2 andp
 < 2, the constant2
2−p
−1
2−p
 − ∫ 21 �1−nd� is positive, whence from

(85)–(89) we infer

C
−p
1 r



0 = C

−p
1 r

2−p

0 �c

(
C1r



0 + r4−n−ε

0

)
,

so that, sinceε < 4− n − 
,

C
−p
1 �c

(
C1+ r

4−n−ε−

0

)
�c
(
C1+ R4−n−ε−


)
,

which is impossible ifC1 is appropriately small. Thereby our claim has been proved.
Step2: Let us set

S := {r ∈ [0, R] | w(r)�C1r

}

with C1 as above. Sincew is positive,S is not empty andr0 := max{r ∈ [0, R] | [0, r] ⊂
S} is well-defined and positive. Therefore

rk+1 := max
{
r ∈ [rk,4rk] ∩ [0, R] | r ∈ S

}
, k = 0,1,2, . . . ,
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defines an increasing sequence of numbersrk. Let us make sure that

∃ k0 ∈ N such thatrk0�
R

2
.

In fact, if this were false thenrk would converge to somer∞� R
2 which, by continuity

of w, would belong toS. By the outcome of Step 1, there would existr̃ ∈ (r∞,2r∞)∩S.
Sincerk → r∞, this implies thatr̃ ∈ [rk,4rk] ∩ S for large k and hencerk+1� r̃ > r∞
for suchk, a contradiction.
Step3: In order to conclude that the lemma is true, we takeε ∈ (0,4− n − 
) as

in Step 1. Then (87) holds and thus

∫ r

rk

wr(�)d�� − c

∫ r

rk

�3−n−εd��C2r
4−n−ε
k ∀r ∈ [rk,4rk] ∩ [0, R]

is valid with someC2 independent ofw. We now fixR0 < R
2 such that

R
4−n−ε−

0 � C1

2C2

and setC0 := C1
2·4
 < C1. Then, while (81) trivially holds forr < r0, for all r ∈ [r0, R0]

we can find (due to Step 2) somek ∈ N such thatrk �r < 4rk and hence

w(r) = w(rk) +
∫ r

rk

wr(�)d��C1r


k − C2r

4−n−ε
k = r



k

(
C1− C2r

4−n−ε−

k

)

� r


k

(
C1− C2R

4−n−ε−

0

)
� C1

2
r


k � C1

2

( r

4

)
 = C0r

,

whereby (81) has been shown. �
We can now prove a result which is in fact much sharper than needed: Namely, we

can show thatw will be locally uniformly bounded inBR \ {0}.

Lemma 6.5. Let � = BR be a ball inRn, n ∈ {2,3}, and suppose f and�, �+ satisfy
(74) and (75). Then for allR1 ∈ (0, R) there existsc(R1) > 0 such that for any radial
solution (u, v, �) of (S�), the functionw = �̄(u) satisfies

w(r)�c(R1) ∀r ∈ [R1, R].

Proof. If the lemma was false, there would existR1 ∈ (0, R) and a sequence of
solutions(uk, vk, �k) of (S�) such that

sup
r∈(R1,R)

wk(r) →∞ as k →∞ (90)
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holds withwk := �̄(uk). Since
∫
� �̄−1(wk) = � by (78), for eachk there existsrk ∈

[0, R] such thatwk(rk)�c3 := �̄( �
|�| ) andwkr(rk) = 0. After extracting a subsequence,

we may assumerk → r∞ ∈ [0, R] as k → ∞. In the caser∞ > 0 we would have,
using Hölder’s inequality and (79),

|wk(r) − wk(rk)| =
∣∣∣ ∫ r

rk

wkr (�)d�
∣∣∣ �

∣∣∣ ∫ r

rk

�n−1|wkr(�)|sd�
∣∣∣ 1s · ∣∣∣ ∫ r

rk

�−
n−1
s−1 d�

∣∣∣ s−1s

� cmin
{
r
− n−1

s∞ , R
− n−1

s

1

}
· |r − rk| s−1

s �c ∀r ∈ [R1, R] (91)

for any s ∈ (1, n
n−1) and largek, contradicting (90).

Thus, rk → 0 as k → ∞. In this situation, however, Lemma 6.4 applies to tell us

that the lower estimatew(r)�C0r
2(�+−1)

�+ ∀ r ∈ (rk, R0) holds with certain positiveC0

and R0 satisfyingC0R
2(�+−1)

�+ �1. Therefore, integrating (84) with̄r0 := rk and using
the right inequality in (76) as well as the monotonicity of�̄−1, we obtain

wk(r) = wk(rk) +
∫ r

rk

�1−n

∫ �

rk

�n−1�̄−1(wk(�)) d� d�−
∫ r

rk

�1−n

∫ �

rk

�n−1v(�) d� d�

� c3+
∫ r

rk

�1−n

∫ �

rk

�n−1�̄−1(C0� 2(�++−1)
�+
)

d� d�

� c3+ bC
− 1

�−1
0

∫ r

0
�1−n

∫ �

0
�n−1− 2(�+−1)

�+(�−1) d� d�

= c3+ bC
− 1

�−1
0(

n − 2(�+−1)
�+(�−1)

)(
2− 2(�+−1)

�+(�−1)
) · r

2− 2(�+−1)
�+(�−1) ∀ r ∈ [rk, R0], (92)

because 2− 2(�+−1)
�+(�−1) > 0 due to (75). Consequently,wk(R0)�c4 holds for allk and some

c4 > 0. Repeating now the argument leading to (91) yields, with arbitrarys ∈ n
n−1,

|wk(r) − wk(R0)|�cR
− n−1

s

0 |r − R0| s−1
s ∀r ∈ [R0, R],

which together with (92) is incompatible with (90). �
After these preparations the proof of Theorem 6.2 is comparatively simple now.

Proof of Theorem 6.2.As in the proof of Theorem 6.1, we first observe that all
solutions(u, v, �) of (S�) satisfy

F (u, v) = −1
2

∫
�

uv +
∫
�

�(u) = −�
2

∫
�

u + 1

2

∫
�

u�(u) +
∫
�

�(u)� − ��̄
2
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with �̄ = � + ∫∞1 d�
f (�)

. In virtue of Corollary6.1 it thus again remains to derive an

upper bound for�̄ (or, equivalently, for�).
So suppose there were a sequence of solutions(uk, vk, �k) to (S�) such that�̄k →

+∞ ask →∞. Due to (79), we may extract a subsequence along whichvk converges
to somev∞ in L1(�) and a.e. in�. Therefore the functionswk = �̄(uk) ≡ �̄k − vk

tend to+∞ a.e. in�, which is absurd in virtue of Lemma 6.5.�

6.3. The case2
n

< � < 1

Let us now turn to the possibly most delicate question in respect of the criticality
of the exponent� = 2

n
: Does blow-up occur for� > 2

n
close to 2

n
? In space dimension

two, this has been answered in the previous section already. But in the casen = 3, the
above results leave a gap between the suspectedly critical exponent� = 2

n
and 1. It

is the purpose of the present section to close this gap and, additionally, provide some
blow-up results also for higher space dimensions and exponents� < 1. Particularly,
we shall find that blow-up indeed occurs for� arbitrarily close to 2

n
in any space

dimensionn�3 (and hence for anyn�2). This strongly underlines the role of� = 2
n

as a critical blow-up exponent.
In this section we assumen�3 and the two-sided growth condition

c0s
��f (s)�c1s

� ∀s �s0 (93)

with somes0�1. Here, we need to restrict� according to

� ∈
{

( 2
n
,1) if n = 3 or n = 4,

( 2
n
, 2

n−2) if n�5,
(94)

and suppose that the positive numbersc0 and c1 satisfy

c1�
c0

1− �
. (95)

Note that these assumptions again include the homogeneous casef (s) = s� (for large
s) but also a wider class off with possibly oscillatory behavior.
It is easy to see that sincef (s) is positive for anys > 0, (93) implies

a|�| 1
1−� ��−1(�)�b|�| 1

1−� ∀�� − 1 (96)

with certain positive constantsa and b.
Before proving two auxiliary lemmata, let us state our main result on radial blow-up

for � < 1.
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Theorem 6.3. Let � = BR be a ball inRn, n�3, and suppose that f obeys condition
(93) with �, c0 and c1 satisfying(94) and (95). Then for any� > 0 there exist radially
symmetric solutions(u, v) of (1) which blow up and have mass

∫
� u(t) ≡ �.

The key to the proof of Theorem 6.3 is the following lemma, which has a lot in
common with Lemma 6.4. Observe again that it not yet uses the left estimate in (93).

Lemma 6.6. Let � = BR be a ball in Rn, n�3, and suppose f and� satisfy (93)
and (94). Then there existR0 ∈ (0, R) and C0 > 0 such that for any radial solution
(u, v, �) of (S�), the functionw = �(u) satisfies

w(r)� − C0r
− 2(1−�)

� ∀r ∈ (0, R0).

Proof. Let us abbreviatep := 1
1−� and � := 2

p−1.
Step1: As in Step 1 of Lemma6.4, we first claim that there existC1 > 0 such that

wheneverw(r0)� − C1r
−�
0 for somer0 ∈ (0, R

� ) then there existsr1 ∈ (r0, �r0) with

w(r1)� − C1r
−�
1 .

To see this, we suppose this were false for someC1 which we may assume to be
large such thatC1R−��1, implying

�−1(w)�a|w|p whenever w(r)� − C1r
−�.

Then there existsr0 > 0 with w(r0) = −C1r
−�
0 but

w(r) < −C1r
−� ∀r ∈ (r0,2r0). (97)

Thus, upon integrating (77) we obtain

−C1

(
(2r0)

−� − r
−�
0

)
� w(2r0) − w(r0)

� rn−1
0 wr(r0)

∫ 2r0

r0

�1−n d�

+a

∫ 2r0

r0

�1−n

∫ �

r0

�n−1|w|p(�) d� d�

−
∫ 2r0

r0

�1−n

∫ �

r0

�n−1v(�) d� d�

=: I1+ I2+ I3, (98)

where it can be seen from the fact that
∫
� vq �c(q)∀q < n

n−2 that

wr(r)� − cr3−n−ε ∀r ∈ (0, R) (99)
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and thus

I1+ I3� − cr4−n−ε
0 (100)

holds for anyε > 0. In what follows we fixε ∈ (0,4− n + �) which is possible due
to (94). Next, (97) allows us to estimate

I2 � a

∫ 2r0

r0

�1−n

∫ �

r0

�n−1(C1�−�)p d� d� = aC
p
1

n − p�

∫ 2r0

r0

�1−n(�n−p� − r
n−p�
0 ) d�

= aC
p
1

n − p�

(1− 22−p�

p�− 2
− 1− 22−n

n − 2

)
r
2−p�
0 . (101)

Since p� < n and therefore also1−22−p�

p�−2 − 1−22−n

n−2 is positive, from (98)–(101) we
obtain

C
p
1 r

−�
0 = C

p
1 r

2−p�
0 �c

(
C1r

−�
0 + r4−n−ε

0

)
,

so that, sinceε < 4− n + �,

C
p
1 �c

(
C1+ r

4−n−ε+�
0

)
�c
(
C1+ R4−n−ε+�

)
.

This is absurd for largeC1.
Having thus proved our claim, we now can easily derive from this the assertion

of the lemma, using slightly modified variants of Steps 2 and 3 from the proof of
Lemma6.4. �
The reason for the restriction onc1 (as related toc0) lies in the following lemma. It

asserts that the term12
∫
� u�(u) appearing inF (u, v) (cf. the proofs of Theorem 6.1

or 6.3 below), albeit being no longer bounded from below by a constant, at least may
be compensated by

∫
� �(u). In fact, as compared to the previous two sections, this

will be the first place where any growth properties of� are used, and where� is not
trivially estimated from below by zero.

Lemma 6.7. Suppose� ∈ (0,1) and f, c0 and c1 satisfy (93) and (95). Then there
existsc > 0 such that

1
2s�(s) + �(s)� − c(1+ s) ∀s > 0. (102)

Proof. Since�(s) and�(s) are positive fors < 1, the claim easily follows if we can
show that the derivative ofg(s) := 1

2�(s) + �(s) is bounded from below fors > s0.
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To see this, we differentiate and use (93) to obtain

g′(s) = −1
2
�(s) − 1

2

s

f (s)
� 1

2

∫ s

s0

d�
f (�)

− 1

2

s

f (s)

� 1

2c0(1− �)

(
s1−� − s1−�

0

)
− 1

2c1
s1−�

= 1

2

( 1

c0(1− �)
− 1

c1

)
s1−� − s1−�

0

2c0(1− �)
∀s > s0,

which is bounded from below due to (95).�
Although we do not have at hand a locally uniform estimate in the style of Lemma

6.5 now, we can nevertheless proceed to prove the main result.

Proof of Theorem 6.3. If (u, v, �) is a solution of(S�) then we have already seen
that (cf. the proof of 6.1) that

F (u, v) = −1
2

∫
�

uv +
∫
�

�(u) = −�
2

∫
�

u + 1

2

∫
�

u�(u) +
∫
�

�(u),

so that Lemma6.7 yields

F (u, v)� − ��
2

− c(�+ 1) (103)

with somec > 0. In order to show the existence of an upper bound for all possible�,
let us suppose on the contrary than(S�) has a sequence of radially symmetric solutions
(uk, vk, �k) for which �k → +∞ holds ask → ∞. Since a subsequence of(vk)k∈N

converges strongly inL1(�) by Lemma6.2, the identity�(uk)+ vk ≡ �k implies that
we may assume�(uk) →+∞ and hence

uk → 0 a.e. in� as k →∞. (104)

On the other hand, using Lemma6.6 and the right estimate in (96) we see that

uk(r) = �−1(wk(r))��−1 (−C0r
− 2(1−�)

�

)

� b
(
C0r

− 2(1−�)
�

) 1
1−� = bC

1
1−�
0 r−

2
� ∀r ∈ (0, R), ∀k ∈ N, (105)

where we have assumedC0 to be so large thatC0R− 2(1−�)
� �1. Now (105) implies that

∫
�

u
q
k �c

∫ R

0
rn−1 · r−

2q
� dr �c
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for arbitrary q ∈ (1, n�
2 ) — note that suchq exist since� > 2

n
. But this means thatuk

converges weakly inLq(�) for a further subsequence. By (104) and Egorov’s theorem,
this weak limit must be zero a.e. in�. Therefore the lower semicontinuity of‖ · ‖Lq(�)

with respect to weak convergence shows that‖uk‖Lq(�) → 0 ask → ∞, which leads
to the absurd conclusion

0< � = ‖uk‖L1(�) �c‖uk‖Lq(�) → 0 ask →∞.

Thus,�k → +∞ is impossible, so that now (103) in combination with Corollary 6.1
proves the theorem.�

7. Concluding remarks

The intention of present results is completely different from the approaches to blow-
up in the classical chemotaxis model so far. Of course, there are the results for Keller–
Segel-type model if the chemotatic sensitivity function depends only on the chemoat-
tractant like those established by Nagai and Senba [27,28], Nagai et al. [30], Senba [35]
and Post [34] for example. However, up to now no one has tried to get more insights
in the determination of the right blow-up exponent. Thus our results are completely
new and give more insights in the known results for parabolic–elliptic versions of (1)
with � = 1 and the expected behavior of the solution of the full system (1). Our results
explain, why there is no blow-up forn = 1; there is the possibility of unbounded
solutions forn = 2 if the initial data has sufficiently large mass; and why there are
unbounded solutions without any restriction on the initial mass forn�3.
Furthermore our approach is completely different from the attempts by Hillen and

Painter (see [13,33]). The approach presented in the present paper allows some kind
of “unified treatment” of all cases that exclude blow-up. Thus the results given here
also include the existence results in [13]. The approach to our explanation of blow-up
is also completely different from the perspective used by Herrero and Velázquez [12]
and Herrero et al. [10,11] and Herrero [9].
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