On the dual rigidity matrix

A.Y. Alfakih

Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Received 10 July 2007; accepted 28 August 2007
Available online 29 October 2007
Submitted by R.A. Brualdi

Abstract

A novel characterization of bar-and-joint framework rigidity was introduced in [A.Y. Alfakih, Graph rigidity via Euclidean distance matrices, Linear Algebra Appl. 310 (2000) 149–165; A.Y. Alfakih, On rigidity and realizability of weighted graphs, Linear Algebra Appl. 325 (2001) 57–70]. This characterization uses the notion of normal cones of convex sets to define a matrix \bar{R} whose rank determines whether or not a given generic framework is rigid. Furthermore, this characterization was derived under the assumption that the framework of interest $G(p)$ has an equivalent framework $G(q)$ in \mathbb{R}^{n-1}, where n is the number of vertices of $G(p)$. In this paper we show that the matrix \bar{R} corresponding to a framework $G(p)$ contains the same information as the well-known rigidity matrix R. Whereas the entries of R are a function of the positions of the vertices of $G(p)$, the entries of \bar{R} are a function of the Gale matrix corresponding to $G(p)$. Furthermore, while the number of rows of R is equal to the number of edges of $G(p)$, the number of columns of \bar{R} is equal to the number of missing edges of $G(p)$. We also show that the assumption of the existence of an equivalent framework $G(q)$ in \mathbb{R}^{n-1} can be dropped and we give the precise relation between the left-nullspaces, and consequently the nullspaces, of R and \bar{R}.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 52C25; 05C50; 15A57

Keywords: Bar-and-joint frameworks; Rigidity matrix; Gale transform

Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS. E-mail address: alfakih@uwindsor.ca

0024-3795/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.08.040
1. Introduction

A configuration p in \mathbb{R}^r is a finite collection of n points p^1, \ldots, p^n which span \mathbb{R}^r. Let $G = (V, E)$ be a simple graph on the vertices $1, 2, \ldots, n$. A bar-and-joint framework (or simply a framework), denoted by $G(p)$, in \mathbb{R}^r is graph G together with a configuration p in \mathbb{R}^r, where each vertex i of G is located at p^i. With a slight abuse of notation, sometimes we will refer to the vertices and the edges of graph G as the vertices and the edges of the framework $G(p)$. Also, to avoid trivialisations, we assume that G is not the complete graph and p^1, \ldots, p^n are not affinely independent.

Two frameworks $G(p)$ in \mathbb{R}^r and $G(q)$ in \mathbb{R}^s are said to be equivalent if $\|q^i - q^j\| = \|p^i - p^j\|$ for all $(i, j) \in E$, where $\|\cdot\|$ denotes the Euclidean norm. The term bar is used to describe such frameworks because in any two equivalent frameworks $G(p)$ and $G(q)$, every two adjacent vertices i and j must stay the same distance apart. Thus edges of G can be thought of as stiff rods. See Fig. 1 for an example of three frameworks in the plane.

Two frameworks $G(p)$ and $G(q)$ in \mathbb{R}^r are said to be congruent if $\|q^i - q^j\| = \|p^i - p^j\|$ for all $i, j = 1, \ldots, n$. That is, $G(p)$ and $G(q)$ are congruent if configuration q can be obtained from configuration p by applying a rigid motion such as a translation or a rotation in \mathbb{R}^r. A framework $G(p)$ in \mathbb{R}^r is said to be rigid if there exists an $\epsilon > 0$ such that if framework $G(q)$ in \mathbb{R}^r is equivalent to $G(p)$ and $\|q^i - p^i\| \leq \epsilon$ for all $i = 1, \ldots, n$, then $G(q)$ is congruent to $G(p)$. If a framework is not rigid we say it is flexible. For other equivalent definitions of rigidity, and consequently of flexibility, see [13,14]. In this paper we do not distinguish between congruent frameworks since our formulation is rigid-motion independent.

Consider the process of continuously twisting a framework $G(p)$ into another equivalent framework $G(q)$. Configuration q can then be thought of as a function of time $q(t)$ where $q(0) = p$. The quantity $(q^i(t) - q^j(t))^T(q^i(t) - q^j(t))$ for each edge (i, j) must remain constant under such a process. Differentiating with respect to time t and setting $t = 0$ we get

$$
(p^i - p^j)^T(p^i - p^j) = 0 \quad \text{for all } (i, j) \in E. \tag{1}
$$

Any $p' = (p'^1, \ldots, p'^n)$ that satisfies (1) is called an infinitesimal flex of $G(p)$. We say that an infinitesimal flex is trivial if it results from a rigid motion of $G(p)$. A framework $G(p)$ is said to be infinitesimally rigid if it has only trivial infinitesimal flexes. Otherwise, $G(p)$ is said to be infinitesimally flexible [10,9,11,14,16].

As the following theorem shows, the notion of infinitesimal rigidity of a framework is stronger than that of rigidity.

Theorem 1.1 [13]. If a framework $G(p)$ is infinitesimally rigid, then it is rigid.
Fig. 2. A framework in \mathbb{R}^2 which is both rigid and infinitesimally flexible. A non-trivial infinitesimal flex is $p'_1 = p'_2 = p'_3 = p'_4 = (0, 0)^T$, $p'_5 = (0, -1)^T$.

The converse of the previous theorem is false. Fig. 2 shows a framework which is both rigid and infinitesimally flexible.

A framework $G(p)$ in \mathbb{R}^r is said to be generic if all the coordinates of p_1, \ldots, p_n are algebraically independent over the integers. That is, $G(p)$ is generic if there does not exist a polynomial f with integer coefficients such $f(p_1, \ldots, p_r, \ldots, p_n) = 0$. It is well known [13,8] that framework rigidity is a generic property. i.e., if a generic framework $G(q)$ in \mathbb{R}^r is rigid, then all generic frameworks $G(q)$ in \mathbb{R}^r are also rigid. Furthermore, Asimow and Roth [7] showed that the notions of rigidity and infinitesimal rigidity coincide for generic frameworks.

Given a framework $G(p)$ in \mathbb{R}^r with n vertices and m edges, let R be the $m \times nr$ matrix whose rows and columns are indexed, respectively, by the edges and the vertices of G such that the (i, j)th row of R is given by

$$[0 \cdots 0 \overline{(p'_i - p'_j)^T} 0 \cdots 0 \overline{(p'_i - p'_j)^T} 0 \cdots 0].$$

(2)

R is called the rigidity matrix of $G(p)$ and obviously, the space of infinitesimal flexes of a framework is the nullspace of its rigidity matrix R. i.e., an infinitesimal flex of $G(p)$ is just a linear dependency among the columns of R.

Theorem 1.2 [7]. Let R be the rigidity matrix of a generic framework $G(p)$ of n vertices in \mathbb{R}^r. Then $G(p)$ is rigid if and only if

$$\text{rank } R = nr - \frac{r(r + 1)}{2}.$$

(3)

A novel characterization of generic framework rigidity was introduced in [1,2]. This characterization uses the notion of normal cones of convex sets to define a matrix \overline{R} whose rank determines whether or not a given generic framework is rigid. Furthermore, this characterization was derived under the assumption that the framework of interest $G(p)$ has an equivalent framework $G(q)$ in \mathbb{R}^{n-1}.

Let $G(p)$ be a framework in \mathbb{R}^r with n vertices and m edges. Then matrix \overline{R} is $\bar{r}(\bar{r} + 1)/2 \times m$ where $\bar{r} = n - 1 - r$ and \bar{m} is the number of missing edges of $G(p)$, i.e., $\bar{m} = n(n - 1)/2 - m$. Recall that the rigidity matrix R is $m \times nr$. Furthermore, whereas the entries of R are a function of the positions p_1, \ldots, p_n of the vertices of $G(p)$, the entries of \overline{R} are a function of the Gale matrix corresponding to $G(p)$.

In this paper we present the precise relationship between the left-nullspaces, and consequently the nullspaces, of R and \overline{R}. In particular we show that the left-nullspaces of R and \overline{R} are isomorphic. In other words, we show that matrix \overline{R} contains the same information as the rigidity matrix R.

Thus with a slight abuse of terminology, we will call \mathcal{R} the dual rigidity matrix. We also show that the assumption of the existence of an equivalent framework $G(q)$ in \mathbb{R}^{n-1} can be dropped.

2. An alternative approach to infinitesimal rigidity

In this section we present an alternative approach to infinitesimal rigidity based on Gram matrices. Given a framework $G(p)$ in \mathbb{R}^r, we first characterize the set of all frameworks $G(q)$ in \mathbb{R}^r such that $G(q)$ is equivalent to $G(p)$ and configuration q is arbitrarily close to configuration p.

Let us represent a configuration p^1, \ldots, p^n of a framework $G(p)$ in \mathbb{R}^r by the following $n \times r$ matrix:

$$P = \begin{bmatrix} p^1^T \\ \vdots \\ p^n^T \end{bmatrix}. $$

Since we do not distinguish between congruent frameworks, we can assume without loss of generality that the centroid of the points p^1, \ldots, p^n coincides with the origin. i.e., $P^T e = 0$, where e is the vector of all 1’s in \mathbb{R}^n. Let B denote the Gram matrix of the points p^1, \ldots, p^n, i.e., $B = P P^T$. Let V be any $n \times (n-1)$ matrix such that

$$V^T e = 0, \quad V^T V = I_{n-1},$$

(4)

where I_{n-1} is the identity matrix of order $n-1$. For the purposes of this paper, we will find it convenient to represent a configuration of a framework $G(p)$ in \mathbb{R}^r by the $(n-1) \times (n-1)$ projected Gram matrix X defined by

$$X := V^T B V := V^T P P^T V.$$

(5)

Clearly X, which is invariant under rigid motions, is positive semidefinite with rank r. Furthermore, since we do not distinguish between congruent frameworks, and in particular between P and PQ where Q is an $r \times r$ orthogonal matrix, it follows that P and X uniquely determine each other [4]. Thus, we will use $G(p)$ and $G(X)$ interchangeably.

Let E_{ij} denote the $n \times n$ matrix with 1’s in the (i, j)th and (j, i)th entries and zeros elsewhere and let

$$M_{ij} := -\frac{1}{2} V^T E_{ij} V.$$

(6)

Given a framework $G(p_1)$ in \mathbb{R}^r, let X_1 be the projected Gram matrix corresponding to configuration p_1, i.e., $X_1 = V^T P_1 P_1^T V$, and let

$$\mathcal{M}(y) := \sum_{(i, j) \notin E} y_{ij} M_{ij}. $$

(7)

Further, let

$$\Omega = \left\{ y \in \mathbb{R}^m : X(y) := X_1 + \mathcal{M}(y) := X_1 + \sum_{(i, j) \notin E} y_{ij} M_{ij} \geq 0 \right\},$$

(8)

where $A \succeq 0 (A \succ 0)$ means that matrix A is symmetric positive semidefinite (symmetric positive definite). Then it was shown in [1] that the set of all frameworks $G(q)$ in \mathbb{R}^r that are equivalent to $G(X_1)$ is given by
\[\{ G(X(y)) : y \in \Omega \text{ and rank } X(y) = r \}; \] (9)

and that the set of all frameworks \(G(q) \) in \(\mathbb{R}^s \), equivalent to \(G(X_1) \), for some \(s, 1 \leq s \leq n - 1 \), is given by
\[\{ G(X(y)) : y \in \Omega \}. \] (10)

For more details on set \(\Omega \) see [3].

Let \(W \) and \(U \) be the matrices whose columns form orthonormal bases of the rangespace and the nullspace of \(X_1 \) respectively. Then
\[\begin{bmatrix} W^T & U^T \end{bmatrix} X(y) \begin{bmatrix} W & U \end{bmatrix} = \begin{bmatrix} A + \vec{M}(y)W & W^T\vec{M}(y)U \\ U^T\vec{M}(y)W & U^T\vec{M}(y)U \end{bmatrix}, \] (11)

where \(A \) is the \(r \times r \) diagonal matrix consisting of the positive eigenvalues of \(X_1 \).

The following lemma, which follows from Schur complement, is well known.

Lemma 2.1. Let
\[M = \begin{bmatrix} A_1 & A_2 \\ A_2^T & A_3 \end{bmatrix} \]
be a symmetric matrix, where \(A_1 \) is an \(r \times r \) positive definite matrix. Then matrix \(M \) is positive semi-definite with rank \(r \) if and only if \(A_3 - A_2^T A_1^{-1} A_2 = 0 \).

Note that on a sufficiently small neighborhood \(\zeta \) of zero in \(\mathbb{R}^\tilde{m} \), \(A + W^T\vec{M}(y)W \succ 0 \). Therefore, it follows from Lemma 2.1 that for \(y \in \zeta \), \(X(y) \) is positive semidefinite with rank \(r \) if and only if
\[\Phi(y) = U^T\vec{M}(y)U - U^T\vec{M}(y)W(A + W^T\vec{M}(y)W)^{-1}W^T\vec{M}(y)U = 0. \] (12)

Thus
\[\{ G(X(y)) : \Phi(y) = 0 \} \]
is the set of all frameworks in \(\mathbb{R}^r \) that are both equivalent to, and arbitrarily close to \(G(p_1) \). Hence, the linearization of \(\Phi(y) \) near \(y = 0 \) is given by
\[U^T\vec{M}(y)U = 0. \] (13)

Therefore, framework \(G(p_1) \) is infinitesimally flexible if and only if there exists a non-zero \(y \) satisfying (13). Next we express Eq. (13) in terms of the Gale matrix corresponding to \(G(p_1) \).

Let \(G(p) \) be a framework in \(\mathbb{R}^r \). Then it immediately follows that the following \((r + 1) \times n \) matrix
\[\begin{bmatrix} p^1 & p^2 & \cdots & p^n \\ 1 & 1 & \cdots & 1 \end{bmatrix} \] (14)
has full row rank since \(p^1, \ldots, p^n \) span \(\mathbb{R}^r \). Note that \(r \leq n - 1 \) where \(r = n - 1 \) corresponds to the case where \(p^1, \ldots, p^n \) are affinely independent. For \(r \leq n - 2 \), let \(\tilde{r} = n - 1 - r \) and let \(\Gamma \) be the \(n \times \tilde{r} \) matrix, whose columns form a basis for the nullspace of the matrix in (14). \(\Gamma \) is called a Gale matrix corresponding to \(G(p) \); and the \(i \)th row of \(\Gamma \), considered as a vector in \(\mathbb{R}^{\tilde{r}} \), is called a Gale transform of \(p^i \) [12]. Gale transform is a well-known technique in the theory of polytopes [15]. We will exploit the fact that \(\Gamma \) is not unique to define a special Gale matrix \(Z \) which is more sparse than \(\Gamma \) and more convenient for our purposes.
Let us write Γ in block form as
\[
\Gamma = \begin{bmatrix} \Gamma_1 \\ \Gamma_2 \end{bmatrix},
\]
where Γ_1 is $\bar{r} \times \bar{r}$ and Γ_2 is $(r + 1) \times \bar{r}$. Since Γ has full column rank, we can assume without loss of generality that Γ_1 is non-singular. Then Z is defined by
\[
Z := \Gamma_1^{-1} \begin{bmatrix} I_{\bar{r}} \\ \Gamma_2 \end{bmatrix} \Gamma_1^{-1}.
\]
(15)

The next lemma allows us to express (13) in terms of the Gale matrix Z.

Lemma 2.2 [2]. Let Z be the Gale matrix corresponding to a framework $G(p)$ in \mathbb{R}^{r}. Let U be the matrix whose columns form an orthonormal basis of the nullspace of the projected Gram matrix $X = V^T P P^T V$. Then $VU = ZQ$ for some non-singular matrix Q. i.e., VU is a Gale matrix corresponding to $G(p)$, where V is defined in (4).

Thus, the next theorem follows from (6), (13) and Lemma 2.2.

Theorem 2.1. Let Z be the Gale matrix corresponding to a framework $G(p)$ in \mathbb{R}^{r}. Then $G(p)$ is infinitesimally flexible if and only if there exists a non-zero y such that
\[
Z^T \delta(y) Z = 0,
\]
where $\delta(y) = \sum_{(i, j) \notin E} y_{ij} E_{ij}$.

Recall that E_{ij} is the symmetric matrix of order n with 1’s in the (i, j)th and the (j, i)th entries and zeros elsewhere. Using Theorem 2.1, we derive next what we call the dual rigidity matrix \overline{R}.

3. The dual rigidity matrix \overline{R}

The dual rigidity matrix \overline{R} is derived using equation (16). We first start with some definitions.

Given an $n \times n$ symmetric matrix A, let $\text{svec}(A)$ denote the $\frac{n(n+1)}{2}$ vector formed by stacking the columns of A from the principle diagonal downwards after having multiplied the off-diagonal entries of A by $\sqrt{2}$. For example, if A is a 3×3 matrix, then
\[
\text{svec}(A) = \begin{bmatrix} a_{11} \\ \sqrt{2}a_{21} \\ \sqrt{2}a_{31} \\ a_{22} \\ \sqrt{2}a_{32} \\ a_{33} \end{bmatrix}.
\]
(17)

Let B be an $m \times n$ matrix and let A be an $n \times n$ symmetric matrix. The symmetric Kronecker product between B and itself, denoted by $B \otimes_s B$, is defined such that
\[
(B \otimes_s B)\text{svec}(A) = \text{svec}(BAB^T).
\]
(18)

For more details on the symmetric Kronecker product see [6].

Definition 3.1. Let Z be the Gale matrix of a framework $G(p)$ in \mathbb{R}^{r} and let \overline{R} be the sub-matrix of $Z \otimes_s Z$ obtained by keeping only rows that correspond to missing edges of G. Then \overline{R} is called the dual rigidity matrix corresponding to $G(p)$.
Let \bar{m} be the number of missing edges of G and let $\bar{r} = n - 1 - r$. Further, let z_i^T denote the ith row of Z. Then the dual rigidity matrix \bar{R} is the $\frac{\bar{r}(\bar{r}+1)}{2} \times \bar{m}$ matrix whose columns are indexed by the missing edges of G, where the (i, j)th column is equal to $\frac{\sqrt{2}}{\sqrt{2}} \text{svec}(z_i^T z_j^T + z_j^T z_i^T)$. For example, if the missing edges of G are $(i_1, j_1), (i_2, j_2), \ldots, (i_{\bar{m}}, j_{\bar{m}})$, then

$$\bar{R} = \frac{1}{\sqrt{2}} \left[\text{svec}(z_{i_1}^T z_{j_1}^T + z_{j_1}^T z_{i_1}^T) \ldots \text{svec}(z_{i_{\bar{m}}}^T z_{j_{\bar{m}}}^T + z_{j_{\bar{m}}}^T z_{i_{\bar{m}}}^T) \right].$$

That is

$$\bar{R} = \begin{bmatrix}
\sqrt{2} z_{i_1}^T z_{j_1} & \sqrt{2} z_{i_2}^T z_{j_2} & \ldots & \sqrt{2} z_{i_{\bar{m}}}^T z_{j_{\bar{m}}} \\
\sqrt{2} z_{j_1}^T z_{i_1} & \sqrt{2} z_{j_2}^T z_{i_2} & \ldots & \sqrt{2} z_{j_{\bar{m}}}^T z_{i_{\bar{m}}} \\
z_{i_1}^T z_{i_1} + z_{j_1}^T z_{j_1} & z_{i_2}^T z_{i_2} + z_{j_2}^T z_{j_2} & \ldots & z_{i_{\bar{m}}}^T z_{i_{\bar{m}}} + z_{j_{\bar{m}}}^T z_{j_{\bar{m}}} \\
z_{i_2}^T z_{i_2} + z_{j_2}^T z_{j_2} & \ldots & \ldots & \ldots \\
z_{i_{\bar{m}}}^T z_{i_{\bar{m}}} + z_{j_{\bar{m}}}^T z_{j_{\bar{m}}}
\end{bmatrix},$$

where z_k^T denotes the kth coordinate of vector z_i^T. The next theorem justifies calling \bar{R} the dual rigidity matrix.

Theorem 3.1. Let \bar{R} be the dual rigidity matrix of a framework $G(p)$ in \mathbb{R}^r. Then $G(p)$ is infinitesimally rigid if and only if \bar{R} has a trivial nullspace, i.e., if and only if

$$\text{rank } \bar{R} = \bar{m}. \quad (21)$$

Proof. This follows from (16) and the definition of \bar{R} since $Z^T \dot{\theta}(y) Z = 0$ if and only if $\bar{R} y = 0$. □

Three remarks are in order here. First, the dual rigidity matrix \bar{R} is invariant under rigid motions. Hence, in Eq. (21) there is no need to account for the trivial flexes as was the case in (3). Second, the dual rigidity matrix \bar{R} is in general sparse since the Gale matrix Z is sparse. Third, dropping the factors of $\sqrt{2}$ from the definition of \bar{R} in (20), which is advantageous from a theoretic computational point of view, would not change the rank of \bar{R}. These factors are kept in order to make the definition of \bar{R} in terms of the symmetric Kronecker product simple.

Example 3.1. The framework in Fig. 2 has

$$P = \begin{bmatrix} 0 & 1 \\ 2 & -1 \\ -2 & -1 \\ 0 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{and} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -2 \\ 1 & -2 \end{bmatrix}.$$

Thus the dual rigidity matrix of this framework is

$$\bar{R} = \begin{bmatrix} \sqrt{2} & 0 & -2\sqrt{2} \\ -2 & 0 & 4 \\ 0 & \sqrt{2} & 0 \end{bmatrix}.$$

Note that the rigidity matrix R of this framework is 7×10. Also note that $y = (2, 0, 1)^T$ is a basis of the nullspace of \bar{R} and $x = (2, \sqrt{2}, 0)^T$ is a basis of the left-nullspace of \bar{R}.
4. Relations between R and \overline{R}

The stress matrix of a framework plays a critical role in establishing the relation between the left-nullspaces, and hence the nullspaces, of R and \overline{R}. An equilibrium stress of a framework $G(p)$ is a real valued function ω on E, the set of edges of G, such that

$$\sum_{j: (i,j) \in E} \omega_{ij} (p^i - p^j) = 0 \quad \text{for all } i = 1, \ldots, n.$$ \hfill (22)

It readily follows, then, that the space of the equilibrium stresses of a framework $G(p)$ is the left-nullspace of the rigidity matrix R of $G(p)$. That is, an equilibrium stress of $G(p)$ is just a linear dependency among the rows of R.

Let ω be an equilibrium stress for $G(p)$. Define the following $n \times n$ symmetric matrix $S = (s_{ij})$ where

$$s_{ij} = \begin{cases} -\omega_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{if } (i, j) \notin E, \\ \sum_k \omega_{ik} & \text{if } i = j. \end{cases}$$ \hfill (23)

S is called a stress matrix of $G(p)$. The following theorem establishes the relation between S and the Gale matrix Z.

Theorem 4.1 [5]. Let Z and S be, respectively, the Gale matrix and a stress matrix of a framework $G(p)$ in \mathbb{R}^r. Then there exists an $\bar{r} \times \bar{r}$ symmetric matrix Ψ such that

$$S = Z \Psi Z^T.$$ \hfill (24)

On the other hand, let Ψ' be any $\bar{r} \times \bar{r}$ symmetric matrix such that $z^T \Psi' z = 0$ for all $(i, j) \notin E$, where z^T denotes the ith row of Z. Then $S' = Z \Psi' Z^T$ is a stress matrix of $G(p)$.

Example 4.1. The framework in Fig. 2 has an equilibrium stress

$$\omega = (\omega_{12} = -1, \omega_{13} = -1, \omega_{14} = 4, \omega_{24} = 2, \omega_{25} = -1, \omega_{34} = 2, \omega_{35} = -1),$$

and a stress matrix

$$S = \begin{bmatrix} 2 & 1 & 1 & -4 & 0 \\ 1 & 0 & 0 & -2 & 1 \\ -4 & -2 & -2 & 8 & 0 \\ 0 & 1 & 1 & 0 & -2 \end{bmatrix} = Z \Psi Z^T,$$

where $\Psi = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and the Gale matrix Z was given in Example 3.1. Note that $\text{svec}(\Psi) = (2, \sqrt{2}, 0)^T$ belongs to the left-nullspace of the dual rigidity matrix \overline{R}.

The following theorem is the main result of this section.

Theorem 4.2. Let R and \overline{R} be, respectively, the rigidity and the dual rigidity matrices of a framework $G(p)$ in \mathbb{R}^r. Then

1. the left-nullspace of \overline{R} is isomorphic to the left-nullspace of R;
2. dimension of nullspace of $\overline{R} = \text{dimension of nullspace of } R - \frac{r(r+1)}{2}$.
Let \(\mathcal{C} \) denote the subspace of \(\mathcal{R} \times \mathcal{R} \) matrices \(A \) such that
\[
(ZAZ^T)_{ij} = 0 \quad \text{for all } (i, j) \notin E; \tag{25}
\]
and let \(\mathcal{S} \) denote the subspace of stress matrices of \(G(p) \). Then it follows from Theorem 4.1 that the linear map \(f : \mathcal{C} \rightarrow \mathcal{S} \) defined by \(f(A) = ZAZ^T \) is both one-to-one and onto. Therefore, the left-nullspace of \(R \) is isomorphic to \(\mathcal{C} \). Furthermore, it follows from the definition of \(\overline{R} \) that \(\Psi \) belongs to \(\mathcal{C} \) if and only if \((svec(\Psi))^T \overline{R} = 0 \). Hence, \(\mathcal{C} \) is isomorphic to the left-nullspace of \(\overline{R} \) and thus statement 1 of the theorem follows.

To prove statement 2, note that
\[
\text{dim nullspace of } R = \text{dim left-nullspace of } R + nr - m, \n\text{dim nullspace of } \overline{R} = \text{dim left-nullspace of } \overline{R} + m - \frac{\tilde{r}(\tilde{r} + 1)}{2}. \n\]
But since left-nullspace of \(R \) is isomorphic to the left-nullspace of \(\overline{R} \), it follows that
\[
\text{dim nullspace of } \overline{R} = \text{dim nullspace of } R - nr + m + m - \frac{\tilde{r}(\tilde{r} + 1)}{2} = \text{dim nullspace of } R - \frac{r(r + 1)}{2}. \n\]
Thus the result follows. \(\square \)

Two remarks are in order here. First, statement 2 in the above theorem should come as no surprise since as we remarked earlier, the dual rigidity matrix \(\overline{R} \) is invariant under a rigid motion and the term \(\frac{r(r+1)}{2} \) is exactly the dimension of rigid motions in \(\mathbb{R}^r \). Second, it follows from Theorem 4.1 that \(S = Z\Psi Z^T \) is a stress matrix of \(G(p) \) if and only if \(svec(\Psi) \) is in the left-nullspace of \(\overline{R} \) as is the case in Example 4.1.

Next we show that for each infinitesimal flex of \(G(p) \), i.e., for each vector in the nullspace of \(R \), there corresponds a vector \(y \) in the nullspace of \(\overline{R} \) whose value can be found explicitly. For any matrix \(A \), let \(\text{diag}(A) \) denote the vector consisting of the diagonal entries of \(A \). Also recall that \(E_{ij} \) is the symmetric \(n \times n \) matrix with 1’s in the \((i, j) \)th and \((j, i) \)th entries and zeros elsewhere.

Theorem 4.3. Let \(p' \) be an infinitesimal flex of \(G(p) \). Then there exists a vector \(y \in \mathbb{R}^n \) in the nullspace of \(\overline{R} \) such that
\[
\varepsilon(y) = \text{diag}(PP'T + P'P'T)e^T + e(\text{diag}(PP'T + P'P'T))^T - 2(PP'T + P'P'T), \tag{26}
\]
where the matrices \(P^T = [p^1 \ p^2 \ \ldots \ p^n], P'^T = [p'^1 \ p'^2 \ \ldots \ p'^n] \) and \(\varepsilon(y) = \sum_{(i, j) \notin E} y_{ij} E_{ij} \).

Proof. It is easy to verify that
\[
2(p^i - p'^i)(p'^i - p^j) = (PP'^T + P'P'^T)_{ii} + (PP'^T + P'P'^T)_{jj} - 2(PP'T + P'P'T)_{ij}. \n\]
Let \(\mathcal{L} \) denote the space of \(n \times n \) symmetric matrices \(A = (a_{ij}) \) such that \(a_{ij} = 0 \) for all \((i, j) \in E \). Then since \((p^i - p'^i)(p'^i - p^j) = 0 \) for all \((i, j) \in E \), it follows that the right hand side of Eq. (26) belongs to \(\mathcal{L} \). Therefore, there exists \(y \in \mathbb{R}^m \) that satisfies (26) since matrices \(E_{ij} \)’s form a basis for \(\mathcal{L} \). Now by multiplying Eq. (26) from left and right by \(Z^T \) and \(Z \) respectively we get \(Z^T \varepsilon(y) Z = 0 \). Thus \(y \) belongs to the nullspace of \(\overline{R} \). \(\square \)
Note that if \(p' = (p'^1 \ldots p'^m) \) is a trivial infinitesimal flex resulting from a rigid motion then the right hand side of Eq. (26) is identically zero. Hence \(y = 0 \) in this case. Therefore, if \(y \) in Eq. (26) is non-zero, then the corresponding flex is non-trivial.

5. Geometric interpretation of \(\overline{R} \)

We end this paper by presenting a geometric interpretation of the rows of the dual rigidity matrix \(\overline{R} \) of a framework \(G(p) \) in \(\mathbb{R}^r \) under the assumption that there exists a framework \(G(q) \), equivalent to \(G(p) \), in \(\mathbb{R}^{n-1} \). As was mentioned earlier, this interpretation of the rows of \(\overline{R} \) in terms of the normal cone of set \(\Omega \) (defined in (8)) at the origin, was the basis for deriving \(\overline{R} \) in [1,2].

Let \(G(p_1) \) be a given framework in \(\mathbb{R}^r \). Recall that \(\{ Z(X(y)) : y \in \Omega \} \) is the set of all frameworks \(G(q) \) in \(\mathbb{R}^s \) which are equivalent to \(G(p) \), for all integers \(s \) between 1 and \(n - 1 \).

A point \(\gamma \in \Omega \) is said to be an extreme point of \(\Omega \) if \(\gamma \) can’t be represented as a proper convex combination of two distinct points \(y^1 \) and \(y^2 \) in \(\Omega \). Given an extreme point \(\gamma \) of \(\Omega \), the normal cone \(N_\Omega(\gamma) \), is defined by

\[
N_\Omega(\gamma) = \{ c \in \mathbb{R}^m : c^T \gamma \geq c^T y \text{ for all } y \in \Omega \}. \tag{27}
\]

The proofs of the next two lemmas are given in [1] and [2] respectively.

Lemma 5.1. Let \(G(p_1) \) be a given framework with \(n \) vertices in \(\mathbb{R}^r \). Assume that there exists a framework \(G(q) \) in \(\mathbb{R}^{n-1} \), which is equivalent to \(G(p_1) \). Then the normal cone \(N_\Omega(\gamma) \) is given by

\[
N_\Omega(\gamma) = \{ c \in \mathbb{R}^m : c_{ij} = -\text{trace}(M_{ij} \Pi), \text{ for some } \Pi \succeq 0 : \text{trace}(X(\gamma) \Pi) = 0 \},
\]

where matrices \(M_{ij} \) are defined in (6).

Lemma 5.2. Let \(G(p_1) \) be a given framework with \(n \) vertices in \(\mathbb{R}^r \). Assume that there exists a framework \(G(q) \) in \(\mathbb{R}^{n-1} \), which is equivalent to \(G(p_1) \). Let \(Z \) be the Gale matrix for \(G(p_1) \). Then

\[
N_\Omega(0) = \{ c \in \mathbb{R}^m : c_{ij} = \text{trace}(Z^T E_{ij} Z \Psi) \}, \tag{28}
\]

for some \(\tilde{r} \times \tilde{r} \) symmetric positive semidefinite matrix \(\Psi \).

Let \(u_1, u_2, \ldots, u_{\tilde{r}} \) denote the standard unit vectors in \(\mathbb{R}^{\tilde{r}} \). Then the following \(\tilde{r}(\tilde{r} + 1)/2 \) matrices

\[
\psi^{11} = u_1 u_1^T,
\psi^{21} = \frac{1}{\sqrt{2}} (u_2 u_1^T + u_1 u_2^T) + u_1 u_1^T + u_2 u_2^T,
\ldots = \ldots,
\psi^{\tilde{r}1} = \frac{1}{\sqrt{2}} (u_{\tilde{r}} u_1^T + u_1 u_{\tilde{r}}^T) + u_1 u_1^T + u_{\tilde{r}} u_{\tilde{r}}^T,
\psi^{22} = u_2 u_2^T,
\ldots = \ldots,
\psi^{2\tilde{r}} = \frac{1}{\sqrt{2}} (u_{\tilde{r}} u_2^T + u_2 u_{\tilde{r}}^T) + u_2 u_2^T + u_{\tilde{r}} u_{\tilde{r}}^T,
\ldots = \ldots,
\psi^{\tilde{r}2\tilde{r}} = u_{\tilde{r}} u_{\tilde{r}}^T.
\]
are obviously symmetric positive semidefinite, and their conic hull is a full-dimensional subset of the cone of symmetric positive semidefinite matrices of order \tilde{r}. Therefore, the conic hull of the $\tilde{r}(\tilde{r} + 1)/2$ vectors $c^{kl}_{ij} \in \mathbb{R}^{\tilde{m}}$ where $c^{kl}_{ij} = \frac{1}{\sqrt{2}}\text{trace}(Z^{T}E^{ij}Z\psi^{kl})$ is a full-dimensional subset of $N_{\Omega}(0)$. But

$$c^{kl}_{ij} = \frac{1}{\sqrt{2}}\text{trace}(Z^{T}E^{ij}Z\psi^{kl}) = \begin{cases} \sqrt{2}z^{l}_{k}z^{l}_{k} & \text{if } k = l, \\ z^{l}_{k}z^{l}_{l} + z^{l}_{k}z^{l}_{l} + \sqrt{2}z^{l}_{k}z^{l}_{k} + \sqrt{2}z^{l}_{l}z^{l}_{l} & \text{if } k \neq l, \end{cases}$$

where z^{l}_{k} denotes the kth coordinate of vector z^{l}. Hence, vector c^{kl} is equal to the (k, k)th row of \tilde{R} if $k = l$, and it is equal to the sum of the (k, l)th, (k, k)th and (l, l)th rows of \tilde{R} if $k \neq l$. Therefore, a framework $G(p_{1})$, which has an equivalent framework $G(q)$ in \mathbb{R}^{n-1}, is infinitesimally rigid if and only if $\text{rank } R = \tilde{m}$ if and only if $N_{\Omega}(0)$ is full dimensional; i.e., $\dim N_{\Omega}(0) = \tilde{m}$.

Acknowledgments

The author thanks Tim Havel and the referee for their comments and suggestions which improved the presentation of this paper.

References