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The increasing availability of substantial quantities of power-use data in both the residential and com-
mercial sectors raises the possibility of mining the data to the advantage of both consumers and network
operations. We present a Bayesian non-parametric model to cluster load profiles from households and
business premises. Evaluators show that our model performs as well as other popular clustering methods,
but unlike most other methods it does not require the number of clusters to be predetermined by the
user. We used the so-called ‘Chinese restaurant process’ method to solve the model, making use of the
Dirichlet-multinomial distribution. The number of clusters grew logarithmically with the quantity of
data, making the technique suitable for scaling to large data sets. We were able to show that the model
could distinguish features such as the nationality, household size, and type of dwelling between the
cluster memberships.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

There are supply and demand-side drivers to better understand
power-use patterns to help deliver robust electricity distribution
networks. The introduction of advanced metering raises the possi-
bility of exploiting increasing volumes of data with potential ben-
efits (and disadvantages) to customers, retailers, and network
operators. Measures to implement demand-side management are
becoming technically feasible in both commercial and residential
premises, and innovation in deregulated markets is arising from
changing customer expectations and usage patterns. Increasing
embedded and multi-scale generation, decreasing reliance on
base-load generation, the electrification of transport and heating
alongside increasing use of cooling loads are factors introducing
uncertainty into network management. The ability to recognise
types of customer load and to differentiate between them will
become an important tool for the design of tariffs to incentivize
load-shifting or other changes in consumption patterns, fault rec-
ognition and detection, and planning. The clustering of time-series
power-use data may provide a useful tool in these respects.

In general, clustering techniques are unsupervised machine
learning algorithms to determine the subsets into which a data
set can be divided without a priori information. The objective is
to detect the data elements that are similar and to ensure that
the elements of these clusters are all different to the elements of
other clusters. An overview of many of the aspects of the clustering
of electricity profiles and a review of the techniques has been made
by [1]. Previous work adopted the frequentist approach and used
well-known clustering algorithms such as k-means and hierarchi-
cal algorithms [2–5], fuzzy k-means [6], a Support Vector Cluster-
ing model [7], or iterative self-organised maps [8,5]. In [9], they
simply group the data employing environmental characteristic
such as months of the year. The disadvantage of these techniques
is the need to declare the number of clusters before beginning
computation. In [10], the follow-the-leader algorithm was used
to cluster load profiles where instead of defining the number of
clusters, a distance threshold among the clusters is given by the
user. Other approaches segment electricity profiles based on a pri-
ori known customer features such as the commercial sector, with-
out applying any clustering method [11].

Our approach uses Bayesian statistics to enable the modelling of
unknown parameters that govern the distribution used for explain-
ing the data (which has a distribution itself). Using a distribution of
these parameters gives greater flexibility and robustness for man-
aging the uncertainty that data present. In non-parametric algo-
rithms, the number of parameters is not previously established,
there being potentially infinite parameters. When clustering with
a Bayesian non-parametric method, the number of the resulting
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Nomenclature

Abbreviations and acronyms
Dir() Dirichlet distribution
Mult() multinomial distribution
pdf probability density function
ANOVA analysis of variance
CRP Chinese restaurant process
DP Dirichlet process
DPMM Dirichlet process mixture model
MIA mean index adequacy
PGMA pair group method average algorithm
PGMC pair group method centroid algorithm
SI scatter index
VRC the variance ratio criterion

Symbols
cij jth counter of the ith load profile xi

d dimension of the load profiles
i; j; k; l;m dummy variables

kðIÞ number of cluster in the Ith iteration of the Gibbs sam-
pling algorithm

mij mean of the ith cluster at the jth dimension
n number of load profiles
nkj summation of the jth counter of all the data points in

kth cluster
ti ith component of the prior mean of the Dirichlet-

multinomial distribution
zi index for ith load profile indicating the cluster or

mixture component of the DPMM to which it is assigned

xi d-dimensional ith load profile obtained from a smart
meter of a house

Ci summation of all the d counters of object xi

G DP-distributed random probability measure
G0 base probability measure of a DP
I number of iterations in the Gibbs sampling algorithm

for computing the posterior distribution in the DPMM
K number of clusters
X set of all the n load profiles to cluster
T number of iterations in the Gibbs sampling algorithm

for estimating a0

Z set of all the n cluster indices for the load profiles
a significance level for T-test and F-test
a0 precision or scaling parameter of a DP
b d-dimensional concentration parameter of a Dirichlet

distribution
v temporal complexity of computing the reallocation

probability for one data point on a cluster
pi probability of the ith component in P
q strength of the prior of the Dirichlet-multinomial distri-

bution
hij jth dimensional value of Hi

CðÞ gamma function
P K þ 1 probabilities of a multinomial distribution that

correspond to mixture components or cluster in the
DPMM

Hi d-dimensional parameter of a multinomial distribution
governed by a Dirichlet distribution that corresponds
to the ith cluster
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clusters is determined by the model and the data, it is not fixed by
the user. The Bayesian model that we use is the Dirichlet process
mixture model (DPMM). These models have been used successfully
for solving clustering tasks in diverse areas such as computational
biology [12], computational linguistics [13] or marketing [14]. In
[15] they used a Bayesian clustering by dynamics method to clus-
ter electricity use time series for load forecasting. Their method
models the data dynamics as Markov chains and then applies an
agglomerative clustering procedure (our algorithm is not agglom-
erative) and employs an entropy-based heuristic search strategy
to find the most likely partition, which is not needed in our case.

In this paper, we describe the data sets (Section 2), development
of the new model and clustering process (Section 3), its application
and the extraction of various features from the data set (Section 4),
an evaluation with other common clustering techniques. We then
conclude and discuss possible further work in this area.
2. Data sets and pre-processing

Our approach to time-series power-use data exploits two
unique data sets. The first is a small high-resolution residential
data set (with metadata) produced by a European project.2 Previ-
ous studies have used data of 15–30 min resolution [2,3,7]. We sug-
gest that using a higher data rate should improve the usefulness of
clustering of power consumption data. The second data set is larger
and comprises 30-min resolution data from commercial users.

2.1. Residential data set

This data set [16] comprises electrical power consumption data
collected between 30-03-2010 and 24-11-2010 from 135 British
2 www.dehems.eu.
and 84 Bulgarian dwellings (a total of 219). The meters were
recording at between 6 and 8 s resolution. The metadata (Table 1)
was: nationality [UK or Bulgaria], number of occupants, number of
bedrooms, and the type of dwelling. There are five categories of
dwelling: flat or apartment, terraced (a house that is situated in
a row of houses sharing side walls with neighbouring properties),
semi-detached house (a houses that only shares a single common
wall with another house or property), detached house (a dwelling
that does not share any walls with any other structure), and other
kind of dwelling.

Two pre-process filters removed anomalous readings and meter
faults. First, the negative and zero values, and secondly, dwellings
whose readings had five or fewer different values for at least half of
the total readings. The clean data was transformed to one minute
resolution by averaging the number of readings present within
each minute. The daily load profile corresponds to the averaged
data with minute resolution during a day aggregating all working
days of a specific dwelling. Only load profiles that present values
for at least 1438 of the 1440 min were used subsequently, with a
total of 197 dwellings satisfying all these criteria (125 British: 72
Bulgarian).
2.2. Commercial data set

This data set consists of half-hourly electricity use for 1877 UK
business from the entertainment sector during 2009 and 2010.3

These businesses are categorised as restaurants/cafes, hotels/guest
houses, pubs/bars, clubs, and cinemas/other leisure.

The pre-process procedure had four steps. First, negative and
zero values were removed. Secondly, for each business, we
3 The entertainment sector businesses used in this study are a subset of a
commercial data set of 12,000 businesses.

http://www.dehems.eu


Table 1
Features and categories of the processed data set.

Nationality
Bulgaria England
72 (37%) 125 (63%)

Number of occupants
One Two Three Four Five or more
18 (9%) 49 (25%) 52 (26%) 40 (20%) 38 (19%)

Number of bedrooms
One Two Three Four Five or more
29 (15%) 60 (30%) 78 (40%) 20 (10%) 10 (5%)

Type of dwelling
Flat Terrace Semi Detached Other
55 (28%) 55 (28%) 54 (27%) 26 (13%) 7 (4%)
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removed readings that are over three times the mean plus three
times the standard deviation. Thirdly, businesses that did not have
a minimum of ten different values in their total readings were
removed. Finally, businesses that did not present a minimum of
six months of data i.e. 8760 readings, were also removed.

After applying these filters created a data set of 1207 businesses
with an average of 20,230 readings and a standard deviation of
7706. On average, they present around 60% of the readings during
the two years of sampling. Each daily profile has 48 readings.

3. Developing the DPMM

A d-dimensional Dirichlet distribution with concentration
parameter b ¼ ðb1; . . . ; bdÞ is a continuous distribution that defines
a probability measure over the k� 1-simplex, i.e. the domain from
the Dirichlet distribution can be seen itself as a d-dimensional dis-
crete distribution.

ðh1; . . . ; hdÞ � DirðbÞ ð1Þ

where hi P 0; for all i; and
Yd

i¼1

hi ¼ 1

A Dirichlet process (DP) [17] is a distribution over probability
measures that can be seen as an extension of a Dirichlet distribu-
tion with infinite dimension. It is composed of two parameters
DP(G0;a0), where G0 is the base probability measure and a0 is
the precision or scaling parameter. Any draw G from the DP
(G � DPðG0;a0Þ) can be viewed as a discrete distribution with prob-
ability of one. Therefore, they can be used as prior probabilities for
other discrete distributions or components in a mixture model.
There are different representations of the DP such as the stick-
breaking construction [17], the Pólya urn scheme [18], and the
one used in this work: the Chinese restaurant process (CRP) [19].

The CRP uses the property that if there are n� 1 independent
variables distributed by a probability measure generated by a DP
(i.e. H1; . . . ;Hn�1 � G and G � DPðG0;a0Þ), the next draw from G
i.e. Hn has a probability that is greater than zero of repeating the
value of any of the previous draws [18]. In addition, the draws that
appear more times are more likely to appear again than those
draws that appear fewer times (‘the rich gets richer’ effect). These
two properties have a clustering effect that can be exploited with a
method analogous to allocating spaces in a Chinese restaurant.
Imagine a Chinese restaurant with potential infinite number of
tables. Consider the data points to cluster as clients of the restau-
rant, and the clusters as the tables where customers will sit around
(assigned to the cluster). The CRP works in the following way, the
first client will sit at the first table, and the nth client will sit at:

table k with probability nk
a0þn�1 ; 1 6 k 6 K ð2aÞ

new table K þ 1 with probability a0
a0þn�1 ð2bÞ

(

ð2Þ
where nk is the number of customers there are already sitting at the
table k, and K is the total number of tables (clusters). Following the
analogy, the dishes on the table can be seen as the parameters of the
distribution that explains all of the data points in the cluster. Eq.
(2b) guarantees that there exists always a small probability to cre-
ate a new cluster. Once this first allocation of all the customers is
carried out, customers can be reallocated between tables. Posterior
probabilities of reallocating a customer from one table to another
(tables 1 to K) or to a new one (K þ 1) is computed. Computation
of these probabilities for our model is described in the following
section.

3.1. The model

We used the CRP method to solve the DPMM with a potentially
infinite number of components (clusters). We made use of a hier-
archical Dirichlet process [20] (the Dirichlet-multinomial distribu-
tion). The load profiles to cluster are represented as draws from a
Multinomial distribution whose parameters are generated by a
Dirichlet distribution. Formally, to cluster n load profiles
X ¼ fx1; . . . ; xng, where each profile xi is formed by d counters
xi ¼ ðci1; . . . ; cidÞ, the DPMM that models our problem can be hierar-
chically expressed as:

i ¼ ðci1; . . . ; cidÞ �MultðHzi
Þ i ¼ 1; . . . ;n ð3Þ

Hzi
¼ ðhzi1; . . . ; hzidÞ � Dirðb1; . . . ;bdÞ 1 6 zi 6 K ð4Þ

zi �MultðPÞ i ¼ 1; . . . ;n ð5Þ
P ¼ ðp1; . . . ;pKþ1Þ � DPðG0;a0Þ ð6Þ

where the distributions in Eq. (3) model the probability of generat-
ing the values of the load profile as a multinomial distribution
whose parameters correspond to a cluster with index zi (i.e. zi ¼ j
indicates that ith load profile is assigned to jth cluster). The Dirich-
let distribution that generates the parameters of the multinomial
distribution of each cluster (prior distribution in Bayesian statistics)
is given by Eq. (4), where K is the number of clusters (these K can
vary depending on the observed data). The distribution of Eq. (5)
models the cluster selection (mixture component) by each of the
data points. It corresponds to a draw from one element from a mul-
tinomial of parameters P. These ps are the components probabili-
ties (priors on mixture model) governed by the distribution in Eq.
(6). These draws from a DP were calculated using the CRP based
on Eqs. (2a) and (2b) where pKþ1 corresponds to the probability of
allocating the data point to a new cluster, i.e. creating a new cluster.

In a DPMM the number of clusters obtained grows logarithmi-
cally in relation to the number of input data points [21]. This also
depends on the distributions parameters.

3.2. Gibbs sampling algorithm in the DPMM

It is not feasible to compute exactly the posterior PrðP;H; ZjXÞ
where H ¼ fH1; . . . ;HKg and Z ¼ fz1; . . . ; zng. We used a Gibbs
sampling algorithm to approach iteratively the probability of real-
locating the object xi to a new cluster z0i [14] (lines 5 to 11 in
Fig. 1). The reallocating posterior distribution ðp1; . . . ;pKþ1Þ from
Eq. (6) was computed for each iteration and ith data point in the
following way:

pk ¼ Prðzi ¼ kjZ�i;XÞ ¼
1
B

nk

a0 þ n� 1
Prðxijzi ¼ kÞ; 1 6 k 6 K ð7Þ

pKþ1 ¼ Prðzi ¼ K þ 1jZ�i;XÞ ¼
1
B

a0

a0 þ n� 1
Prðxijzi ¼ K þ 1Þ ð8Þ

where k is the index of the cluster in which point xi is reallocated
and zi ¼ K þ 1 indicates the creation of a new cluster. B is a normal-
isation factor that guarantees that probabilities sum to one. Z�i are
all indices Z but not including zi. The marginal probabilities
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Prðxijzi ¼ kÞ is the likelihood of the data point xi, given that the clus-
ter to reallocate this point is the k. Computing this marginal is not
straightforward [14]. We computed it analytically, integrating the
multinomial parameter h (Eq. (4)) in the following way:

Prðxijzi ¼ kÞ ¼
Z

Hk

PrðxijHkÞPrðHkÞdHk ð9Þ

where PrðxijHkÞ corresponds to the probability mass function of xi in
the multinomial distribution with parameter Hk:

PrðxijHkÞ ¼
Ci!

ci1!; . . . ; cid!

Yd

j¼1

h
cij

kj ð10Þ

with Ci ¼
Pd

j¼1cij. PrðHkÞ is the probability density function (pdf) of
a Dirichlet distribution with parameter b updated with the previous
data points in this cluster:

PrðHkÞ ¼ DirðHkjðb1; . . . ; bdÞ þ ðnk1; . . . ; nkdÞÞ ð11Þ

¼
Cð
Pd

j¼1ðbj þ nkjÞÞQd
j¼1Cðbj þ nkjÞ

Yd

j¼1

h
bjþnkj�1
kj ð12Þ

where nkj is the summation of the jth counter of all the data points
in kth cluster but not xi (i.e. nkj ¼

P
ðxi0 jzi0¼kÞ^ðxi0–xiÞci0j). This update of

the parameters is possible because a Dirichlet distribution is the
conjugate prior for a multinomial distribution. Substituting Eq. (9)
with Eqs. (10) and (12), and after removing the constant term that
is equal for all clusters, we obtain:

Prðxijzi ¼ kÞ ¼
Cð
Pd

j¼1ðbj þ nkjÞÞQd
j¼1Cðbj þ nkjÞ

Z
Hk

Yd

j¼1

h
cijþbjþnkj�1
kj dHk ð13Þ

Note that integrating any probability distribution over all possi-
ble parameter values should be one, therefore for any Dirichlet
distribution:

Z
Hk

Cð
Pd

j¼1bjÞQd
j¼1CðbjÞ

Yd

j¼1

h
bj�1
kj dHk ¼ 1 ð14Þ

Cð
Pd

j¼1bjÞQd
j¼1CðbjÞ

Z
Hk

Yd

j¼1

h
bj�1
kj dHk ¼ 1 ð15Þ

Z
Hk

Yd

j¼1

h
bj�1
kj dHk ¼

Qd
j¼1CðbjÞ

Cð
Pd

j¼1bjÞ
ð16Þ

Applying the results of Eq. (16) in the integral of Eq. (13), we obtain:
Fig. 1. The Gibbs sampling algorithms used for c
Prðxijzi ¼ kÞ ¼
Cð
Pd

j¼1ðbj þ nkjÞÞQd
j¼1Cðbj þ nkjÞ

Qd
j¼1Cðcij þ bj þ nkjÞ

Cð
Pd

j¼1ðcij þ bj þ nkjÞÞ
ð17Þ

By taking the numerator of the first term of Eq. (17) and the denom-
inator of the second term of the same equation and applying the
property that xCðxÞ ¼ Cðxþ 1Þ, we obtain:

Cð
Pd

j¼1ðbj þ nkjÞÞ
Cð
Pd

j¼1ðcij þ bj þ nkjÞÞ
¼ 1QðPd

m¼1
cimÞ�1

l¼0

Pd
j¼1ðbj þ nkjÞ þ l

� � ð18Þ

By taking the denominator of the first term of Eq. (17) and the
numerator of the second term of the same equation and applying
the same property over the C function, we obtain:Qd

j¼1Cðcij þ bj þ nkjÞQd
j¼1Cðbj þ nkjÞ

¼
Yd

j¼1

Ycij�1

l¼0

ðbj þ nkj þ lÞ ð19Þ

Joining the results from Eqs. (18) and (19), we obtain an expression
that does not contain Hs parameter to compute the probability of
Eq. (9) and make use only of simple operations:

Prðxijzi ¼ kÞ ¼
Qd

j¼1

Qcij�1
l¼0 ðbj þ nkj þ lÞ

QðPd

m¼1
cimÞ�1

l¼0

Pd
j¼1ðbj þ nkjÞ þ l

� � ð20Þ

Note that in the case of a new cluster (Eq. (8)) the marginal proba-
bility is:

Prðxijzi ¼ K þ 1Þ ¼
Qd

j¼1

Qcij�1
l¼0 ðbj þ lÞ

QðPd

m¼1
cimÞ�1

l¼0

Pd
j¼1ðbjÞ þ l

� � ð21Þ

The stop criteria for the iterative Gibbs sampling algorithm (line 5
of Fig. 1) are stopping when a consecutive number of iterations
without changes during the reallocations has occurred (i.e. values
from Z are constant), or when a maximum number of iterations is
reached.

3.3. Parameter estimation

There are two unique input parameters of the model: (1) the
Dirichlet prior or concentration parameters (b ¼ ðb1; . . . ; bdÞ in Eq.
(4)) that control the distributions that govern the data points in
clusters, and (2) the precision parameter prior in the DPMM (a0

in Eq. (6)) that controls the number of clusters. This second
lustering load profiles and for estimating a0.
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parameter can be computed with its Maximum Likelihood Estima-
tor and practically estimated using a Gibbs sampling algorithm
[22]. This algorithm will also include the sampling algorithm used
for the CRP with the DPMM (see Fig. 1). The new value of a0 in each
iteration of this new sampling algorithm was computed by solving:

1
I

XI

i¼1

kði ¼
Xn

j¼1

a0

a0 þ jþ 1
ð22Þ

where I corresponds to the number of iterations of the sampling
algorithm used for the CRP (line 10 of Fig. 1) and kði is the number
of clusters in the ith iteration (line 9 of Fig. 1). The stop criteria in
this new sampling algorithm (line 3 of Fig. 1) is that either a0

remains almost constant, or reaches a maximum number of itera-
tions. To solve Eq. (22), the Newton–Raphson method was used.

In addition to the cyclical updates of the precision parameter a0,
we also update the concentration parameter of each cluster so they
utilise all members of the cluster. To perform this every 20 itera-
tions, parameter Hz for each cluster (see Eq. (4)) is redrawn, but
from a new Dirichlet distribution whose parameters are updated
taking into account the counters of the data points of the cluster
(see Eq. (11)).

The time complexity of the whole process depends on the num-
ber of iterations for both the Gibbs sampling algorithms and the
cost of reallocating all points in each iteration: OðT � I� � n � k� � vÞ
where T is the number of iterations of the sampling algorithm for
estimating a0 (loop starting in line 5 of Fig. 1). I� is the maximum
number of iterations in the sampling algorithm for computing the
posterior distribution (loop starting in line 5 of Fig. 1). k� is the
maximum number of clusters in all iterations, since the realloca-
tion probability is computed for each data point and cluster. This
number cannot exceed the number of data points n and usually
it is low (see Section 4). v is the time complexity of computing
the reallocation probability for one data point on a cluster that is
given by Eqs. (20) and (21): Oðc� � d2Þ where c� is the maximum
counter for all data points and dimension. The final time complex-
ity is OðT � I� � n2 � c� � d2Þ.

3.3.1. Estimating the concentration parameter
Estimating the concentration (prior parameter) of the Dirichlet-

multinomial distribution is an open research problem for which
there are two basic approaches. First, informative prior in which
the parameters are estimated taking into account the data compo-
sition i.e. which counters are more likely than others, and secondly
non-informative prior in which no a priori information of the data
counts is used.

A non-informative prior approach can simply be the direct
assignment of the same constant value to each bi;1 6 i 6 d if it is
not know which dimensions should received more weight. Other
solutions [23] propose to divide bi into bi ¼ q � ti, where
ti;0 < ti < 1;

Pd
i¼0ti ¼ 1 is the prior mean and q is a constant called

the strength of the prior information. Then, they give a value to ti

e.g. ti ¼ 1=d and set q to a constant such as q ¼ 1;q ¼ d=2 or
q ¼ 1=d.

In the case of informative prior estimation, [24] proposed a
maximum-likelihood approach, employing fixed-point and New-
ton methods. However, a common approach [12,25] is to divide
again bi ¼ q � ti computing the prior mean ti;1 6 i 6 d as the sam-
ple mean:

ti ¼
Pn

j¼1cjiPd
l¼1

Pn
j¼1cjl

ð23Þ

and estimating q in a similar way as non-informative prior or from
a draw from a new finite mixture distribution. In [12], they com-
bined an exponential and uniform density, estimating q with a
Metropolis sampling algorithm. The estimation can be performed
before starting the Gibbs sampling algorithm shown in Fig. 1.

Whether using the informative or non-informative prior, [23]
recommended that any prior selection should be reduced by the
data dimension. We test different informative and non-informative
approaches in the experimental section.
4. Experiments

The DPMM model was implemented in C++ with all experi-
ments performed over the processed data set. The clusters
obtained with the DPMM algorithm were compared with other
well-known algorithms using various validity evaluators. The
experiments were performed using an Intel Core2 Quad CPU
Q9650 at 3.00 GHz with 4 Gb of memory.

Each input data point is represented as an array of d counters
(xi ¼ ðci1; . . . ; cidÞ) that correspond to a draw from a multinomial
distribution. To obtain these counters, each of the averaged values
of the load profiles is normalised and transformed into its closest
integer value.

Firstly, we used non-informative priors, performing a scanning
process to check sensitivity to the concentration parameter
b ¼ ðb1; . . . ; b1440Þ (Eq. (4)). Using the Gibbs sampling algorithm,
the dependency of the number of clusters obtained for values of
b for the residential data set are shown in Fig. 2a. The number of
clusters increases logarithmically with b, reaching a constant num-
ber of output clusters for a wide range of values of this parameter.
Furthermore, the cluster size is reasonably stable with respect to
the load profiles that formed them. The number of clusters
obtained ranged between three and six for a large part of the b
parameters space (from 10�9 to 10�4). The most repeatable result
is four clusters (from b ¼ 8 � 10�8 to 7 � 10�6). Two different sets
of four clusters were obtained, differing only in the allocation of
two profiles. A similar behaviour was observed with the commer-
cial data set (Fig. 2b), but with outputs that contain five and six
clusters. To obtain a reduced number of clusters the values of the
parameter should be smaller than for the residential data. This is
due to the higher number of profiles in the set. This robustness
to the variance of the concentration parameter is advantageous
with respect to other clustering algorithms such as k-means that
have strong dependency on the initialisation conditions where
the user has to fix the number of clusters.

Using an informative prior based on the sampling mean
reduced by the dimension (i.e. q ¼ 1=d) to estimate the concentra-
tion parameter, the resulting output of the DPMM algorithm is also
four clusters (Fig. 3). Applying the same technique to estimate the
concentration parameter of the commercial data set, we obtained
36 clusters. However, applying a technique based on [12] and
reducing by the dimension as [23] suggested, the number of clus-
ters falls to 16. The parameter estimation techniques proposed in
[24] produce an non-practical number of clusters for both data sets
(gt 70 for the residential data set).
4.1. Analysis of clusters

Each of the four clusters obtained for the residential data set
exhibits distinct behaviour. Of the 197 complete profiles 94 were
in cluster one (Fig. 3a), 57 in cluster two (Fig. 3b), 38 in cluster
three (Fig. 3c) and 8 in cluster four (Fig. 3d). From each of these
the load profile representing the centroid of each cluster is plotted
as shown in Fig. 4. Analysing the shape of the profile in each gives
us some basic information about the general characteristics of
energy use. The majority of the load profiles of cluster one present
two peaks: the first one around 6am which is also a ramping up
from the lower overnight load level, and a more sustained second
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Fig. 2. Number of clusters depending on the concentration parameter b.
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one at around 6 pm. These two peaks can also been seen in the pro-
files of cluster two. However the morning peak starts earlier, and
the evening peak is usually shorter, than those of cluster one.
The peak energy consumption of both peaks in cluster two appear
to be similar. The profiles of cluster three present a single peak in
the evening. In cluster four, there are only eight load profiles and
they show a unique long peak from 6am to 6 pm. There is a sharp
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(a) Cluster 1, formed by 94 load profiles.
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(c) Cluster 3, formed by 38 load profiles.

Fig. 3. Clusters obtained using the DPMM clust
ramp from the overnight low consumption period for clusters 1
and 2, the centroid with the latest peak corresponds to cluster
three with its single peak. The centroid of cluster four with its
unique long peak has a different shape and is worthy of further
examination.

Analysing the clusters using the metadata in Table 1 we
observe:

1. There is a clear division of the load profiles according to nation-
ality (Fig. 5a). In cluster one there are a majority of profiles of
English houses. Approximately 70% of the profiles in cluster
two are Bulgarian, while cluster four is 100%. Cluster three is
the only one where there is no clear dominant group.

2. For the number of bedrooms of the property (Fig. 5b), cluster 1
has a majority of which are three bedroom properties and clus-
ter 4 are all single bedroom properties. The other two clusters
give no clear differentiation with this feature.

3. For the type of dwelling (Fig. 5c) cluster one has the majority
made up of terrace or semi properties, whereas in cluster two
a clear majority are flats. Cluster four is also all flats (or Other).

For the commercial data set, the centroids (for six clusters)
show heterogeneous behaviour (Fig. 6); the composition histogram
is shown in Fig. 7. The centroid of cluster one (the largest cluster)
shows a double peak—the first at midday and the second around
7 pm. This cluster is mostly pubs and restaurants and shows the
lunch and dinner time business peaks. In contrast, although cluster
four contains a similar number of profiles and composition the
lunchtime peak is clearly smaller. The evening peak is also shifted
a little later, which is most likely due to the slightly larger number
of clubs in this cluster. This demonstrates that quite subtle differ-
ences can be detected. Cluster two, whose centroid has a single
large peak at midday, is mainly composed of restaurants and cafes
which we interpret that are only open during normal office hours.
The centroid of cluster three shows double peak around 7 am and
7 pm. As hotels and guest houses are the main categories of this
cluster, it indicates the business activities at breakfast and dinner
times. The small number of profiles of cluster five are mainly pubs
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(b) Cluster 2, formed by 57 load profiles.
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(d) Cluster 4, formed by 8 load profiles.

ering algorithm for the residential data set.
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Fig. 4. Centroids of the clusters of the residential data set.
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Fig. 5. Clusters analysed using features of the metadata (residential data set).
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Fig. 6. Centroids of the clusters of the commercial data set.
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and bars that show a peak at around 10 pm and significant activity
into the early hours of the following day. This suggests that they
have so-called ‘late’ licences. Cluster six is very small and shows
modest peaks at 3am and midday.

For the residential data, we examined the statistical differences
between the clustered profiles using ANOVA tests (Section 4.2).
This analysis suggests that we can make some further observa-
tions, although the data set is not large enough to be conclusive.
The cluster four profiles are all one-bedroom dwellings with one
occupant (Fig. 5b). Most of the profiles that correspond to houses
with four or more occupants are in cluster one. Additionally, clus-
ter two and three are formed by a majority of profiles from dwell-
ings with one or two occupants. Taking into account the type of
dwelling (Fig. 5c), the clearest division is that cluster one is mainly
formed by load profiles whose house is a terrace or a semi. Profiles
from cluster one (majority English) have the morning peak later
than profiles from cluster two where the majority are Bulgarian.
Whether this is statistically representative of Bulgaria is not clear,
but in this data set the feature is systematic. Cluster four profiles
deviate significantly from normal behaviour and their peak load
is also high.
4.2. Clustering evaluation

The resulting clusters need to be compared with those obtained
using other well-known techniques. To assure the validity of the
comparison the output data should be in the same format (granu-
larity and normalisation) and only results with the same number of
clusters can be compared.

In the DPMM algorithm, the number of clusters is not one of the
input parameters as in most other clustering algorithms. Therefore
we cannot compare the results for all the possible numbers of clus-
ters, only the ones obtained after scanning the concentration
parameter (Fig. 2). The algorithms selected for comparison were:
k-means, single link, complete link, pair group method average
(PGMA), pair group method centroid (PGMC), and the Ward or
minimum variance algorithm [26]. Most evaluators are based on
computing the similarity of the data elements within each cluster,
and the difference among elements of the other clusters. We used
three evaluators [3,4,7]:

� the mean index adequacy (MIA) measures the distance of all the
load profiles of the cluster with its cluster centre,
� the variance ratio criterion (VRC) (so-called Calinski-Harabasz

Index) that is based on a ratio between intra-cluster and
inter-cluster factors, and
� the scatter index (SI) makes use of the distance of data points

and centre with the mean of all data points.

For the MIA and SI evaluators, lower values suggest better clus-
tering results; it is the opposite for the VRC. The scores are shown
in Fig. 8. Only results below 20 clusters are shown as above this
number the population of each cluster becomes too small to make
meaningful comparisons. For the MIA evaluator (Fig. 8a and b) the
DPMM performed slightly worse than other techniques as the
number of clusters increased. For the VRC evaluator (Fig. 8c and
d) the DPMM algorithm performed moderately well, especially
over the commercial data set. Using the SI evaluator (Fig. 8e and
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f) the DPMM algorithm performed well for three or more clusters
for the residential data set, and performances converged for all
algorithms at higher cluster numbers for both data sets.

As an additional test of the statistical difference between the
load profiles of the clusters, we conducted ANOVA tests (T-test
and F-test with a significance level a ¼ 0:05). For the experiments
using the residential data set, for each minute we tested the
hypothesis that all the clusters have the same mean (i.e.
m1i ¼ m2i ¼ � � � ¼ mKi where mji is the mean of the jth cluster at
the ith minute, and K is the number of clusters). Fig. 4 shows the
means of the four clusters. The failure of the test would imply that
there is at least one cluster mean that is statistically different for
this particular minute. For the residential data set the results indi-
cate that there is at least one different cluster for almost all the
minutes (row 1 of Table 2). It implies that the profiles of the
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Table 2
Percentage of minute and 30-min intervals that are considered statistically different with a significance level a ¼ 0:05 for the residential and commercial data set, respectively.

Number of clusters 2 3 4 5 6

Percentage of minutes with at least one cluster with a different mean (residential data set) 72.9 89.7 97.1 100.0 99.9
Percentage of minutes with all the cluster means different from each other (residential data set) 72.9 57.8 45.8 52.8 67.5

Percentage of 30-min intervals with at least one cluster with a different mean (commercial data set) – – 100.0 100.0 100.0
Percentage of 30-min intervals with all the cluster means different from each other (commercial data set) – – 93.7 93.7 83.3
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clusters present some degree of separation. However, it does not
mean that all the cluster means are different each other, excepting
for K = 2 where 72.9% of means during the 1440 min are statistical
different between the two clusters. For this reason, a second more
strict test was performed with the following condition

V
j;lmji – mli

for 1 6 j; l 6 K ^ j – l for each minute 1 6 i 6 1440. It implies that
all cluster means are different each other. Results show (second
row of Table 2) that the number of minutes that fulfil the condition
changes with the number of clusters, e.g. six clusters seem to
divide the load profiles in more different groups than four or five.
This is due to the creation of subgroups with more specific behav-
iour. Nevertheless, the most important fact is that clusters
obtained with the DPMM algorithm present a significant number
of minutes that are statistically different among all the clusters,
indicating that the division is justified.

Similarly, using the commercial data the less stringent test (third
column of Table 2), all numbers of clusters had 100% of the minutes
with at least one cluster with a different mean. When comparing the
more strict condition, where each cluster mean is different from
each other (fourth column of Table 2), the scores are higher than
the ones obtained for the residential data set. This may due to: (1)
the commercial profiles have greater variety than those of the resi-
dential set, (2) the lower temporal resolution of the commercial pro-
files (consumption is aggregated over a longer time).

In Fig. 9, we show the execution times of the different algo-
rithms for experiments using the residential data set as reference.
As expected from the complexity of the both Gibbs sampling algo-
rithms used for the DPMM (Section 3.3), its running times are
longer than the other clustering methods. The number of iterations
(I�) to converge the algorithm is the most important element for
the DPMM and is the reason for the longer execution times. We
need to be aware that these other methods start with the impor-
tant advantage of knowing the number of clusters, meanwhile
the DPMM algorithm has to converge to the solution that best fits
the data given the model with a unique input parameter. If we
compare the running time of just one iteration of the DPMM algo-
rithm we appreciate that the time is not far from that of the PGMC
and WARD algorithms for small number of clusters. The execution
time and the number of iterations to converge the algorithm
increase with the number of clusters. This is governed by the stop
criterion explained in Section 3.2 where the profiles should remain
in the same cluster for some consecutive iterations.
Fig. 9. Times of execution of the algorithms for the residential data set.
5. Conclusions

We have shown that a clustering algorithm based on a Bayesian
non-parametric model, the DPMM, can distinguish between elec-
trical power use profiles. The flexibility and robustness for manag-
ing uncertainty in real data of Bayesian statistics enabled us to
model the unknown parameters that governed the distribution
used for explaining the differences between load profile types. This
method has the advantage that the number of clusters does not
need to be determined before computation is initiated as there
are techniques to estimate all of the model parameters. These esti-
mation techniques are important for the resulting clusters, there-
fore their evolution with varying amounts of data should be
taken into account to obtain a robust method. Although the com-
putational performance of the DPMM was found to be slower than
other techniques, the difference was not significant for this appli-
cation. Furthermore, it may be possible to reduce computational
complexity by parallelising some of the Gibbs sampling algorithm
steps or allowing more relaxed convergence conditions.

Our model was tested using two different real data sets. One
comprised residential energy consumption data with one minute
resolution and the second of 30-min commercial profiles. The
DPMM generated four and six clusters for the residential and com-
mercial data sets respectively. In both cases this was a small
enough number to be credible, yet sufficient to present meaningful
and distinct load profile types. In particular, using the metadata of
the dwellings our analysis showed that we could assign statisti-
cally significant features such as the nationality, household size,
and type of dwelling to the cluster memberships.

From the residential data set it is apparent that the measure-
ment devices used were not of sufficient quality as they produced
unexplained high levels of device failure and data corruption, caus-
ing us to discard 10% of the available raw input data. As larger and
better quality data become available through widespread deploy-
ment of smart meters, our technique can be tested more exten-
sively with potential application to network operations.
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