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Abstract 

In the field of power optimization of  photovoltaic panels (PV), there exist many maximum power point 
tracking (MPPT) control algorithms, such as: the perturb and observe (P&O) one, the algorithms based on 
fuzzy logic and the ones using a neural network approaches. Among these MPPT control algorithms, 
P&O is one of the most widely used due to its simplicity of implementation. However, the major 
drawback of this kind of algorithm is the lack of accuracy due to oscillations around the PPM. 
Conversely, MPPT control using neural networks have shown to be a very efficient solution in term of 
accuracy. However, this approach remains complex.  

In this paper we propose an original optimization of the P&O MPPT control with a neural network 
algorithm leading to a significant reduction of the computational cost required to train it, ensuring a good 
compromise between accuracy and complexity. The algorithm has been applied to the models of two 
different types of solar panels, which have been experimentally validated.  
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1. Introduction 

In recent years, there has been an increasing interest in the use of renewable energies. In particular, the 
solar one is becoming increasingly adopted due to the decrease of the fossil energies, and to their 
environmental impact. In effect renewable energies are known as "clean" and favorable to the 
environment. One of the existing solutions to improve the solar energy use consists in exploiting the 
photovoltaic panels at an optimal rate. Hence, an adapted DC/DC converter and appropriate control laws 
of MPPT should be added. 

There is a large volume of published studies describing the MPPT control algorithms. As illustrating 
examples, the perturb and observe (P&O) one described by [1, 2, 3], and the MPPT control one based on 
an incremental conductance method [2, 3]. These control laws are easy to implement and provide a 
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significant yield when the evolution of PPM is slow. However, they are the least accurate and 
furthermore, they lead to a lot of oscillations and a low yield when evolution is rapid. 

There is also another type of MPPT control based on a simple current control or voltage control [2, 3]. 
There are simple method, easy to implement and requiring only one sensor. But they are less accurate and 
it is necessary to disconnect the load for each measurement.  

Other control increasingly used such as the MPPT control based on fuzzy logic [6, 7] and the MPPT 
control based on a neural network approach [3, 8]. These methods are more accurate and they can work 
with imprecise inputs, can handle nonlinearity and are very efficient in changing climatic conditions. 
However, they are more complex and have relatively large energy consumption. 

It is well known in neural networks that numerous neurons favor a better accuracy but lead to more 
complexity too [9, 10]. Therefore, different works are issued to find the best trade-off between the model 
complexity and approximation accuracy by finding the “optimal” number of neurons. “Trial and error” is 
one of these techniques [11, 12]. Pruning based techniques have been successfully used for structural 
optimization [11, 13]. In this approach, besides optimizing the number of neurons, the connections 
between the neurons are also optimized. More recently, other evolutionary techniques have been 
employed in order to derive “optimal” structures: For example, genetic algorithms (GAs) [14], 
dissimilation particle swarm optimization (PSO) [15] and genetic programming (GP) [16]. 

As the pruning approach, the previously outlined techniques based on the evolution of the neural 
network, have been successfully applied for structural optimization, but their main disadvantage is the 
excessive requirement of time to find the most convenient number of neurons, since the neural network is 
trained each time the model is modified or restructured [17]. Moreover, to solve the problem of finding 
the best trade-off between model complexity and model accuracy, rather subjective criterion is always 
used to decide whether the evolution of the neural network is appropriate and sufficient.  

Other techniques trying to solve the same problem are based on the design of the neural network. In 
[18], a novel time-delay recurrent neural network (TDRNN) is proposed to generate a simple structure. In 
[10] a neural network using a competitive scheme is proposed in order to provide an effective method 
with less network complexity. In [19] a pipeline bilinear recurrent neural network (PBLRNN) is proposed 
in order to reduce both the model and computational complexity of a bilinear recurrent neural network 
(BLRNN). In [20] a model complexity reduction approach based on two design assumptions is proposed. 
The reduction approach transforms a complex neural network into a simplest one preserving the same 
accuracy. 

In the same vein, to avoid the disadvantages of the “architecture evolution techniques” and with the 
conviction that the improvement of the quality of a neural network is linked to a suitable design, we 
decided to tackle the problem by applying the model reduction approach firstly presented in [20]. The 
purpose of this study is to improve the accuracy of the P&O MPPT control with an optimized neural 
network algorithm and to lead to a good compromise between complexity and accuracy.    

The paper is organized follows. The first section presents a model of photovoltaic module. This model is 
validated by experiment, on two solar panels. The second section describes the P&O MPPT control and its 
optimization algorithm. In this section we propose a new optimization algorithm based on a neural 
network in addition to a model reduction procedure. The last section discusses the performance of the 
proposed algorithm and presents a comparison with the P&O MPPT algorithm.  
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Nomenclature 

VΔ  Value of voltage variation  

a  The diode constant  

G  The irradiation on the device surface 

Gn
 The nominal irradiation 

I 0  The diode saturation current 

I pv  Photovoltaic (PV) current 

I pv0  Photo-current  

I pvn  Light-generated current at the nominal condition (usually 25 C and 1000 W/m ) 

K  Boltzmann constant 

K i
 Current coefficient 

Ns  Number of cells connected in series 

Ppv
 Photovoltaic (PV) power 

q   The electron charge 

Rs  The equivalent series resistance of the array 

Rp  The equivalent parallel resistance of the array 

T  The temperature of the PV cell 

T n
       The nominal temperature  

V pv
 Photovoltaic (PV) voltage  

2. PV modeling 

The two most encountered models of photovoltaic modules are the single diode [4] model and the 
double diode model [5]. In this study, a single diode model is used because it ensures a good compromise 
between simplicity and accuracy.  

2.1. Single diode model of a PV 

The equivalent circuit of a solar cell (see Fig. 1) is composed of a current source representing the photo 
current, a simple diode representing the dark current and series and parallel resistors representing losses 
occurring in the cell. 
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Fig. 1.  Single-diode equivalent circuit of a solar cell 

 
Equation (1) is derived from this equivalent circuit. The relation between the current and the voltage is 

given by the following equation: 
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The photocurrent depends on the solar radiation and the temperature as shown in equation (2): 
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2.2. Experimental validation of the PV model  

The photovoltaic module model is simulated in Matlab Simulink. This simulation model presents two 
inputs solar irradiation and temperature to generate the voltage and current of the module.  
 

Then, the model is validated by experimental measurements made on a solar panel Sharp series NU48.  
The experimental characteristic I pv  (V pv

) versus Ppv
 (V pv

) and the simulated one in Matlab are 

shown in Fig. 2. The measurements of current and voltage are taken with a temperature 21°C and 
irradiance of 301W/m². These curves are almost identical with minimal errors. In addition, we calculated 
the average error MBE [2] which is equal to 0.23 for the photovoltaic panel. 
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Fig. 2. Ipv (Vpv) versus Ppv (Vpv) experimental curves of simulation and experimented model 
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Where xi (resp yi) are simulated photovoltaic current (resp experimental photovoltaic current) and i is 
the measurement point. 

3. Optimization control algorithm using neural network 

3.1. Basic P&O MPPT  

The MPPT control is based on an adaptive control algorithm trying to maintain the photovoltaic module 
in its maximum power point (MPP) [1].  

To reach this objective, the first step consists in taking measurements of the voltage (V pv
 ) and the 

current ( I pv  ) of the photovoltaic module with fixed temperature and irradiance. These measurements 

are taken at a time tk  and compared with the receding measured quantities attk 1− . Then the power 

(Ppv
) can be calculated at tk and compared to the one calculated attk 1− The result of this comparison 

gives the direction of the control and the duty cycle (α) applied to the DC/DC converter as shown in Fig. 
3. 

The principle of P&O algorithm [1, 2, 3], presented by the flow chart Fig. 4 consists in creating a 
perturbation, varying the voltage and observing the resulting variation of the power. Then, from the 
increment and decrement of the voltage and according to the increase or decrease of the power, we can 
find the operation point corresponding to the maximum power. 

 
 

Fig. 3.The principle of MPPT control                            Fig. 4.The principle of P&O MPPT control 
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The P&O MPPT control is one of the most used algorithm due to its simplicity of implementation and 
its low-cost. However, it is not quite efficient in terms of accuracy since it does not reach the maximum 
power point as it oscillates around this point. This problem is due to the strategy chosen for the voltage 
determination, namely a constant gain approach VΔ as shown in Fig. 3.  There are various methods and 
algorithms to solve this problem as the variable gain approaches. In the next section, two of these 
algorithms are presented.   

3.2. Optimization of P&O MPPT: search then convergence algorithm 

There are different algorithms in the literature used to optimize the P&O MPPT control and to improve 
its accuracy. Let us introduce the “Search then convergence”. For more details, see [21]. 
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From equation (5) we can deduce that when K increases the value of VΔ decreases. In effect we retrieve 
here the interest of such a “decreasing gain” type algorithm. At the beginning, the value VΔ is supposed 

far of its optimal value and it should be adapted as fast as possible ( ) ( )1V k V kΔ + = Δ . As K →∞ , 

the parameter is supposed to be near its optimal value. Then, the parameter should be modified slowly 
( 0VΔ → ) in order to improve the convergence.  

In the same vein, we propose the following linear algorithm which is more simple, but with a restrictive 
accuracy as we will see in Section 4. 

( )[ ]XVVV kkk .1 ΔΔΔ −=
+  (6) 

10.0=X

3.3. Optimization of P&O MPPT with neural network algorithm  

Now let us introduce the proposed neural network algorithm used in our improved approach. The neural 
network used to estimate and to vary the variable VΔ of the P & O MPPT control. This variation allows 
reducing the oscillation around the maximum power. As shown in the flowchart of Fig. 5 the algorithm 
takes into account the variation of the power, the current and the voltage of the photovoltaic module. The 
variable VΔ that gives the maximum power is calculated due to the learning algorithm and the changing 
weight of neurons. 

The mathematical representation of this neural network is: 
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Acoording to the Assumption proposed in [20], i.e.: 

Assumption 1: At least one layer should have all its activation functions chosen as linear.  

We choose 1ρ (T)=T (linear) and 2ρ (T)=sigmoid(T) in Fig. 6.  

Moreover, we suppose: 

Assumption 2: The designer should select the initial condition of the synaptic weights equals group by 

group, i. e., 1(0) (0)jW W= ,  1(0) (0)jV V=  with j=1,…,n, where nn is the number of neuron. 

Even if this is not a classical way to choose the initial conditions of the synaptic weights, full 
experiments, detailed in [20], demonstrated their validity, without a significant loss of generality in 
practical applications. 

According to the following result presented in details in [20]: 

 

Fig. 5. 
 

 

 

Fig.  6. Diagram of neural network hierarchy 
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Theorem: Consider the neural network whose architecture 2nn-1 is expressed in equation (8) and 
depicted in Fig. 6, if Assumptions 1 and 2 are fulfilled, then such neural network can be reduced into a 1-
1 equivalent architecture.  

Let us present the reduction procedure: The first step of the procedure is to train the neural network under 
the two preceding design assumptions. In this paper, the neural network is trained with the classical 
steepest descent algorithm.  Once the neural network is trained, we obtain: 
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Notice that, in equation (8), the final values of the synaptic weights are 1(0) (0)jW W=  and  

1(0) (0)jV V=  with j=1,…,n. Then, we can transform (8) in (9). 

( )( )1 1 1 hV sigmoid nn XV W VθΔ = × + +  (9) 

The reader shall remark that in equation (9) we do not need to train the nn Wi and Vi sysntaptics weights, 
since the final values are equals group by group. In this sense, we reduce the computational cost required 
to train the complex neural network, as we keep the same accuracy. 

4. Results : Comparison between the different control algorithms 

In these experiments, the temperature T and the irradiance G are held constant. We choose the values of 
standard conditions: T n

 = 25 ° C and Gn
 = 1000W/m2. The purpose of these simulations tests is to 

show the evolution of power and the pursuit of maximum operating power of the photovoltaic module in 
order to better compare the performance, of 4 different P&O MPPT algorithms. 
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Fig. 7. P&O MPPT control (a) Evolution ofPpv

.(b) Evolution of VΔ  
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Fig. 8. Four MPPT control algorithms (a) Evolution ofPpv
. (b) Evolution of VΔ  

 
Fig. 7a shows the evolution of the powerPpv

 using a simple P&O algorithm. Classically, we can see 

the presence of oscillations around the maximum power and this is due to the change in voltage by the use 
of a fixed gain as shown in Fig 7b. 

Fig. 8a shows the evolution of the power Ppv
 for the following commands: The classic P&O MPPT 

control, the P&O control with an optimized algorithm “search then convergence”, the P&O control with a 
linear algorithm and the P&O MPPT control with an algorithm of optimization based on neural network. 

The results show that the three optimization algorithms of the P&O MPPT control give faster responses 
and less oscillation around the maximum power than the basic P&O control. The P&O control optimized 
by a neural network is not the fastest one (Fig. 8a). However, it has the highest accuracy since it leads to 
the best minimization of the oscillations, as shown in Fig.8b. Another advantage of the neural algorithm 
is that we do not need to choose a good initial value for VΔ leading to a compromise between 
convergence speed and accuracy unlike the other control algorithms. 

The P&O control optimized by a neural network is tested and validated also by varying the irradiance.  
Fig. 9 proves that this optimized control allows finding the new maximum power point for each variation 
of the irradiance ensuring greater accuracy compared to the P&O control.   
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with the P&O control and the P&O optimized by a neural network control 
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5. Conclusion  

In this paper we proposed a new optimization algorithm for the classic P&O MPPT control of the PV, 
based on a neural network approach in order to improve its accuracy. The results achieved by this 
algorithm are more efficient than those obtained with the classical P&O algorithm and more accurate than 
the two other classical algorithms of optimization (Linear and Search then convergence). Even if, it is not 
the fastest MPPT control approach, this is not really a prohibitive drawback due to the slow dynamics of 
the photovoltaic system. The proposed algorithm has demonstrated its robustness for variation of the 
irradiance even with a sudden drop of the irradiance. Taking into account the reduction of the complexity, 
the proposed neural network leads to a good compromise between accuracy and complexity. Even more, 
in a future work, the same neural network architecture is used in a MPPT control scheme (without using 
the P&O approach), in order to further improve the accuracy and to reduce the complexity of the MPPT 
control of the PV. 
 
References 
 
[1] Kassmi K, Hamdaoui M, Olivié F, Conception et modélisation d’un système photovoltaïque adapté par une commande MPPT 
analogique. Revue des Energies Renouvelables 2007 ; 10 :451 – 462 ;  
[2] Boitier V, Maussion P, Cabal C, Recherche du maximum de puissance sur les générateurs photovoltaïques. Revue 3E.I 2008 ; 
54 :90-96 ;  
[3] Cabal C, Optimisation énergétique de l’étage d’adaptation électronique dédié à la conversion photovoltaïque, thèse de 
l’Université Toulouse III – Paul Sabatier 2008 
[4] Gradella M, Villalva, Jonas R G, and Ernesto R F, Comprehensive Approach to Modeling and Simulation of Photovoltaic 
Arrays, in :IEEE Intern. Conf.  On transaction on power electronics; 2009, 24 
[5] : Notton G, Caluianu I,  Colda I,  Caluianu S, Influence d’un ombrage partiel sur la production électrique d’un module 
photovoltaïque en silicium monocristallin, Revue des Energies Renouvelables 2010 ; 13 :49 – 62 ;  
[6]: Aït Cheikh MS, Larbes C, Tchoketch GF Kebir and Zerguerras A, Maximum power point tracking using a fuzzy logic control 
scheme,  Revue des Energies renouvelables 2007 ; 10 :387 – 395; 
[7]: Hatti M, Contrôleur flou pour la poursuite du point de puissance maximum d’un système photovoltaïque In : JCG’08 
conf ;  2008, p. 16 -17 
[8] Mehran H and Alireza Y, New MPPT Controller Design for PV Arrays Using Neural Networks. In ISNN 2009 intern. conf on 
Neural Networks: Advances in Neural Networks ; 2009, p.1050 - 1058  
[9] Khalaj G, Yoozbashizadeh H, Khodabandeh A, Nazari A. Artificial neural network to predict the effect of heat treatments on 
Vickers microhardness of low-carbon Nb microalloyed steels. Neural Computing and Applications 2013; 22: 879-888. 
[10] R. Chen. Reducing network and computation complexities in neural based real-time scheduling scheme. Applied Mathematics 
and Computation 2011; 217, 13:6379 - 6389. 
[11] Bebis G, Georgiopoulos M. Feed-forward neural networks: why network size is so important. IEEE Potentials 1994; 13: 27-31. 
[12] Zhang H, Wu W, Yao M. Boundedness and convergence of batch back-propagation algorithm with penalty for feedforward 
neural networks. Neurocomputing 2012; 89: 141-146. 
[13] Noorgard M, Ravn O, Poulsen N K, Hansen L K. Neural Networks for Modelling and Control of Dynamic Systems. 1st ed. 
Springer-Verlag London Berlin Heidelberg; 2000. 
[14] Loghmanian S, Jamaluddin H, Ahmad R, Yusof R, Khalid M. Structure optimization of neural network for dynamic system 
modeling using multi-objective genetic algorithm. Neural Computing and Applications 2011; 1-15. 
[15] Ge H, Qian K, Liang Y, Du W, Wang L. Identification and control of nonlinear systems by a dissimilation particle swarm 
optimization-based Elman neural network. Nonlinear Analysis: Real World Applications 2008; 9, 4: 1345-1360. 
[16] Coelho L, Wicthoff M. Nonlinear identification using a B-spline neural network and chaotic immune approaches. Mechanical 
Systems and signal Processing 2009; 23, 8: 2418-2434. 
[17] Subudhi B, Jenab D. A differential evolution based neural network approach to nonlinear system identification, Applied Soft 
Computing 2011; 11, 1: 861 - 871. 
[18] Ge H, Du W, Qian F, Liang Y. Identification and control of nonlinear systems by a time-delay recurrent neural network. 
Neurocomputing 2009; 72, 13-15: 2857-2864. 
[19] Haiquan Zhao, Xiangping Zeng, Zhengyou He. Low-Complexity Nonlinear Adaptive Filter Based on a Pipelined Bilinear 
Recurrent Neural Network. IEEE Transactions on Neural Networks 2011; 22, 9: 1494-1507. 
[20] Romero-Ugalde H M, Carmona J-C, Alvarado V M, Reyes-Reyes J. Neural network design and model reduction approach for 
black box nonlinear system identification with reduced number of parameters. Neurocomputing 2013; 101:170-180. 
[21] A. Cichocki, R. Unbehauen. Neural Networks for Optimization and Signal Processing. 1st ed. John Wiley and Sons Ltd; 1993. 
 
 
  


