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Abstract

We determine the critical blow-up exponent for a Keller—Segel-type chemotaxis model, where
the chemotactic sensitivity equals some nonlinear function of the particle density. Assuming some
growth conditions for the chemotactic sensitivity function we establish an a priori estimate for
the solution of the problem considered and conclude the global existence and boundedness of
the solution. Furthermore, we prove the existence of solutions that become unbounded in finite
or infinite time in that situation where this a priori estimate fails.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Chemotaxis is the influence of chemical substances in the environment on the move-
ment of mobile species. This can lead to strictly oriented movement or to partially
oriented and partially tumbling movement. The movement towards a higher concen-
tration of the chemical substance is termed positive chemotaxis and the movement
towards regions of lower chemical concentration is called negative chemotactical move-
ment. Chemotaxis is an important means for cellular communication. Communication
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by chemical signals determines how cells arrange and organize themselves, like for
instance in development or in living tissues.
In the present paper we consider the problem

u; =Au—V-(fW)Vv), in Qx (0, T),

vy =Av—v+u, in Qx (0, 7),
1)

Q _ 0 —
W’”@Q =0, mvbg =0,

uli=0 uo, v|=0=1o

in a bounded domaif2 ¢ R"” with smooth boundary, wher¢ e c0([0, x0)) (for

some > 0) satisfiesf(0) = 0; the initial datauo and vo are assumed to be non-
negative, whereig € C°(Q) with mass

A :Z/MO,
Q

and vo € U,., wla(Q). The symbol% denotes the derivative with respect to the

outer normal ofdQ2. This problem is a version of the well-known Keller—Segel model
in chemotaxis. The function(x, t) describes the particle density at tiheat position
x € Q; v(x,t) is the density of the external chemical substance.

The classical chemotaxis model — the so-called Keller—Segel model — has been
extensively studied in the last few years (gd&,18] for a recent survey article).

The function f (u) denotes a chemotactic sensitivity function. In general, this function
depends on the particle density and the external signal. In the present paper, however,
we will assume that it only depends on the particle densitfor f(«) = u system

(1) equals the most common formulation of the Keller—Segel model. One interesting
guestion in connection with this version of the model is the possibility that the solution
of the Keller—Segel model might become unbounded in finite or infinite time: fer2

or n>3 (see [12,15,17,19,26,36] and the references therein).

As mentioned, the chemotactic sensitivity function, in general, may depend on the
particle densityu and the chemoattractant and it is known that it plays a crucial
role in the asymptotic behavior of the solution. There have been several attempts to
introduce certain reasonable effects into the Keller—Segel equations that might prevent
blow-up like volume-filling and quorum sensing aspects. The volume filling aspect is
reflected as a certain dependence of the chemotactic sensitivity function on the particle
densityu, which leads to bounded global-in-time solutions of (1). This has been done
for example by Hillen and Painter in [13,33].

However, to our knowledge it has never been analyzed whether the solution of system
(1) might become unbounded if («) equals other powers af, i.e. f(u) = u* with
someq > 0. Of course, this question is more motivated from the mathematical point
of view than from the biological one, but it will help to get more insights in the
understanding of the blow-up mechanism of the problem. Furthermore, the functional
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forms in the most common version of the Keller—Segel model are based on simplifying
assumptions made by Nanjundiah[B1]. The original paper by Keller and Segel [21]
allows more general functional forms. In the present paper we will look at this aspect
more carefully and we will determine the critical exponentvhich decides whether
unbounded solutions can exist or not in dependence of the spatial dimension. Of course,
according to the known results, it seems to be clear thakfer2 or n >3 there exist
solutions of (1) that become unbounded for- 1. It is known that forn >3 and 2

is a sphere there exist radially symmetric solutions of a simplified parabolic—elliptic
version of (1) that blow up in finite time ik = 1 (see [2,9-12,19,24,25,36]). For the

full system (1) no such results are known. However, what happenz 2 ando < 17?

While for o« = 1 andn = 1 there is no possibility that the solution of this simplified
parabolic—elliptic version of (1) blows up, there exists a threshold value for the initial
data in spacial dimensiom = 2 that decides whether the solution can blow up or exists
globally in time (see for instance [20]). In cage>3 and Q2 is a sphere there is no
such threshold. Thus one wonders whether the existence of unbounded solutions of (1)
with « € R4 depends on the exponemt Furthermore, one might expect that the expo-
nent for which unbounded solutions might exist will depend on the underlying space
dimension. Therefore we ask, motivated from the mathematical point of view, whether
one can determine the “right” blow-up exponent in dependence of the underlying space
dimension.

Our main results in connection with this question are the following:

o If f(s)<ces*forall s>1 and somer < % then all solutions are global and uniformly
bounded. Furthermore, for gived > 0 andt € (0,1) there exists a constant
¢(4, 1) > 0 such that the solution satisfies the a priori estimate

@l + 0O ll2@ <e, D(1+ K" @ ™) iz,

where K (1) := MaXez 1 <||u(t)||Loe(Q) + ||Vv(t)||Lz(Q)) and v is some positive
constant (cf. Theorem.1).

o If f(s)=cs* for all s>1 and somex > % (and n>2) then this a priori estimate
fails to be true (Theorens.1).

As a conclusion we remark that = % is critical with respect to the validity of this

estimate. However, if2 is a ball in R" we can go even further. In this situation we
have the following blow-up result:

o If f(s)>cs* for somea > % and Q is a ball in R", n>2, then () possesses
unbounded solutions, provided that one of the following — technical — assumptions
is satisfied:

o a > 2 (and nothing else, cf. Theorefl),

o ue(1,2),ne{2 3} andf fulfills an additionalupper growth estimate (Theorem
6.2),

ooe (3,1 if nef{23) anda e (2, %) if n>4; in both cases also an upper
growth condition has to be imposed 6ér{Theoremé6.3).
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Therefore, we see that = % has been uniquely detected to be the critical blow-up
exponent forn >2. The proof of this blow-up result generalizes some ideas that have
been used iM19] to establish the existence of unbounded solutions of system (1)
for « = 1 and a simply connected domaid c R? with smooth boundandQ. An
alternative proof of the blow-up result presented in [19] has been given in [36].

Beside these blow-up results far>2, we will see that fom = 1 the functionv is
uniformly bounded inW-2(Q) for all times — a factthat follows from analyzing a
Lyapunov functional available for system (1) (see the remark following Lemma 5.1).
Accordingly, forn = 1 the solution exists globally in time (and remains uniformly
bounded) independent of the choice cof

2. Preliminaries

Let us first collect some tools that will frequently be used in the sequel (see, for
instance, [4,5,8,23,37]).
In several places we shall need the following derivate of Poincaré’s inequality:

”“”WLP(Q)<C<||VM||LP(Q) + ||u||L4,(Q)) Vu € WhP(Q)

with arbitrary p > 1 andq > 0. Also, an essential role will be played by the Gagliardo—
Nirenberg interpolation inequality

1- 8
lull o) <cllulfyag g, - Il Vu € WH(Q),

which holds for allp, ¢ >1 satisfyingp(n — ¢) < ng and allr € (0, p) with

NS

a=—" € (0, 1).

1—

< |3
=+ |=I=
~ S

(In fact, the classical version in Theorem 1.10.1[8] is stated only forr > 1, but this
restriction can easily be removed upon an application of Holder's inequality.)
For p € (1, 00), let A := A, denote the sectorial operator defined by

Apu = —Au for u e D(A)) == {go € W2r(Q) ‘ %(Mm = 0}.

The fact that the spectrum éfis ap-independent countable set of positive real numbers
0=pg < pq <ty <--- entails the following consequences:

() The operatorA + 1 possesses fractional powets + 1)f, >0, the domains of
which have the embedding properties

DA, + Dy wir@) if > %
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and

DA, +DF) > 0@ if2p- % >8>0, )

(i) The analytic semigrouge™'4), >0 (which is independent op in the sense that

A tA

e My = e My

wheneveru € L?(Q) N L1(Q) satisfies
1A + DPe™ A Dy ooy <t Pe™ ull 1o (o)

for all u € L?(Q), anyt > 0 and somey; > 0.
(iii) For eachs > O the operatoe—'4 mapsL?(Q) into L7(Q), with norm controlled
according to

nel

1
—tA
le A ull oy <ct 2%~ lull oo

forall t € (0,1) and 1< p < g < oo. (For p > 1 this actually is implied by (ii)
via a standard interpolation argument; in the non-standard borderlinepcasé
this requires a pointwise estimate on the corresponding Green’s function which is
provided by Theorem 2.2 if23].)

(iv) When restricted to the orthogonal complement of the null spack, ef’4 decays
exponentially with time in the sense that for all

ueLi(Q)::{q;eLP(Q) ‘/Q(/)=O},

we have||e*fAu||Lp(g)<ce*v2’||u||Lp(Q) for any+ > 0 and somev, > 0.

As a consequence of (ii) and (iii), we have for alKkp < g < oo andu € L?(Q) the
generalL? — L9 estimate

_pg_ncl_1 _
1A + D e Aull oo <ct P25~ 01 ) Ly o), 3)

for any r > 0 and >0 with someu > 0. After diminishing u if necessary, from
(i—(iv) we obtain for all 1I<p < g < oo andu € LE(Q) the restricted counterpart

_p_nci_1y _
1A + DPe " Aull g <ct P25~  ull oo 4)

forr > 0 andf>0.
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Unlike (A+1)#, the divergence operat®- does not commute wita—’4. However,
in estimates for expressions like 4V -w||, this operator does not behave much worse

than (A + 1)%, as stated by the following:

Lemma 2.1. Let >0 and p € (1, o0). Then for alle > 0 there existsc(¢) > 0 such
that for all w € Cg°(2) we have

_ _p_1_.
1A+ DPe™™V - wliprg < c@r P27  |wl g
< @ P il V>0, (5)

Accordingly for all ¢ > 0 the operator(A + 1)#¢~'4V. admits a unique extension to
all of L?(Q) which, again denoted byA +1)#¢~'4V., satisfies(5) for all w € L?(Q).

Proof. Writing

_ 1/
p=— 19
12l Jo

for ¢ € L1(Q), we have
”q) - ¢||Lp’(9) < 2”@”[}’(9)

for all ¢ € L?' (Q), where% + % = 1. Consequently, employing the notation

CPN(Q) = {np € C*®(Q) ’ /Qw =0 and %wm = 0}
we find that
1A + DP9V - wl 1o o)
= sup UQ(AH)%’A<V-w>~<<p—¢>+¢-/Q<A+1)ﬁe“*V-w'

PeCE ()

10l g <1

= s [ A+ DT w - )

(pecg%g)
101, ) <1
< sup V (A+Dbe4(v . w)lp‘ —  sup ‘/ WV(A + D4y
pecry@ ¢ pecey@ ¢
W1, ) <2 Wl ) <2
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Sclwlirg - sup A+ pFrETE Ay
YeCTN (@
<2

LY (Q)
W, g

1
<ct= P2t 1w )

by (4). Here we have tacitly used the facts tigfy and Aoy coincide fory C®(Q),
that A, is self-adjoint inL2(Q), and that

1
IVllLe@ <c@ A+ D2yl r @)

for all ¢ > 0 and anyy € D(A,) (Lemma ii.17.1 in[5]). This proves the lemma. [

3. Local existence and uniqueness of classical solutions

Let us first establish the existence of a local-in-time smooth solution by employing
Banach'’s fixed point theorem. The proof that the solutiocléssicalis the only place
in this work where Hélder regularity of” is required.

Before we state our result let us briefly mention, that the existence of local-in-
time smooth solutions for a quite general version of the Keller-Segel model has been
established by Yagi in [39]. However, Yagi does not considered chemotactic sensitivity
functions which depend on powers of the particle density. Therefore, we cannot apply
his results and have to present our own local existence result.

Theorem 3.1. Suppose; > n, and thatug € C%(Q) andvg € W4(Q) are nonnegative
in Q. Then there exist¥max< oo (depending onuo|l @) and [lvollwq(q) only) and
exactly one pair(u, v) of nonnegative functions

u € CO0, Tmax); C°(2)) N C?HQ x (0, Tmax),
v € CO0, Tmax; C%(Q)) N LES.([0, Tmax); W4(Q)) N C?1(Q x (0, Tmax)

that solves(1) in the classical sense. lfnax < co then

im - (@l + 0@y ) = oo (6)

t— Tmax

Moreover the solution(u, v) satisfies the mass identities

/ u(t) =/ ug Vt € (0, Tmax) (7)
Q Q
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and

/v(t):/uo+</ UO—/ uo)e—f Vi € (0, Tmax). 8)
Q Q Q Q

Proof. Existence The existence proof follows a standard contraction argument. We
extendf to all of R by defining f(s) := f'(0) - s for s < 0, wherebyf becomes an
element of C1*(R). With numbersT € (0,1) and R > O to be fixed below, in the
Banach space

X := C%[0, T1; CO(Q)) x L>((0, T); WH1(Q))
we consider the closed set
§i={w v eX | Iw vix<r]

and claim that forR sufficiently large andl' small enough, the map

o) (qfl(u, v)(t)> _ (e"Auo — Joe AV (f(u(s))Vv(s))ds> |

Wo(u, v)(1) e 1Aty 4 fot e_(’_s)(A"'l)u(s) ds

for r € [0, T], is a contraction fronS into itself.

To see this, we first observe that, for, v) € S, ¥1(u, v) is continuous o0, 7'] with
values inC%Q), becausaig € C%(Q) and ¢4 is strongly continuous irC%(Q) due
to the maximum principle. Also¥»(u, v) is bounded on(0, T) as aW4(Q)-valued
function. This is a consequence of the fact that” A D voly 14 <cllvollwia (o)
which is valid forg = 2 (by a simple energy argument) agd= oo (cf. [22, pp.
478 ff.]) and thus, via a standard interpolation technique, alsogfar (2, co) (see
e.g. Theorem 9.8 in [7]). In the cage= 1 a differentiation of the heat equation with
respect tax (involving zero Dirichlet boundary data) shows that the same estimate even
holds for allg > 1.

Next, we letM(R) := || fllLe(-r,r) and L(R) > 0 denote a Lipschitz constant for
fon (=R, R) and fix § € (3, 1) as well ase € (0, 3 — p).

Since D((A, + 1#) < c%Q) in this case, we can estimate with the aid of
Lemma 2.1

110, ) (Ol oy < lle™ uoll o

t
C/
0

(A n 1)ﬁe_(t—s)AV . (f(u(s))vv(s)) H L1(©Q) ds
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! 1
< Iluollco(g)+c/0 (t =) P 278 f () Vo)l L@ ds
< luollcogg + eM(R)RT2 = vi e 0,T]. ©)
Moreover, pickingy € (%, 1) we have, using2),

1P20, VYOl wie@ < le” A Pvollyieg)

t
e / 1A + 17e @Dy ()4 0 ds
0

'
< cllvollwra o) +C/O (t =) u(s)lLa@) ds

< cllvollwia + cRTY7 V1 [0, T]. (10)

From ©) and (10) it results tha¥’s c S if we choose firstR large and therT small.
With this value ofR fixed (butT still at our disposal), we proceed to check that for
all (u,v), (u,v) €8,

W1, v)(1) — V1, V)(O)]l cogy)

t
<e [ i+ DI AV Ve - favae|,, , ds
0 L4(Q)

<e fo = P F W) Vols) — F)VS) e d
<c(LRR+MR) T2~ @, v) = @ 9)llx Ve €[0,7]
and
1P2(u, v)(t) — Pa(i, V) (@) wia (g

t
<e / (A + DPe=9AD (u(s5) — ii(5))l| L0 () ds
0

t
<e [0 =97u6) =10 s ds
<cT N, v) — @, 0)lx Vi €[0,T],
so that¥ is shown to be a contraction if is sufficiently small. From Banach’s fixed

point theorem we therefore obtain the existence(wfv) € X satisfying (u,v) =
¥Y(u,v).
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Since the above choice @fdepends only offfuoll L)+ llvollwiq(q), it is clear by a
standard argument th&éi, v) can be extended up to sorigax< oo, where necessarily
(6) holds in case offmax < co. Clearly,u and v are weak solutions — in the natural
sense defined in [22, p. 136] — of their respective equations in (1).

Regularity Sincevg € Wh4(Q) — €9%Q), the relationv = ¥o(u, v) immediately
shows thatv € CO([0, Tmax): C°(Q)). Relying on this, the inclusions, v € CZ1(Q x
(0, Tmax) result from straightforward regularity arguments including standard semigroup
technigues, parabolic Schauder estimates (Theorem IV.5.3 in [22]) and Lemma 2.1.

We now can apply the comparison principle for classical sub- and supersolutions of
scalar parabolic equations to conclude first thgt0 (becausa: = 0 is a subsolution
of the first in (1) due tof(0) = 0) and then that >0 (since we know that; >0,
whencev = 0 is a subsolution of the second in (1)).

Properties (7) and (8) easily follow by integrating the PDEs in (1) in space.

UniquenessLet us finally prove uniqueness of solutions in the indicated class by
assuming there were two different solutios v) and (i, v) on some intervalO, T']
Letting w := u —u andz := v — v, for t+ € (0, T) we obtain upon subtracting the
respective equations in (1) and performing obvious testing procedures the identities

drl 5 1 2
v -
/f+dt[2/9' d +2/QZ] /sz’
—/Vw-Vz—/wz—i—/wz (11)
Q Q Q

2dt/ /|Vw|2 / fw)Vv — f(@)Vo] - Vw. (12)

Sinceu andi are bounded o2 x [0, T'], we have|f(u) — f(u)| < L|w| and f(u) <M
in this region with some positive and M, whence

‘/[f(u)Vv—f(ﬁ)Vﬁ]-Vw‘g}/ |Vw|2+c<L2/ u}2|VU|2+M2/ |Vz|2).
Q 4 Jo Q Q

(13)

and

As [ou(t) = [pu(t) = [yuo for all t by (7), we have [, w(r) = 0 and hence the
standard Poincaré inequality ensures that|y12g) <cl|Vwll 2. Therefore, once
again relying on the fact that > n, we can estimate with the help of the Hélder and
the Gagliardo—Nirenberg inequality

2 2 2 q=2 2n 2(q—n)
] q
[ w1 /va (f i) 7 < vt o, T,

< &lVzliZa g + c@lwllzg), (14)
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wheree > 0 is arbitrary. Moreover,

1
_/ Vw~Vz<—f |Vw|2+/ IVz|? (15)
0 4Jo o

and

1 1
_ wzg-f w2+-/z2, (16)
/Q 2 Jo 2 Jo

so that addingX1) to (12) yields, taking into account (12)—(16) and omitting positive
terms,

d
—(/ |Vz|2+/z2+/ wz)gc(/ |Vz|2+[z2+/ w2) Vi € (0, 7).
dt \Jg Q 0 Q 0 Q

Now Gronwall's lemma says that= w = 0, as desired. [J

The local-in-time existence and uniqueness of a solution for sysignwith n = 2
and « = 1 has also been established by Gajewski and Zacharias in [6] and — as
already mentioned — by Yagi in [39]. However their results cannot be applied to our
generalized system.

4. Boundedness in case of subcritical growth

Let us first look a little bit closer at that situation that we will later call the case of
subcritical growth for the chemotactic sensitivify(z). Therefore, we now assume that
f satisfies the one-sided growth condition

f(s)<cos® Vs e (1,00) a7

for somecgp > 0 and somex > 0 (which will actually throughout this section be
supposed to fulfille < %). Sincef is continuous, we of course may equivalently —
and more conveniently for our proofs — require

f5)<cols +D* Vs >0 withoe (o, 5) (18)

for somecg > 0.
Also for convenience in notation, let us abbreviate

4 i= max] luol 1@, lIvoll 1@ |



D. Horstmann, M. Winkler / J. Differential Equations 215 (2005) 52-107 63

The main result of this section, the a priori estimate in Theodeh will be obtained

as the final in a series of steps. The basic idea is to usd.t€)-bounds (8) and

— mainly — (7) as the initializing information in an iterative bootstrap procedure,
which at its starting point uses both equations in (1) (see Lemma 4.3), but then alter-
nately exploits the second (Lemma 4.1) and the first equation (Lemma 4.4) in (1) to
successively establish estimates in higiér spaces. The complete iteration is carried
out in Lemma 4.5 which will reach alp < oo, while the final step toward€*> is
accomplished in Theorem 4.1.

The first auxiliary lemma asserts that an a bounduan L7 () for ¢t >t implies an
estimate forv in someWw%4(Q) for all t bounded away from. The proof exclusively
uses the second equation in (1). In this lemma, as throughout this section, all appearing
constants are independent Bfax.

Lemma 4.1. Assume that there existe (0, min{l, Tmax}) andy € [1, n] such that
lu@llr@ <c1 V€ [1, Tmax)-
Then for anyy € (0, Tmax — 1),
lvDllwia@ <cl@. A, T, m(L+c1) Vi €[t +n, TmaY)
holds for all ¢ > 1 satisfying

ny
n—y

q <

Proof. We fix ¢ < 2L = 111 and choose somg > 3 such that
n—y 22 2

(19)

Applying (A + 1)# to both sides of the representation formula
t
v(1) = e DAy () +/ e~ =AYy o) ds, 1€ [t, Tma,
T

we obtain in the case >2, using 8) and (8),

4 _poncl_1y
1A + Do)l e < clg) / (t —5) P7257D e () | 1y ds
T

_p—11-1
+et =0 2TV @ e



64 D. Horstmann, M. Winkler / J. Differential Equations 215 (2005) 52-107

1(1-1 o° nl_1
< cn_ﬁ_?(l_?)llv(r)llwgz) +C'C1/ o P20 4g
0
g C(qa Aa T, ’7)(1+Cl) Vt € [T+’/I7 TmaX)a

becauses + ’—21(% — ql) <1 due to (9). As B > 3 entails D((A, + DF) = WL (Q)

by (2), the claim follows. [

In the proof of Lemma 4.3 we need the following elementary variant of Young’s
inequality, the proof of which is left to the reader.

Lemma 4.2. Let r and s be nonnegative real numbers satisfying s < 2. Then for
any ¢ > 0 there exists a constant > 0 such that

a'b*<e(@®+b% +c. Va,b>0.

We now see how the.l-bound ) can be improved to al’-estimate for some
7 > 1 by using both equations in (1) simultaneously. Here the condhtiem% plays
an essential role. A simplified variant of our procedure was performed in [29].

Lemma 4.3. Suppose: >2 and f satisfieq18) with somex < ,Zl Then there exist

2
Y > max{Z— —,2—20<}

n
and v > 0 such that for allt € (0, min{1, Tmax}) We have
2
lu @ <c(4, 1) <1+ (Ilu(f)llu'(Q) + IIVv(f)Iliz(Q)) e_”) Vvt € [7, Tma-

(20)

Proof. With y > max{1, 2 — 2z} to be fixed below, we multiply the first inl§ by
(u +1)’~1 and the second in (1) by—Av) to obtain fors € [, Tmax), using (18),

1d .,
== / w41+ @y-1 f (w4172 Vul>=(y—1) f (u~+ 2172 fw)VuVo.
ydt Jg Q Q

Now we see that

/(u + 172 f(w)VuVy < co/ (u + 12| Vu v
Q Q

1 . 2 .
< —/(u+1)/_2|Vu|2+C—O/(u+l)2“+y_2|Vv|2
2 Jo 2 Jo
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1d 2 2 2 1 2 1 2
—— | |V +/ |Av| +/ [Vl =—/ ulAv < —/ |Av| +—/ uc.  (21)
2dt Jg Q Q Q 2Jo 2 Jo

Writing w := (u + 1)%, we conclude that

1d 2 1 -1 2(2u+)-2)
-“ w2 (V ) / |V )CO / J;V |VU|2. (22)
ydt Q

By Holder’s inequality, we have

/ 2(20+y—2) 2 2<2a4;, 2
w7 VUPLIW sy VIR,
0 I 14 ot}‘ Y (Q LeP (Q)

for any p > 1, where+ + -1 = 1. Now if

ny n

M gt 23
2p2ut7-2) 2 (23)

and
pRou+y—2) > 1, (24)

we can use the Gagliardo—Nirenberg inequality and the Poincaré inequality to estimate

2(2s47—2) 22049-2) 2<2a+, 2 (1_a)
IIw(t)IILz,,(zxjyfz)(Q) < clw®lliyz g IIw(t)II 2

()

2(204y—2)

< e (IVe®lzg +1) Ve © Tnad

with

ny ____"
2 T 2p(2u+y—2)
1-3+%

2772

a= € (0,1,

where we observe that

2
WOl p = ol +191 Ve € O, Ta) (25)
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due to the mass conservation properfy. (Next, from Lemma 4.1 (applied tp:= 1)
we have

IVu()llLa) <clg, 4,7) Vt € [, Tmax)

for any ¢ < %5 and thus, if

P (26)
we can again employ the Gagliardo—Nirenberg inequality to obtain
VU2, 0 < CIVVOIFn2g - IV o)
< A DNADN5 g Vi€ [T Tma (27)
with
n_ n
b= % € (0, 1).

(Note here that ifg < ;%5 theng < 2 and hence 2 > ¢.) In deriving the second
inequality in @7) we have used thatA acts as an isomorphism from

g
D= {(pe w22(Q) ' ﬁh}gzo and/Q(/’=0}

to L2(Q); therefore, sinca(r) — v(¢) is in D with 9(¢) := |Tl2| va(t), it follows that

Vv llwiz) = V(@) —v@)lwizg) < lv@) —v@)ly22)

< cA@@®) = vl = clAv)lr2q)-

As a result, we see that

2(20+y—2) 2 - s
fg w7 OO R DIV 50, + D - 1AVO 200,

for all 7 € [1, Tmax), Where

220 +7 —2) (2047 —=2n— 3
r = a =
Y 1+(—-13
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and

Thus, ifr +s < 2, that is, if

Quty—2n—4 B _L

0Py q) = 4 __F 2, 28
then Lemmad.2 says that
2(2a+y—2) ) — 1 1
/Qw v anvw0F<17;/WVwan?+—/ﬁAwﬂﬁ+coLo (29)
Q ¢ Jo 4 Jo

for all 7 € [1, Tmax)- As to the right-hand side of2(), we interpolate similarly and
recall (25) to obtain

4 44 41-a)
/ WO <wnll’, < CIIw(t)Ilwlz(Q)llw(t)II !
Q L7 (Q) ‘@

4d
< e(IVw®llzq +1) Ve e O, Tma

with
- c0u,
a5+
provided thaty > 2:=4. If even
2
y=2-% (30)
n

then %d < 2 and therefore by Young’s inequality

/Quz(t)é%/QWw(t)lz—i-c(A) Yt € (0, Trmax)- (31)

Let us summarize: Adding2Q)—(22) and using (29) and (31), we conclude that if (23),
(24), (26), (28) and (30) are satisfied then

A ‘/ /WV| ‘/W |+l/mm)

<c(A, 1) Vt e[r, Tmay-
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Since

Joreurze( [ -3)

by the Poincaré inequality and

/ |Av|2>c/ Vol
Q Q

(see the remark following2{)), Gronwall’s lemma yields

/ w2(t) + f Vo)
Q Q

<e(d, T)<1~|—(/Qw2(7:)+/QIVv|2(‘c)) e—m—”) Vi e[t Trmay

for somev > 0. In particular, in this case

/ (4 1)7 (1) <c(4, r)<1+ ( / +1)7 (1) + / |Vv|2<r)> e‘“) Vt € [1, Tmax)
Q Q Q

holds. Since this implies the desired estimate, all that remains to be shown i23hat (
(24), (26), (28) and (30) can be fulfilled simultaneously.
To this end, we observe that (23) is equivalent to

ny

< )
(n—2)(20+7—2)

p

while (24) and (26) mean

n and !
> — > —
P=3 P oy =2

so that 23), (24) and (26) can be achieved for some= (1, co) (that will be fixed
henceforth) if and only if% > 1 — which is trivial fory > 1 — and

n—4)y <2n—2)(1— ).

Sincea < % this is satisfied whenever eithex4 ory < 22’;;_2212) and thus particularly
if 7 < 2. Accordingly, we need to verify tha8) holds with some; < ;= and some

y € (max2 — 2,2 — 20}, 2). To see this, we first assume-220<2 — 2 and consider
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the limit g — -5 andy — 2 — % to obtain for the left-hand side ir28)

2 . x—2n—-2 20— —n+2
Kl\w2= - p, -1 = 2 _n —
n n 1+2-=.5 l1-5+n-1
8
=40 - —-+2
n

Sincea < % we thus havec(a, 7, p,q) < 2 for y and q sufficiently close to 2- 721

and .=, respectively. If 2—- 20 > 2 — % however, then similarly

2 1
K(oc,2—20<,p,nL_1)=2(1_;+;> <2

due top > 3, whence we conclude tha{(«, y, p, q) < 2 for y close to 2- 2o > 2—%
and g near -“5. Upon these respective choices jofestimate 20) is thereby proved

for any value ofx € (0, 2). O

The next lemma uses only the first equation in (1) to derive from given bounds for
u and v a better one fow.

Lemma 4.4. Suppose u and v satisfy the estimates
luOllpo@y<cr and Vo)l <c1 Vi€ [T, Tmax) (32)

for somert € (0, min{1, Tmax}), c1 > 0 and numbers);>1 and gg > 2 satisfying

(% - 1)y0 <n(l—a). (33)

Then for anyy > max{yq, 2 — 2} which fulfills

(1 _ l)y <(n—2)1—0), (34)
40

there exist positive constantgy), m = m(y) and v = v(y) such that
lu@) L@ <c() (1+ el + IIM(T)IIU(Q)@_”) Vi € [, Tmax)
holds

Proof. Throughout the proof, byn we denote a generic positive constant which
may vary from line to line and which depends only on Similar to the proof of
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Lemma4.3, we test the first in (1) byu + 1)"~1 and writew := (u + 1)% to see that

d1l 2
——/w2+—y2/|Vw|2
dty Ja 7—1" Jo

— 12 2(2047-2)
gu/ w7 V2

2 Q
2 2 wy—2) | 902
< (7 = Dej (/ |Vv|‘1°> ) (/ wzq?;f)jzw 2)) 0
2 Q Q

2(2a-t—y—2)
<c(p@+ CT) lwll 211()’(2(144/—2) Vit € [1, Tmax)- (35)
L @-27 (Q)

As (34) is equivalent to

(g0 — 2)ny 1N

—_—— < .
20200+ 7y — 2) 2

we may apply the Gagliardo—Nirenberg and the Poincaré inequality in estimating

2(20+y—2) 2(20+y—2) a 2(20+y—2) (1-a)
TwOll 2@ S cCDMWDlyrz) - IO 24
L @27 (Q) L7 (Q)
22149-2)
< e+ (IVw®l 2 +1) Vel Tnao,

(36)

where we have used that

[w@)l

/0
g Sc(l+cf)

L7 (D

for ¢ € [1, Tmax) by (32), and have set

3~ Tedriy (q%_z)nyz
a= 2o ZE2 (1),
1—2 4 22
2 1 2y
Since (3) means that
n  q—2 ny
ou+y—2)— — n<2-n+—,

o) q0 Yo
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we have

-2
221 +y-2) _ (247 =25 - 2=n

: TR
) 1-3+3,

< 2,

so that Young’s inequality applied t@3®) yields

2(204y—2 ,y _ 1

lw@)ll 2q8(21+",'72) < _2/ IVw(®)[? + c(P@+cf) Vit e[, Tmav.
L @-27 (Q) v Q

Inserted into 85), this entails, again by the Poincaré inequality,

ld 2 V—lf 2
24w < S22 [ eyt oy
vt Jo T 2 Jo !
< - / WP A+ Vi € [T, Tnao
Q

with somed > 0. In view of Gronwall's lemma, this shows that

/ w+17(0)< ( / (u + 1)%))[57“*” Fe@+c") Vi€t Tna
Q Q

and thereby proves the lemma.]

We have now collected all the elements for the announced iteration process.

Lemma 4.5. Suppose: > 1 and f satisfie§18) with somex < 2. Then for anyy > 2—2
and all T > 0 there existc(y, 4,7) > 0, m = m(y) > 0 and v = v(y) > 0 such that

)l e A, D(1+ K" (@e™) V1 € [1, Tman, (37)

where K (1) := max <||u(r)||Lm(Q) + ||Vv(r)||L2(Q)).
?,T

Proof. Let us fixy and first consider the cage= 1. Sincex < 2 and we may assume
thaty > 1, there existgo > 2 such that

1 1
(——Dyp<l-—oand(— -1y < —(x—1)
q0 qo
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hold with y5:= 1. As

lu) o) = fQuo =] for ¢t € [0, Tmax)
and
vl wiao ) < (A, 7) for 7 € [, Tmaw
by Lemma4.1, Lemma 4.4 implies that
lu@ L2 @) <e(y, 4, 7) for 1 € [z, Tmax)

holds, which is obviously sharper tha87)).
If n>2, however, we start by applying Lemma 4.3 to obtain some 2 — ,—Zl and
vo > 0 such that

2 o T
||u(t>||uo<9><c(/1,r)(1+ K0 (t)e ‘07) Vi € [, Tma). (38)

where we have estimated

T T 2 2
el + ||Vv(§)||£’2(9) <cK 0 (7).

In the casen = 2 we then employ Lemm4.1 to achieve

2
V@)l oo (@) < (A, r)(l + Kﬁ(r)e*"”) for all 7 € [t, Tmax)

and somegg > 2—in fact, we may choosgp close to 22_7'30 > 2. Then hypothese<38)

and (34) of Lemma 4.4 are trivially fulfilled for arbitrarily largeand hence

2 o\ .
le®llzre) < cG. 4, r>(1+(1<vo @) + U@ l@e )
< ey, A, ‘c)<1+ K’”(r)e*"’) V1 € [1, Tmay)

holds with suitablem and v.

Finally, if n>3 we use the same basic idea, but this time we have to apply Lem-
mas 4.1 and 4.4 several times to obtain (37) after a finite number of steps. In or-
der to prepare our bootstrapping procedure, weadlgtas, ap, ... € R U {+o0} be
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defined by
(n—2)(1—0) : n
e a1 < 3,
ap:=7 and a:=1{ " 21 2
400 else,
and claim that there existg € N such that
apg < ai < --- < ap, = +0o0.

Indeed, supposey—1 < 5 for all k € {1,..., k1} and somek; € N. Then, sincex < rgl

a  (n—21-2 (n — 2)2
> =

> 1,
ag_1 n—2a;_1 n? — 2nax_1

provided that(n — 2)2 > n? — 2a;_ or, equivalentlya;_1 > 2 — 2. As this is true for
k =1, it follows by induction thatug < a1 < --- < a,. Hence, ifa; were finite for
all k e N, we would havea; /" ax <5 ask — oo and thus

=21 -0)
T n—2ay0
that is,
n—m—2)1—w) n—@m-2)1-32) 2
oo = < =2— — < ao,
2 2 n

contradicting the monotonicity ofax)ren. Therefore we must havey, = +oo for
somekg € N.

By a continuity argument, it is thus possible to choose postive. ., i, such that
the numbersyy, ..., 7, € R defined by

n—-2)1—w
= — gy, k=1,..., ko,
Tk 2— 294 o °
satisfy yg < 71 < ... < Vo1 < 3 @ANA 7y, > 7.
Now for k =1,..., kg we let
- nYk—1
qk—1 =
n—"Yk-1
Then

Gi1>2 Vk=1,.. ko, (39)
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) _2
becausey,_; =79 > 2— 5 and therefore

2(n—1
g 2= a2 (n+2). 20D g,

_ 2(n —2) >0.
n—7r1 n—7r1 n-(n—7y_1)
Furthermore,
n

(_ —1)yk_1<n(1—oc) Vk=1,..., ko, (40)

qk-1
for 2—2 ando < 2 impl
Vi1 > < ando < £ imply
4n —1
(_n —1>=n—2yk71<n— (n )<n—noc.
qk—1 n
Finally,
(_——1)yk<(n—2)(1—cx) Vk=1,..., ko, (41)
qk—1
since by construction ofy,

. (n—2)(1—oc)/ n—2)1—w
< Vi1 = .

¢ n—2y_1 e qkn_l

Due to B9) — (41) it is possible to fixo, ..., gk,—1 Such that
_ n
2 < qk-1 < Gr-1 ( - 1)“/k_1 <n(l-o (42)
qi—1
and

(— - l)yk <-21-a) (43)

qi—1

for all k = 1,..., ko. Furthermore, we choose any sequence of numbgrs.., 1,
satisfying% =T0<7T1 < < Tr, = 7. We now claim that for anyk =0, ..., ko we
have

@)l <e(h, (14 K™ @ e ™)Vt € [, Tmaw (44)
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for appropriatem; > 0 andv; > 0, which will entail
luOllr @ <c(y, A, f)<l+ K™o () e_"kof)

for all # € [7, Tmax), becausey < y, . In the casek = 0, (44) is implied by (38).
However, if

lu@) | Ln-10) <c(A, r)(l + K™Mk=1(1) ef""*ll) Vit e [th_1, Tmax)

holds for somek € {1, ..., ko} and suitablen;_1 and v,_1 then, sincey,_; < n and
_ nYr_1
Q-1 < qk-1= ——,
n— "1

Lemmad4.1 (with # := 14 — 74—1) yields
Vo) | 10y < (A, 7) (1 LK) evaz)

for all ¢t € [k, Tmax)- Therefore, in view of 42) and (43), Lemma 4.4 provides some
my and v, such that

iy -
lu@llrnw@ < c(d, 1) (1+ (Km"’l(f)e_v"’lt> + luCti)llLw @) e_‘k>
< e D)1+ K™ @) Vi € [t Tnao

is valid with certain constants; and v, so that (44) has been proved. [J

After the main work has been done now, the final step% (and even taC® spaces)
is now straightforward. Let us mention that the pure informatian ) is uniformly
bounded’ could alternatively obtained from the previous lemma and another iterative
procedure introduced in [1]. This iterative procedure has been used most commonly in
the literature related to the Keller-Segel chemotaxis system to establish the uniformly
boundedness ofu, v) for the case where = 1 or where other chemotactic sensitivity
functions have been considered. We will mention some of this results in the concluding
section of the present paper.

Theorem 4.1.1f n>1 and f satisfieq17) for somea < % then all solutions of1) are

global in time and uniformly bounded. Moreoyeajiven A4 > 0 and t € (0, 1) there
existc(A4,1) > 0, m > 0 and v > 0 such that

luoll 1@y <A and  |lvollpr g <A
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implies
lu(@)ll Loy + V() Loy <A, T)<l + K" (1) e_w) vt >1; (45)
actually, we even have
@l sy + IOl czs gy <e@, 4,0 (1+ K" (@) e™) Vit (46)
for any 0 € (0, 1), with m = m(d) and v = v(d). Here we have set

K@ = max (lu®lix + V90l 20))-
te[3.7]

Proof. Since D((A + 1)f) = €°(Q) and D((A + D¥*F) & C?79(Q) for € (0, )
and p > 1 satisfying 2 — % > ¢, the proof of @6) will be accomplished if we can
show that

1A+ DPu) 0@ <c (. p. 4.0 (1+ K" @) (47)

for all 1 € [3, Tmay), € (0,3), p> 1 and

1A + Do) | Loy <e(B. p. A7) (1 +K" (1) e“”) (48)

for all ¢+ € [7, Tmax), S € (O, %), p > 1. (Note here that this particularly entails
Tmax = o0 by Theorem3.1.) The constants and v, which depend or and p only,
may vary from line to line.

To see (47), we lef = [, uo, fix f and p > 1 and apply(A + 1)” to both sides of
the formula

t
u(t) — A =e "DAu(r/2) — ) —/ e UTIAY L (f(u(s))Vu(s))ds Vi e (%, Tmax),

2

which is valid because of the fact that’4/ = / for all + > 0. By Lemmas4.5 and
4.1, we have

— T
1@+ D0l 2oy + IV Ol120() <e(pe A D (14 K" (@ ™) Vi €[5 Tmaw.
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Using this, @), Lemma 2.1 (with any fixed < (0, % — p)) and the Holder inequality,
we obtain

H (A + 1)ﬁ(u(t) - z)

LP ()

<A+ vl AW - b

t
/
3

1

<cBp)(t=3) YV ) - Al

LP(Q)

(A+ D94y (f(”(s))vv(s))HmQ) as

t
+c(B, p) f (t — ) P35~ | (4 + 1) (5) Vo) | o) ds
2

<e(p. pyir P20

t
1 o -
+ / (0 = P72 e+ 1)) 2y - VO 20 ds
2

<e(p. pyia P30

t
+c(f, p, A, 7) <1 + K™ (1) - / (t — s)fﬁf%feef"(’ﬂ)efvs ds)
2
<cBp. A D(1+ K@ e™) Vi €[5, Tiao

with v > 0 small enough. This easily yields (47).
For the proof of (48) we use the result just obtained in applyiag- 1)/ to both
sides of

. 3t ! 3t
v(t) = e_(t_%)(A'H‘)v(Z) + /3 e =IUAUD (o) ds, te [Z’ Trmax) -
vy

From (3), (8) and (47), for any fixed € (0, % — ) we infer that

1A+ D o0l < A+ DfHe - DAy

t
+),

3

a

LP(Q)

A+ 1)ﬁ+le—(t—s)(A+l)u(S)

s
LP ()
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3t _1_p_n1_1 3t
< cp)i—7) " =2 PPl

t
+e(B. p) / (t =)' INA + D uls) o) ds
7T

N

c(B, p, 01

t
+c(B, p, A, 1) (1 + K™ (1) /3 (t — 5) L= pmvs ds)
T

< C(ﬁv p5 Av T)(l+ Iem e—W) Vt S [Tv Tmax)»

so that 48) follows and the proof is complete. [J

As an interesting by-product of (46) we obtain some information onciHinit sets
of solutions.

Corollary 4.1. Suppose f satisfigd7) with someux < % Then for all 4 > 0 and any
d € (0,1) there exists a balBg;_1) in C°(Q) x C¥+°(Q) centered at zerowith radius
R(5, A) depending or and A only, that has the following propertyif ug € C%(Q)
andvg € |J WH4(Q) are such that

q>n

luoll 1) < 4
then thew-limit set
@ (uo, vo) ‘= {(uoo, Vo) € (LY(Q))? | 31 — o0 such that
u(ty) = uoo and v(ty) = v a.e. in Q}
of the unique global solutioriu, v) emanating from(ug, vg) satisfies

B # w(uo, vo) C B, A)-

Remark. Note particularly that the asymptotic bourl = R(J, A) does not in any
way depend orwg (which is actually due to the absorption tersw in the second
equation of 1)). Also, the dependence o is only through itsL1(Q) norm. A result

of this type is (for any fixedd) the best that can be expected in the sense Bhat
must depend at least diuoll 1) SinCellucoll 1) = lluoll 1) holds for all elements
(U0, Voo) € W(ug, vg) due to (7) and, for instance, the equicontinuity property (46).
Particularly, there is no hope for a global attractor or only a uniformly absorbing
bounded set (in thé! topology). For a result on the existence of a finite dimensional
attractor forn = 1 ando = 1 we refer the interested reader to [32].
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Proof. We fix an arbitraryo € (0,1) and sett := % in (46) to obtain a constant
R(0, A) such that

im sup (10| co g, + 190 z-a, ) < R, ) (49)
—>00

holds for all solutiongiz, v) of (1) evolving from initial data(iig, 09) with the property
that max|liollL1(q), Vol 1)} < 4.

Now let (uo, vo) be given with|luoll, 1) < 4, and let(u, v) denote the correspond-
ing solution. From (8) we know thatv(#) |l 1.q) — lluoll 1) ast — oo, whence there
existsto >0 such thatv (7o) [l L1(q) < A. Settingi(t) := u(to+1) andv(r) := v(to+1) for
t >0, we see thatu, v) solves (1) with initial data(ig, 0o) := (u(tg), v(tp)) satisfying
max{|litoll 1) lD0ll 1)} < A. Therefore (49) yields the claim. [

5. The supercritical case: absence of the a priori estimate

Let us now turn to the case of supercritical growth f&@i«). The goal of the present
section is twofold: First, it explicitly shows that an apriori estimate as in Theorem 4.1
is not available if f(s) grows faster than® for someo > % whenn >2. Secondly, at
the same time it provides some useful preparations for the blow-up results to follow
in the subsequent sections.

Our method will strongly rely on the fact that (1) possesses a natural Lyapunov
functional (see [6,14,34] for more informations about Lyapunov functionals for Keller—
Segel-type models). Its definition involves the nonnegative funcfon(0, co) — R

given by
D(s) _/ / f(r) s > 0.

To be more precise, in the next lemma we shall see that

1 1 i}
Fu,v) = §/Q|Vv|2+§/;202—/guv+/9¢(u), 0<u € C°(Q), v e WH(Q),

acts as a Lyapunov functional fol)(in the following manner.

Lemma 5.1. If (u, v) is a classical solution ofl) in Q x (0, T') for someT < oo then
we have

//Uz //f(u) WVM—VU +F(u(t),v(t))=F(M(S),U(S)) (50)

for all 0<s < < T, provided that the initial data satisfynguo(x) > 0.
Xe
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Proof. Sinceug is strictly positive inQ, the strong maximum principle guarantees

that u is positive inQ x [0, T) and hencem and @(u) are continuous functions in

Qx [0, T). Multiplying the second equation irL) by v; and integrating by parts yields

t j j 1 t t t
/ / v2 ( / | U|2 / v2> ,/ / v / v / f 0
! 2 2 ! !
s JQ Q Q s s JQ Q s JQ

We now use the first equation i)(to calculate

t 1t t t
/ /uﬂ):—/ /(Au—V-(f(u)Vv))~v=/ /Vrov—/ /f(u)|Vv|2.
s JQ s JQ s JQ s JQ

Since
f(u)‘iw — Vv)z - —|W|2 2V - Vo + f()|Vul?
Sfw) S u)
and
t t t
/‘I’(M) =/ /‘P/(M)Mt = f/‘P/(M)(AM—V'(.f(M)Vv))
Q s s JQ s JQ
t
= —/ / " W)Vu - (Vu — fu)Vv)
s JQ
t
- WV Vu - Vo,
//f()'”'+//9” !
this gives

2
Vu — Vo

_[/Qu,v /[vuvU+//mlu|2//f(u)

/‘15(14) f /f(u)

so that 60) even holds with equality. O

Vu—Vv’ ,

S )

Remark. We notice that in the subcritical case wheiis) <cis* Vs>1 with o < ,—21
for any 4 > 0 andt > 0 we can findc(4, 7) > 0 such that

Fu(®),v(t)> —c(Ad,1) Vixt (51)
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holds for all solutions(u, v) with initial data fulfilling

max{[luoll 1) lvoll 1)} < A

For n>2 this can be seen as follows (the proof in the case 1 is even simpler):
From the growth condition of we gain D(s) >cas?* — c3 for all s >1 with positive
c2 and c3. Thus, by Young’s inequality, we can find> 0 small such that

/uvés/uz_“—i—c(s)[vﬁé/@(u)—i—c—i—c/v% for all + > 0.
Q Q Q Q Q

Now Lemma4.1 and the Sobolev embedding theorem tell us that

lv@® e <clg, 4, 1)

for all 1>t and anyq < .. Therefore we can apply the Gagliardo-Nirenberg and

the Poincaré inequality to estimate

24 Ea@ £ (-alq)
[ oE <e(ioiiing + 1)k

2=24(q)

<elq. A 0(IVoll g +1) iz,

n_1l-u

— g 2" g 2—u
wherea(q) = g Since £ a(g) —

close to.* so as to achieve

n—2(2—u)

n H
T-Daw < 2 asq — ;*5, we can pickq

2—0
/vmgsf Vo2 +c(A, 1, 8) Vit
Q Q

for any ¢ > 0. Upon an appropriate choice efthis yields 61).

The key to our results on nonexistence of a priori bounds and on blow-up solutions
is the observation that for supercritical growthfpthe functionalF is unbounded from
below in the following sense.

Lemma 5.2. Supposer >2 and
f(s)=cos* Vs>1 (52)

holds with some:p > 0 and somex > % Then for any fixedl > 0 there existeg > 0
and families (ue)ec0.69) € WEH(Q) and (ve)ee(0.e9p € WH(Q) such thatu, > 0
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and v, > 0in Q,
/uszi Ve € (0,&0) and /v8—>0 as € = 0,
Q Q
but
F(ug,vg) > —o00 as ¢ — 0. (53)
Actually, it is even possible to construet such that

/ |Vve|? = 400 as ¢ — 0.
Q
If Qis a ball thenu, and v, can be chosen to be radially symmetric.

Remark. (1) In the one dimensional cas&3) cannot occur for any choice &f Then,
namely, the Sobolev and the Young inequality yield

1
/uvg/lllvllLDO(Q)é—/ |Vv|2 4 cA?
Q 4Jo
for all (u,v) € LY(Q) x WH2(Q) with [,u and [, v not exceedingd; thus,
1 2 2
Fu,v)=>- | |Vv|c—ca
4 Ja

holds for all («, v) of this type, becaus@ > 0.

(2) A result related to Lemma&.2 for the critical cases = 2 ando = 1 is already
known. One can find it in [15]. In that critical case one has to assume thdttmerm
of ug is sufficiently large to guarantee the existence of sequefiGesc(0,sq) C L*°(£)
and (ve)ee(0.65) € WH®(Q) such that

F(ug,ve) - —o0 and / |Vv€|2 — 400 ase — 0.
Q

Proof. After a translation of the coordinate axes we may assBgeC 2 C Bg, with
certain radii O< Rg < Rj. Also, it is sufficient to consider the case wher¢ {1, 2}.
Then, namely, we have

1 s ro u B (Sszl_l) (s — 1) >y
T N R e T e e AL G D I

for all s>1 due to 62).




D. Horstmann, M. Winkler / J. Differential Equations 215 (2005) 52-107 83

First, if n >3 we may additionally suppose < 1 and then define

s +ace ™", x| <e,
Ug(x) := ; f 8
2o +ace "x|7P, x € Q\ B
and
e, x| <e,
ve(x) 1= S s
e’ x|7?, x € Q\ B,

for ¢ < g9 := Ro, where we fix
B >n, Y€ (max{” ,(1—o)n}, n— 2) and é>n,

which is possible since >3 ando > % Moreover, we set

4

2
a)n + UJn ( ( )ﬁ—n) +8ﬁ—n f,Q\BRO I-xl_ﬁ’

ag =

where w,, denotes the surface area of the unit ballRf.
The choice ofa, was done in such a way that

) fo
/ Ug = 5 +61387n|Bs| +6138ﬁ7n60n/ rniliﬁdr‘i‘asgﬁin/ |x|7ﬁ
0 2 e Q\Bg,

= /. Ve e (0,¢p).

Observe thatz, — ”(g ") ase — 0 and hences, is bounded above and below by

positive constants. Clearlyl,e and v, belong tow1>(Q) and are positive in2.
We now estimate the terms making Uf{u., v.) according to

R1 N 2
/ Vel < wn/ r"_1<58()_7r_5_1) dr
Q e

2
_ D0 rn(geaagod) < onn (s
20+2—n ' ) |

R

L, ", 1 L n\2
/vg < e 2 +wn/ r"_l(s‘L'r ‘3> dr
Q n £
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w . o) o Y o
= Ongn—2y n_ .20 Zy(gn 25—le 2())<C8n 2,
n 20 —n

e &y .,
/usv,;}ags n=y >ce 7
Q n

and, using %4),

2
D(u,) = D(u, D(uy) <|Q|P( —— =24 7)Y, (56
/Q () f{w} (””/Wl} ) <12 (2|Q|)+c(/gug +4). (56)

becaused’(s) is negative whenever < 1. Sincea <1 <2 — ;—; we have

A \2-o 2y ) Ro 2—u
_ _ —o_—(2—a)n n n—l( p—n —ﬁ) d
/Q<Ms 2|Q|) a;, "¢ W —i—wn/E r a.e’ 'r r
2—u
+/ (agsﬁ_”|x|_ﬁ>
Q\Bg,

2—o
_ ag “py 87(170011 _|_a827a8([f7n)(27<x)/ |x|7(27cx)/3
n Q\Bg,

wna(g*ag(ﬁin)(zfa) <
0

n—-2-0p _ n—@-0)p
n—Q2—-wp ¢ )

and thus
Ao\ 2— Jo\2-
/;)ME_a < C./g;[<m> a(4-(us—m) a]
< C<1+ g~(@=mn 8([f—n)(2—a<)+n—(2—<x)[i) < ce—-om
for all ¢ € (0, gg). We therefore obtain
F(ug, ve) Sc(en_zy_z + 8_(1_“)") —ce™7
with positive constantg and ¢, and henceF (i, v.) —> —oo ase — 0, provided that
y > max0, —(n — 2y — 2), (1 — o)n},

which however is guaranteed by our original choiceyoMoreover, we have

R1
w N S s W, w ol s _
/vg < 2" 4 w,e? V/ PO gy = Ry g0 /(s” ‘)—RZ 5)
0 n B n o—n

<ece" 70
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ase — 0, sinced >n andy <n — 2 < n, and (cf. 65))
2 RO i1(. 0y —0-1)2 2)-2
/ |V | 2wn/ " (58 o ) dr >c(e" 97 -1 - 400
Q &

ase¢ — 0, because we have chosen- ”—52 In the casen = 2 the construction is

similar, usingu. in the same form as before with arbitrafy> n = 2, but setting
1-x

&) <,
ve(x) 1=

R\ "o R
(%) "k, xeo\ B,

this time, wherex € (0, 3). Then
R1 Ri\—Kk1\2 Ra\1-2x
2 1 1
< i = -1
/Q|Vv8| < 2n/€ r((ln 8) r> dr 2n<|n 8) ,

/Qvf < 2n/0R1r<(|n %)_Kln %)zdr -0 ase — 0,

and sincex > 1, (56) directly yields

/ P(ug)<c.
Q

Thereforex > 0 implies F(u,, v,) — —oo0 ase — 0, while fQ ve > 0ase > 0 is
obvious now and the additional property

Ro Ri\—x1\2 Ri\—2¢ R
/ |Vv€|2>2n/ r((ln —1) —) dr = 27r<|n —l) In=2 +00
Q & & r & &

ase — 0 is fulfilled in virtue of x < 3. O

Now we are in the position to prove the absence of an a priori bound in the style
of that given by Theoremd.1, provided that the growth dfat infinity is supercritical.

Theorem 5.1. If n>2 and there existgg > 0 such that

f(s)>=cos* Vs>1
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holds with somex > ,—Zl then there does not exist an a priori estimate in the sense of
(45). More precisely to any 4 > 0 there corresponds a sequence of solutigng, v;)
of solutions to(1) with initial data (uq, ;, vo, ;) satisfying

luojlliie =4 VijeN and llvo,jll L2 — O as j— oo, (57)
such that
lim Sup||uj(t)||L00(Q) — o0 as j — 00, (58)
fﬁTmaxj

where Tmay j <oo denotes the maximum existence time (o, v;).

Proof. From Lemma5.2 we know that there exist sequendes ;) cn C wiooQ)
and (vo, ;) jen C Wwi°(Q) of strictly positive functions fulfilling (57) and

F(uo,j, vo,j) = —0o0 asj — oo.

Let (u;,v;) denote the (classical) solution of)(emanating from(ug ;, vo,;), defined
in the maximal time intervalO, Tmax ;).
If (58) was false, we could pass to a subsequence to obtain

limsupflu; @)l <c1 VjeN
t—>Tmax,j

with somec; > 0. In particular, this impliedmay ; = oo for all j, because then; <2c;
holds in Q x (Tp,j, Tmax ;) With someTp ; sufficiently close t0Tmax ;. We therefore
may modify f(s) beyonds = 2¢; so as to be constant for largewithout touching
system () in Q x (Tp j, Tmax ;). Applying the results of Theorem 4.1 for sufficiently
smallt=1; >0 to (u;(- — To,j), v;(- — Tp,j)), we infer that

lim sup(lue; (1)l s ) + 10 ()l c2sa3)) < 00

— Tmax_,’

for eachj € N and somed > 0, whence all(x;, v;) must be global and, clearly,
bounded solutions of1j.

Repeating the latter argument wiffinax ; = oo and z; = 1 this time, we obtain a
sequenceT;) jen C (1, 00) and constants > 0 andcz > 0 independent of such that

lujOllcsgy + lvjOllcarsgy <2 Vi€ (T, 00). (59)

By the Arzela—Ascoli theorem, for ajlwe can therefore extract a sequengg)ien C
(0, o0) such that

wj(tix) = joo iN COQ) and vj(tjx) — vj.oo in C3Q) (60)
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ask — oo, whereu; o, # 0 becausef, u;(tj 1) = A > 0 for all k. As
”Mj.oo”Cé(Q) + ||Uj,oo||c2+5(g) <e2

by (59) and an elementary argument, we may now tgke> oo along a suitable
subsequence to achieve

Uj oo = Uoooo IN COQ) and vj 0 — Voo.0o in C3(Q),

again Withus o0 # 0 due to [, uj o = . In virtue of (60) and the Lyapunov property
of F (see Lemma 5.1), we infer that

Fuo,j,vo,j) 2 Fuj(tj),vitjr) = FUj oo, Vjoo) ask — oo
and hence, letting — oo,

F(Moo,oo, Uoo,oo)< “m inf F(”O,jv vO,j) = —0Q,
j—00

which is absurd becausﬁﬂ Uoo.coVoo,00 MUSt be finite. [

6. Blow-up

We shall now proceed to prove the existence of unbounded solutions under some ad-
ditional assumptions. Our approach is basically indirect: For certain sensitivity functions
f, we shall find some initial data (using Lemnsa2) for which it will be impossible
that the corresponding solution of (1) remains bounded for all times, so that it will
have to blow up either in finite or in infinite time. The contradiction to the boundedness
hypothesis for such solutions will mainly be gained by an energy argument, ‘energy’
here being measured in terms of the functioRahtroduced in the previous section.

To become more concrete, the existence of the Lyapunov functi®reicourages
us to suspect a connection between thdimit set of a supposedly bounded solution
of (1) and some kind of steady state solutions of (1). Here we also refer to related
results by Osaki and Yagi [32] for = 1 anda = 1. Furthermore, some comments and
results on the convergence to steady-state solutions for general Keller—Segel-type mod-
els have been established for example in [14,34]. However, here we follow a slightly
different approach. Part of such a connection betweenctHienit set of a suppoes-
edly bounded solution of (1) and some kind of steady state solutions is established
by the following lemma in which we use the strictly decreasing functjomlefined

by

1 do

P& = J Fay
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Lemma 6.1. Suppose(u, v) is a global bounded solution ofl) with initial data
(ug, vo) satisfyingug > 0in Q, and setl := fQ uo. Then there existo € COQ), voo €
C2(Q), I € R and a sequence of times — oo such that

u(ty) = us  in COQ), V() = Voo in C3(Q), (61)
and (10, Vo, I') is a solution of the stationary problem

—AVso + Voo = Uoso in Q,

(S) p
Ay Volag =0

fguoo = fQ Voo = )u.
Proof. It is easy to see that it is sufficient to prove the claim withreplaced by

0 do

P(s) = ’ %,

wheresg = [[u|l L @x(0.00))- IN this casep(u) is positive inQ x (0, o).

Since (u, v) is a global bounded solution anth > 0 in Q, F(u, v) is uniformly
bounded from below for all times, whence Lemd says that

/OO/UZ—}—/OO/f(u)‘ = Vu—Vv2<oo
o Jo' Jo Ja fw)

and thus
/ v () => 0 ask — oo (62)
Q

as well as

1 2
/Qf(u(rk))( oy V)~ Ve[ 0 ask - oo (63)

are valid for a suitable sequenge— co. Again manipulatingf (s) for s > 2s¢ to be
constant for larges, we may apply Theorem.1 to extract a subsequence for which (61)
holds. In order to gain further information from (63), let us first construct a positive
nonincreasingy € W ((0, 00)) that fulfills

p(@(s)) < f(s) Vs € (0, s0).
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This can, for instance, be achieved by defining
p(0) == folp~ (0)), @€ (0,00),
where fo € WL((0, s0)) is any nondecreasing minorant &fon [0, so] which is

positive in (0, so]; for example, we may takgp(s) := n[1in If(o-). Then, in fact,p is
g€ls,so
positive on(0, co) and we have

p'(0) = —folo (@) - f(9 () <0 as well as p(¢(s)) = fols) < f(s)

for all s € (0, sg), as desired.
Using this functionp, we write

P(s) :=/c; Vv plo)do

for s > 0 and calculate

2 , 2 2 1 2
VP((p(u)+v)‘ - ‘P(q)(u)+v)‘ ‘V(q)(u)+v)‘ - p(q)(u)-i-v)’f(u)Vu—Vv’
< ‘ L Gu—v ‘2 < ‘ L Gu—wl
< o) gy V= Vol < S] g vu=el,
becausev is nonnegative. Thereforéd) implies
/ ‘VP(QD(M(tk)) + v(tk))‘2 -0 ask — oo,
Q
whence
2
f ’P((ﬂ(“(tk))—i-v(fk))—mk‘ -0 ask— o0 (64)
Q

by the Poincaré inequality, wherg, is the real number defined by

my 1= ﬁ /Q P(ou(n)) + v(t)).

Extracting further subsequences, we may assume that the integra®d)inefds to
zero a.e. inQ, and thatmy — my, € [0, 0] ask — oo. Thus,

P(p(u(ty)) + v(ty)) = meo ae. in Q ask— o
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and accordingly
outx)) + v(tx) = I := P Y(mso) € [0, 00] a.e. inQ ask — oo.

But I' = 400 actually is impossible since in such a caéé)(would show that:(z;) —
0 uniformly in 2 which contradicts the fact thaﬁQ u(ty) = / for all k.
Now the validity of (S;) results from this, (61), (62) and (8). [

Combining the Lemmata 5.2, 6.1 and 5.1, we immediately obtain the following

Corollary 6.1. Let n>2 and f satisfyf(s) > cos* for all s >1 with somecg > 0 and
o> % If there exists1 > 0 and a constant ¢ such that

Fu,v)> —c (65)

is valid for all for all solutions (u, v, I') of (S;) then there exists a solution @)
which blows up. The same is true (f is a ball and (65) holds only for all radially
symmetric solutions ofS;).

In the sequel we shall derive from this some results on the existence of radial blow-up
solutions, assuming throughout tHasatisfies the supercriticality condition

f(s)>=cos* Vs>1

with somecg > 0 ando > % More precisely, we shall show that in some cases, under
relatively mild additional conditions o (which will be stated when required) there
exists a 4-dependent) a priori bound from below fét(«, v) for all radially symmetric
solutions (u, v, I') of (S,).

For technical reasons, we shall treat the three case®, « € (1,2) anda € (%, 1)
separately. Before going into detail, let us state an easily obtained but rather helpful
information for the component of solutions of(S;). Although the result is standard
(cf. [3,16,19,36,38]), we include a short proof for the sake of completeness.

Lemma 6.2. Let n>2.
(i) For all s € (1, .27) there existsc = c(s) > 0 such that
vl ) <cls)2 (66)
holds for all solutions(u, v, I') of (S;).
(i) For all ¢ € (1, ;%) there isc = c(q) > 0 with the property that any solution
(u,v, I') of (S;) satisfies

lvlle@ <c(@)A.
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Proof. (i) Let s’ := 5. Thens’' > n, so thatw+' (Q) — L°°(Q). Therefore testing
(S;) with arbitraryy € W+ (Q) gives

/Ww:/ uw—/ ol S22 <Al yav g
Q Q Q

Together with the Poincaré inequality this implieg6).
(i) This is an easy application of the Sobolev embedding theorem to (66[.

6.1. The case: > 2

Let us start with the case > 2 which is the easiest one and which requires no
further condition onf; that is, we suppose in this section that

f(s)>=cos* Vs>1 (67)

holds with somecy > 0 ando > 2. We assume throughout th& = By is a ball in
R", n>2, centered at zero, and we shall prove our first result on existence of blow-up
solutions which reads as follows.

Theorem 6.1. Suppose2 = By is a ball in R", n>2, and f satisfieq67) with some
co > 0 and o > 2. Then for any4 > 0 there exist radially symmetric solutiona, v)
of (1) which blow up and have mags, u(1) = /.

For the proof we need the following lemma asserts that the componasit a
solution (u, v, I') of (S;) has values of the same order Asin a set of uniformly
positive measure.

Lemma 6.3. If f satisfies(67) with someo > 2 then there exisk € R and ¢ > 0 such
that any radially symmetric solutiotwu, v, I') of (S;) satisfies

(=T - 2k}|>ec. (68)
| |

Proof. To make the proof more transparent, let us use

o0

_ T '
P(s) == T o(s) +c1

with

© dr

1 [

1=
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Note thatc; is finite due too > 2. Then¢ is positive and, byS;),
pw)+v=T:=T+c1in Q.

Clearly, the claim of the lemma will follow as soon as we have shown that there exist
K > 0 andc¢ > 0 such that

(v>T -2k} >c.

holds for all radial solutions ofB;). For convenience in notation, throughout this proof
we shall omit the bars and thus again write I' and x in place of @, I' and k. We

define
A
~=(5a) -

and first observe that

supv(x) > I' — k, (69)
xeQ

since otherwise we would hawe(u) = I' — v>x in Q and hence

yi
/ u<p w19 == < A,
o 2

a contradiction.
With this value ofk fixed henceforth, we observe th&7) (together with the posi-
tivity of f(s) for s > 0) implies

* dz 1 1—g

D= o e@-1"

for all s>¢~1(2k). Thus,

0 Y (0)<ceo™FT Vo< 2% (70)

holds with a suitablecg > 0. Let us setw :=I' — v = ¢(u). Thenw + w(r) is a
positive radial function, and6@) says that ifw takes its minimum atg € [0, R], we
have w(rg) <x. We first consider the casgg% and claim that then

w(r) <2k Vr € [ro, r+] (71)
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holds withry := ro + rg 4., Where

(o0 — Z)Kﬁ

VR oKk = min{E, 29(—3—}
2T cgloe — 1)
In fact, if w < 2k throughout[rg, R] we are done. Otherwise there exisise (rg, R]

such thatw < 2x on (rg, r1) and w(r1) = 2x. We will show that

=2
2 — 1) (2K)=1
wr<r><\/ co( — 1)(2r) Vr e (ro, 1), (72)
o—2
from which it will result that
2eq(o — 1)(2) 51
ZK:w(r1)<K+\/ ceoca 2K (r1 — ro).

This in turn will imply

o—2
r1—ro= ) KZ2TR ok
2c6(a — 1)(21c) =1

and thereby prove7().
To see (72), we fix € (rg, r1) and may assume, (r) > 0. Thenw, > 0 on (7, r),
where7 := max{p < r | w,(p) = 0}, and therefore

v =@ (w)—v—Twréw (w)
< cpw #1 on (r,r),

where we have used (70) and the fact thas nonnegative. Consequently, after multi-
plying by w, >0 we obtain

ce(x— 1)

L (w20 - w2@) <SP () - wH D) voe .

2

As o > 2 andw, () = 0, this yields
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and hence completes the proof aR2). Having thus shown (71), we now obtain

Wy o
( 5
n R0, K

|{w<2K}|>|Br+\Bro| Z |Br+7ro|>|B

rR,J(.rc'

which yields the desired estimate in the ca@ég.

If ro > g, however, we proceed similarly, claiming that instead @f)( w(r)
<2k holds forr € [r_, rol, wherer_ := ro — rr 4., and replacingw,(r) by —w,(r)
in(72). 0O

Combining the above lemma with Corollary 6.1 we can now prove Theorem 6.1.

Proof of Theorem 6.1.In view of Corollary 6.1 it is sufficient to show that for any
A > 0 there exists; > 0 such that

F(u,v)> —¢y holds for all radial solution, v, I') of (S;). (73)

To this end, we multiply the first ifS;) by v to obtain

/|Vv|2+/ v2=/uv,
Q Q Q

so that

F(u,v):—%/;zuv—f—/gdﬁ(u).

Since @ is nonnegativep = I' — ¢(u) and [, u = 4, this gives

r 1 A A [
F(u,v):—E/QLH—E/g;u(p(u)+/;2¢(u)>—%—E ) fd(Tc)'

for all solutions of(S;) — no matter whether radial or not. So i) were false, there
would exist a sequence of radial solutiofag, vk, I'x) of (S;) such thatl'y — +oco as
k — oo. But then Lemma 6.3 states that for some- 0O,

/ v = {ve =T — 26} (T — 2K) — 00 ask — oo,
Q

which contradictsf,, v = 4 for all k. Therefore {3) must be true. O



D. Horstmann, M. Winkler / J. Differential Equations 215 (2005) 52-107 95
6.2. The casd < o < 2

In this section we shall derive some blow-up results in space dimensieng, 3}
under less restrictive growth conditions énHowever, for technical reasons we shall
need that §7) be supplemented with an estimate frelow for f(s) for larges. To
be more precise, throughout this section we will assume that

cos* < f(s)<cis™ Vs>1 (74)
holds with
(1, 2] if n= 2, 1
LLaﬁn=3 amm+epqq] (75)
Note that, particularly, this admits the choice, = o and thereby covers the

homogeneous casg(s) = s* with o as indicated in {5). However, also rather strong
oscillations off are allowed.

Actually our method would apply to any € (1, co) in the two dimensional case,
but in view of the previous section this would not provide any progress.
Our main result will be

Theorem 6.2. Assume thaf2 = By is a ball in R", wheren = 2 or n = 3, and that
f satisfies(74) with « and o fulfilling (75). Then for anyl > 0 there exist radially
symmetric solutiongu, v) of (1) which blow up and have mas§, u(t) = /.

The proof of this theorem will be given in the end of this section; it will be prepared
by three lemmata for which we need some preliminaries.
As in the last section, we shall use the function

- * dt © Jr
(s) ~—/A ﬁ =¢(s)+ 2, whereX := . 7o

is finite due too > 1. Then 74) implies that
esTTH <pls) KOst Vs> 1,
whence its inverse ! fulfills
ac 1< p o) <boPT Vo<1 (76)

with certain positivea and b.
If (u,v, ') is any radial solution ofS;) thenw := @(u) is a positive solution of

Aw=p"tw)—v inQ, (77)
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satisfying

/ P tw) =1 (78)
Q
and

/|Vw|S=/ Vol <cs, A) Vs < —— (79)
Q Q n 1

due to Lemmab.2. In contrast with the previous section, we now treas a nonnegative
perturbation of the equatiorAw = »~1(w) which is small in the sense that

/vqéc(q,},) Vg < L, (80)
Q n—2

also by Lemmab.2.

Our strategy roughly is as follows: As in the proof of Theorem 6.1, we only need to
show that the possible values bfin radial solutions(u, v, I') are bounded above. It is
sufficient for this purpose (cf. the proof of Theorem 6.2 below for details) to exclude
the possibility thatw; — +00 ask — oo a.e. inQ for a sequence of correspondingly
transformed solutionsy;, of (77). As a starting point we may employ (78) which shows
that w must be ‘bounded’ at least at some point(¥ so we will be successful if we
can control the growth ofv near such a point. In doing this, we shall go along a
remarkable indirection: We first prove lawer bound for such a growth (using the
bound forf from abovein (74)) to derive from this (and the left inequality in (74))
the desired upper bound.

Lemma 6.4. Let Q = By be a ball inR", n € {2, 3}, and suppose f and, o satisfy
(74) and (75). Then there existRg € (0, R) and Co > 0 such that for any radial
solution (u, v, I') of (S;), the functionw = {p(u) satisfies

20 —1)

w@)=Cor *+ Vr € (0, Ro). (81)

Remark. Actually, this lemma only requires the right inequality if4) and thatwv and
v satisfy (77) and (80).

Proof. The proof will consist of three steps. Throughout, let us wyite= rl_l and
fim 2 = 200D
T op+l — oy "

Stepl1: We first claim that there exist§1 > 0 (depending oni,, a, 2 and R only)
with the property that whenevep < (O, %) is such thatw(rg) 2C1rg then there exists

r1 € (ro, 2ro) With w(ry) > Clrf.
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This can be seen as follows. Suppdsg is a positive number such that our claim
does not hold forC;. Here we may assume thay R¥ <1, so that, according to76),

» Yw)=aw™? whenever w(r)<CirP. (82)
Then there existgg > 0 with w(rg) = Clrg but
w(r) < Clrﬁ Vr € (rg, 2r9). (83)

Integrating {7), that is,
1 n—1 - —1
ﬁ(” wr)r =@ (w) —v, r e (0, R),
-

twice with respect ta, we successively obtain

r

"1 (w(p)) dp — / "“Lu(pydp,  (84)

ro

" (r) = gt (Fo) + /

ro

for 0<ip < r<R, and thus, using82),

(@0l =) > wero) —wiro)

2ro 2rg P
> g w, (ro) - / pt " dp + a/ ,017”/ " tw (o) dadp
ro r ro

0

2rg P
—/ pl_”/ " Yv(o)dodp
o ro

= I+ Db+ I (85)

In order to estimate from below the terms on the right, let us first fix sam@
(0,4 — n — B), which is possible due to76). (Indeed, the inequalitp = 2 — a— <
4—nis tr|V|aI if n =2, while forn = 3 it is guaranteed by the fact that, < 2.)

Using g := ;=5 in (80), we then infer that

r r 1 r 2—¢

/ pn_lv(p)dpg(/\ pn—lvq(p)dp>‘1 A (/ pn—ldp> n
0 0 0

<cr®® Vre (O, R), (86)

where ¢ denotes a generic constant independenwofinserted into 84), this gives
(with 7o := 0)

w(r) = —cr¥" ¢ VYr e (0, R) (87)
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and thus
2
I = row, (ro) - / o de> — crg_"_‘c‘. (88)
1

As to I3, (86) entails

2rg
I3> — c/ 03" dp = —crg'*"*g.
o

We now use §3) to estimate

2ro P
L > a/ pl_"/ "L (CreP) P dadp
T ro

0

aCo P+ 2rg _
— 1 pl—n(pn—pﬁ _ rg Pﬁ) dp

n_pﬁ ro
aCl—P+ 22—[7/3_1 /-2 . 2 pp

= - ot™do)rs PP 89
"—Pﬁ< 2—-pp 1 )O (89)

Sincen>2 and pff < 2, the constamzzz%ﬁgl — flz c1"do is positive, whence from
(85)—(89) we infer

Cl_prg _ C{”ré””‘gc(clrg n ral—n—‘s)’
so that, sincee <4 —n — f,
d—n—e—f

C; P <e(Ca+rg )<e(Cr+ R,

which is impossible ifC1 is appropriately small. Thereby our claim has been proved.
Step2: Let us set

S:={r e[0,R] | w(r)=>CP)

with C1 as above. Since is positive,Sis not empty andg := max{r € [0, R] | [0, r] C
S} is well-defined and positive. Therefore

Fiel = max{r €lr, 4] N[O, R] | re 5}, k=012, ...,
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defines an increasing sequence of numberd.et us make sure that

Jko € N such thatry, >

N X

In fact, if this were false them, would converge to somes, gg which, by continuity
of w, would belong taS. By the outcome of Step 1, there would exXist (7o0, 2ro0)NS.
Sincer;y — roo, this implies thatF € [r, 4] N S for largek and hence11>7 > reo
for suchk, a contradiction.

Step3: In order to conclude that the lemma is true, we take (0,4 —n — f) as
in Step 1. Then&7) holds and thus

r r
f wr(p)dp> —c / P> dp > Cor "¢ Vr € [, 4] N[O, R]
.

k Tk
is valid with someC> independent ofw. We now fix Rg < § such that

d—n—e—f§ C1
R <—
0 2Co

and setCp := % < C1. Then, while 81) trivially holds forr < rq, for all » € [ro, Rol
we can find (due to Step 2) sontec N such thatr, <r < 4r;, and hence

r

w(r) = wir) + / w(p)dp>Curf — Card ™= = rf (€1 = Corf 1)

Tk

> (e corf ) > D> 2 () ot

whereby (81) has been shown. [
We can now prove a result which is in fact much sharper than needed: Namely, we
can show thatv will be locally uniformly bounded inBg \ {0}.

Lemma 6.5. Let @ = By be a ball inR", n € {2, 3}, and suppose f and, o4 satisfy
(74) and (75). Then for all Ry € (0, R) there exists(R1) > 0 such that for any radial
solution (u, v, I') of (S;), the functionw = {(u) satisfies

w(r)<c(R1) Vr €[R1, R].

Proof. If the lemma was false, there would exigy € (0, R) and a sequence of
solutions (ug, vk, I'y) of (S;) such that

sup wi(r) = oo ask — oo (90)
re(R1,R)
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holds with wy := @(uy). Since [, » L(wy) = A by (78), for eachk there exists; €

[0, R] such thatwy (ry) <c3 := @(‘)@) and wy, (r) = 0. After extracting a subsequence,
we may assume; — re € [0, R] ask — oo. In the caser,, > 0 we would have,
using Holder's inequality and (79),
r n—1 Y%l
/ p s~tdp|
Tk

_n-t —
Ry C }.|r_rk|T1<c Vr € [R1, R] (91)

r 1
|wi (r) — wi(re)| = / p"’llwk,(p)ﬁdp’x .
Tk

frr wkr(p)dp’ <

k
n=1

< cmin{ro_O s

for any s € (1, ;%7) and largek, contradicting 90).
Thus,r, — 0 ask — oo. In this situation, however, Lemma 6.4 applies to tell us
2(0y —1)
that the lower estimate (r) > Cor *+ Vr € (rt, Ro) holds with certain positive&y
2(0y —1)

and Rp satisfying CoR * < 1. Therefore, integrating (84) withy := r; and using
the right inequality in (76) as well as the monotonicity ®f %, we obtain

r P r P
wi(r) = wi(r) + / pr" f 0"t (wi(0)) dodp — / pr" f o" (o) dadp
Tk Tk Tk Tk
r 14 2(a++-1)
c3+/ pl_"/ an_léfl(Coa o )dadp
Tk Tk

L7 P 204D
< 3 +bCy ™ / o _”/ g @D dodp
0 0

N

_ 1
bCy " o 204-D
== . o (a—1)
€3 + _ 2(0{+71) 2 _ 2(0(_*_71) r + Vr € [rkv ROL (92)
T A omD o (a—1)
because 2 2%+~ - 0 due to 75). Consequentlyy; (Ro) < c4 holds for allk and some

o4 (2—=1)
c4 > 0. Repeating now the argument leading to (91) yields, with arbitragy. 5,

n=1

—n= s=1
|wi(r) — wp(Ro)|<cRy * |r— Rols  Vr €[Ro, R],

which together with 92) is incompatible with (90). O
After these preparations the proof of Theorem 6.2 is comparatively simple now.

Proof of Theorem 6.2. As in the proof of Theorem 6.1, we first observe that all
solutions (u, v, I') of (S;) satisfy

F 1 o~ L 1 o>
(M»U)——éfguv‘i'/g (M)——E/QM‘FE/QWP(M)‘F/Q (M)/—?
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with I' = I' + [;° %. In virtue of Corollary6.1 it thus again remains to derive an

upper bound forl" (or, equivalently, forl).

So suppose there were a sequence of solutippsv, I'y) to (S;) such thatl', —
400 ask — oo. Due to (79), we may extract a subsequence along whictonverges
to somev,, in L1(Q) and a.e. inQ. Therefore the functionsy; = p(uy) = T — v
tend to+oo a.e. inQ, which is absurd in virtue of Lemma 6.5

6.3. The cas& <o <1

Let us now turn to the possibly most delicate question in respect of the criticality
of the exponent: = 2: Does blow-up occur for > 2 close to2? In space dimension
two, this has been answered in the previous section already. But in the: ease the
above results leave a gap between the suspectedly critical expmnen}, and 1. It
is the purpose of the present section to close this gap and, additionally, provide some
blow-up results also for higher space dimensions and exponertsl. Particularly,

we shall find that blow-up indeed occurs far arbitrarily close to% in any space

dimensionn >3 (and hence for any >2). This strongly underlines the role af= 2

n
as a critical blow-up exponent.
In this section we assume>3 and the two-sided growth condition

cos* < f(s)<ews* Vs=sp (93)
with somesg>1. Here, we need to restriet according to

(2,1) ifn=3o0rn=4,

n’

% e (94)
(2,-%) if n>5,
and suppose that the positive humbegsand ¢; satisfy
<2 (95)
1—«a

Note that these assumptions again include the homogeneousf ¢gse s* (for large
s) but also a wider class df with possibly oscillatory behavior.
It is easy to see that sincg(s) is positive for anys > 0, (93) implies

alo|T7 <@ N(0)<blo|TF Vo< —1 (96)

with certain positive constants and b.
Before proving two auxiliary lemmata, let us state our main result on radial blow-up
for o < 1.
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Theorem 6.3. Let Q = By be a ball inR", n>3, and suppose that f obeys condition
(93) with «, cg and ¢ satisfying(94) and (95). Then for anyA > 0 there exist radially
symmetric solutionsu, v) of (1) which blow up and have masg, u(r) = /.

The key to the proof of Theorem 6.3 is the following lemma, which has a lot in
common with Lemma 6.4. Observe again that it not yet uses the left estimate in (93).

Lemma 6.6. Let Q = By be a ball inR", n>3, and suppose f and satisfy (93)
and (94). Then there exisi®g € (0, R) and Co > 0 such that for any radial solution
(u,v, I') of (S;), the functionw = ¢(u) satisfies

2(1—2)
wr)> — Cor™ = Vr € (0, Ro).
Proof. Let us abbreviate := 11 andy := %

Stepl: As in Step 1 of Lemm&.4, we first claim that there exist; > 0 such that
wheneverw(rg) > — C1r, for somerg € (0, &) then there exists; € (ro, kro) with

w(r) > — Clrl_y.
To see this, we suppose this were false for safiewhich we may assume to be
large such thatC1R™7>1, implying
o Y(w)=alw? whenever w(r)< — Cyr7.
Then there existsg > 0 with w(rg) = —C1ry ' but
w(r) < —=C1r~7 Vr € (rg, 2r9). (97)
Thus, upon integrating7{7) we obtain

~Ci(@0 7 =1g") = w(2ro) — wiro)

2rg
> rg” w,(ro) / pt"dp
ro

2rg 14
—}—a/ pl_"/ " Lw|? (o) dodp
F F

0 0

2rg p
—/ pl_”/ " Yv(o)dadp
o o

=: 11+ D+ I3, (98)

n

where it can be seen from the fact thgfv? <c(q)Vq < %5 that

w,(r) > — P = (0, R) (99)
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and thus
h4 I3z —crg ™™ (100)

holds for anye > 0. In what follows we fixe € (0,4 —n + y) which is possible due
to (94). Next, (97) allows us to estimate

2ro p CP 2rp _
zaf o [Ceew ) dodp = S [ i - ap
1o ro n—p7y ro
cl j1-2%r 1227 ,
| ( - )r§ P, (101)
n—py\ py—2 n—2

Since py < n and therefore also% - % is positive, from 98)—(101) we
obtain

Cfro_y = Cfrg_py <C<C1V0_y + rg_"_g),
so that, since <4 —n+7,
cr gc(cl + rg*”*m) <c(cl + RH*&“’).

This is absurd for large’;.

Having thus proved our claim, we now can easily derive from this the assertion
of the lemma, using slightly modified variants of Steps 2 and 3 from the proof of
Lemma6.4. O

The reason for the restriction an (as related ta) lies in the following lemma. It
asserts that the terré Jouq(u) appearing inF(u,v) (cf. the proofs of Theorem 6.1
or 6.3 below), albeit being no longer bounded from below by a constant, at least may
be compensated b}jg ®(u). In fact, as compared to the previous two sections, this
will be the first place where any growth propertiesd®fare used, and wher@ is not
trivially estimated from below by zero.

Lemma 6.7. Supposex € (0,1) and f, co and ¢1 satisfy (93) and (95). Then there
existsc > 0 such that

25(s) + P(s)> —c(1+5) Vs> 0. (102)

Proof. Since¢(s) and @(s) are positive fors < 1, the claim easily follows if we can
show that the derivative of(s) := %go(s) + @(s) is bounded from below fos > sq.
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To see this, we differentiate and us@3] to obtain

. 1 1 s 1 (5 dt 1 s
g(s) = —50() -5 z 5 -5
2 2 f(s) 2 ) f(O  2f(s)
l 1— 1— 1 1—
2 o _ oy __ = o
2c0(1— o) <s %0 ) 21"
1 1 1 1-«o Sé_“
- = -0y
2(c0(1 — ) cl)s 2co(1 — o) P

which is bounded from below due to (95).0J

Although we do not have at hand a locally uniform estimate in the style of Lemma
6.5 now, we can nevertheless proceed to prove the main result.

Proof of Theorem 6.3.1f (u,v,I') is a solution of(S;) then we have already seen
that (cf. the proof of 6.1) that

1 r 1
F(u,v):——/ uv—i—/ @(u):——/ u—l——/ u(p(u)—i—/ D(u),
2Jo Q 2 Jo 2Ja Q

so that Lemm&6.7 yields

F(u,v)> — % —c(2+1) (103)

with somec > 0. In order to show the existence of an upper bound for all posgible
let us suppose on the contrary thé®)) has a sequence of radially symmetric solutions
(ug, vk, I'y) for which I'y — 400 holds ask — oco. Since a subsequence Ofy)cn
converges strongly i.1(Q) by Lemmas.2, the identityp(uy) + vx = I'y implies that
we may assume(u;) — +oo and hence

up — 0 a.e. inQ ask — oo. (104)

On the other hand, using Lemnt6 and the right estimate in (96) we see that

w(r) = ¢ Huw(r) <ot (—cor—“;”)

_2
o

_20-9\ T3 —
<b(Cor z ) =bCE*r% Vre(OR), VkeN,  (105)

2(1—u . .
where we have assumeth to be so large tha€CoR™ & >1. Now (105) implies that

R
_ _%
/uzgc/ TS dr<e
Q 0
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for arbitrary g € (1, &) — note that suchy exist sincex > % But this means thaty
converges weakly ir.7(Q2) for a further subsequence. B$04) and Egorov’s theorem,
this weak limit must be zero a.e. 3. Therefore the lower semicontinuity df |4 )
with respect to weak convergence shows that||;«@) — 0 ask — oo, which leads
to the absurd conclusion

0 < A= llukllLro <cllurllpa@ -0  ask — oo.

Thus, I'y — +o0 is impossible, so that nowlQ3) in combination with Corollary 6.1
proves the theorem.[d

7. Concluding remarks

The intention of present results is completely different from the approaches to blow-
up in the classical chemotaxis model so far. Of course, there are the results for Keller—
Segel-type model if the chemotatic sensitivity function depends only on the chemoat-
tractant like those established by Nagai and Senba [27,28], Nagai et al. [30], Senba [35]
and Post [34] for example. However, up to now no one has tried to get more insights
in the determination of the right blow-up exponent. Thus our results are completely
new and give more insights in the known results for parabolic—elliptic versions of (1)
with o = 1 and the expected behavior of the solution of the full system (1). Our results
explain, why there is no blow-up for = 1; there is the possibility of unbounded
solutions forn = 2 if the initial data has sufficiently large mass; and why there are
unbounded solutions without any restriction on the initial massufpr3.

Furthermore our approach is completely different from the attempts by Hillen and
Painter (see [13,33]). The approach presented in the present paper allows some kind
of “unified treatment” of all cases that exclude blow-up. Thus the results given here
also include the existence results in [13]. The approach to our explanation of blow-up
is also completely different from the perspective used by Herrero and Velazquez [12]
and Herrero et al. [10,11] and Herrero [9].
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