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For the simple linearmodelY = θ1+βx+εwhere the error vector

follows the elliptically contoured distribution, we consider the un-

restricted, restricted, preliminary test and shrinkage estimators for

the intercept parameter, θ when it is suspected that the slope para-

meter β may be βo. The exact bias and MSE expressions are derived

and the mean-square relative efficiency is taken to determine the

relative dominance properties of the proposed estimators in com-

parison. In the continuation, the optimal level of significance of the

preliminary test estimator is tabulated and some graphical result are

also displayed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider a simple linear model

Y = θ1 + βx + ε = Aη + ε, A = [1, x], η = (θ, β)′, (1.1)

where Y = (Y1, . . . , Yn)
′ is the response vector and x = (x1, . . . , xn)

′ is a fixed vector of known

constants, while ε = (ε1, . . . , εn)
′ is the n-vector of random errors distributed according to the law

belonging to the class of elliptically contoured distributions (ECDs), ECn(0, σ
2V, ψ) for σ ∈ R

+ and

un-structured known matrix V ∈ S(n), where S(n) denotes the set of all positive definite matrices of

order (n × n)with the following characteristic function

φε(t) = ψ
(
σ 2t′Vt

)
(1.2)
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for some functionsψ : [0,∞) → R say characteristic generator [9].

If ε has a density, then it is of the form

f (ε)∝ |σ 2V|− 1
2 g

(
1

σ 2
ε′V−1ε

)
, (1.3)

where g(.) is a non-negative function over R
+ such that f (.) is a density function w.r.t (with respect

to) a σ -finite measure μ on R
p. In this case, notation ε ∼ ECn(0, σ

2V, g)would probably be used.

Some of the well-known members of the class of ECDs are the multivariate normal, Kotz Type,

Pearson Type II and VII, multivariate Student’s t, multivariate Cauchy, Logistic, Bessel and generalized

slash distributions. Dating back to Kelker [14], there are many known results concerning ECDs, in

particular the mathematical properties and its application to statistical inference. These results have

been put forward by Muirhead [21] and Fang et al. [9] among others .

It is sometimes difficult to have complete analysis of the regression model with ECD errors of the

type (1.2) or (1.3). To overcome such difficulties, onemay consider any of the three sub-classes of ECDs,

namely,

(i) scale mixture of normal distributions,

(ii) Laplace class of mixture of normal distributions, and

(iii) signed measure mixture of normal distributions.

General formula for the above mixture of distributions is given by

fε(x) =
∫ ∞
0

W(t)φNn(0,t−1σ 2V)(x)dt, (1.4)

where φNn(0,t−1σ 2V)(.) is the pdf (probability density function) of Nn(0, t
−1σ 2V).

(a) If

W(τ ) = 2 (
(γ /2))−1

(
γ σ 2

2

)γ /2
τ−(γ+1)e

− γ σ2

2τ2 , 0 < γ, σ 2, τ < ∞ (1.5)

then we have

f (ε) = 

(
n+γ
2

)
|V|− 1

2

(πγ )n/2
 (γ /2) σ n

(
1 + ε′V−1ε

γ σ 2

)− 1
2
(n+γ )

, (1.6)

where E(ε) = 0 and E(εε′) = nγ σ 2

γ−2
V = σ 2

e for γ > 2.

(b) Chu [7] considered

W(t) = (2π)
n
2 |σ 2V| 1

2 t−
p
2 L−1[f (s)], (1.7)

L−1[f (s)] denotes the inverse Laplace transform of f (s) with s = [x′(σ 2V)−1x/2]. For some

examples of f (.) andW(.) see Arashi and Tabatabaey [5].

The inverse Laplace transformof f (.)exists provided that the following conditions are satisfied.

(i) f (t) is differentiable when t is sufficiently large.

(ii) f (t) = o(t−m) as t → ∞, m > 1.

Although, it is rather difficult to derive the inverse Laplace transform of some functions, we

are able to handle it for many density generators of elliptical densities. We refer the readers to

Debnath and Batta [8] for more specific details.

The mean of ε is the zero-vector and the covariance-matrix of ε is
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�ε = Cov(ε)=
∫ ∞
0

Cov(ε|t)W(t)dt

=
∫ ∞
0

W(t)Cov
{
Np(0, t

−1σ 2V)
}
dt

=
(∫ ∞

0
t−1W(t)dt

)
σ 2V (1.8)

provided the above integral exists.

Comparing the models (1.3) and (1.4), since �ε = Cov(ε) = −2ψ ′(0)σ 2V, it can be concluded

that

−2ψ ′(0) =
∫ ∞
0

t−1W(t)dt.

Nowsuppose thatX ∼ ECn(μ,V, g). Then it is important to point out that since
∫
x f (x)dx = 1,

using Fubini’s theorem we have

1 =
∫
x

∫ ∞
0

W(t)φNn(μ,t−1V)(x)dtdx

=
∫ ∞
0

W(t)
∫
x
φNn(μ,t−1V)(x)dxdt

=
∫ ∞
0

W(t)dt.

Thus for nonnegative functionW(.), it is a density. For nonnegative functionW(.), the elliptical
models can be interpreted as a scale mixture of normal distributions.

(c) Srivastava and Bilodeau [27] considered the signed measure, W(t) such that

(i)

∫ ∞
0

t−1W+(dt) < ∞,

(ii)

∫ ∞
0

t−1W−(dt) < ∞, (1.9)

where W+ − W− is the Jordan decomposition of W in positive and negative parts. Note that

from (i)− (ii) of (1.9),∫ ∞
0

t−1W(dt) < ∞ (1.10)

and thus, Cov(ε) exists under the sub-class defined above.

This subclass contains the subclass defined by (b).

Remark 1.1. Regarding the above classifications, we should take the following notes:

1. In all the above classes we have

�ε = −2ψ ′(0)σ 2V =
(∫ ∞

0
t−1W(t)dt

)
σ 2V

resulting in −2ψ ′(0) = ∫∞
0 t−1W(t)dt.

2. The subclass (a) is neither contained in subclass (b) nor in the subclass (c). However, subclass

(b) in contained in the subclass(c). Thus, all the implications about the subclass (c) can be used

for the subclass (b).

3. For the subclass (c) we can assure that −2ψ ′(0) = ∫∞
0 t−1W(t)dt exists. However it may not

exist for the subclass (b).
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Throughout the paper, we assume that

σ 2
ε = −2ψ ′(0)σ 2. (1.11)

There have been many studies in the area of the ‘improved’ estimation following the seminal work

of Bancroft [6] and later Han and Bancroft [10]. They developed the preliminary test estimator that

uses uncertain non-sample prior information (not in the form of prior distributions), in addition to the

sample information. Stein [29] elegant approach dominates the usual maximum likelihood estimators

under the squared error loss function. In a series of papers Saleh and Sen [25,26] explored the prelimi-

nary test approach to Stein-rule estimation. Many authors have contributed to this area, notably Judge

and Bock [13], Stein [28], Khan [15–17], Kibria [18], Kibria and Saleh [19,20], Ahmed et al. [1,2], Saleh

and Kibria [23,24], Hassanzadeh Bashtian et al. [11,12], Arashi et al. [4] and Arashi [3]. The recent book

of Saleh [22] presents a comprehensive discussion of this area.

2. Estimation and testing

For convenience we express some notations due to the rest of the work. Let

K1 = 1′V−11,

K2 = x′V−1x,

K3 = 1′V−1x = x′V−11,

K = A′V−1A. (2.1)

2.1. Estimator of η

Based on the LS/ML principle, the unrestricted estimator of η = (θ, β) is given by

η̃ =
(
A′V−1A

)−1 (
A′V−1Y

)

=
⎛
⎝ K1 K3

K3 K2

⎞
⎠

−1 ⎡
⎣ 1′V−1Y

x′V−1Y

⎤
⎦ =

⎛
⎝ θ̃n
β̃n

⎞
⎠ . (2.2)

Theorem 2.1. Assume in the simple linear model (1.1), Y |θ, β, σ 2 ∼ ECn(η, σ
2V, f ); then we have

η̃ ∼ EC2(η, σ
2K−1, f ).

Proof. Under the assumption Y |θ, β, σ 2 ∼ Nn(η, σ
2τ−1V, f ), the exact distribution of η̃ follows

N2(η, σ
2τ−1K−1), where

K−1 = (A′V−1A)−1 =
⎛
⎝ K1 K3

K3 K2

⎞
⎠

−1

= 1

K1K2 − K2
3

⎛
⎝ K2 −K3

−K3 K1

⎞
⎠ .

Thus we get

fY (y) =
∫ ∞
0

W(τ )N2

(
η, σ 2τ−1K−1

)
dτ,

which completes the proof. �
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Also the unbiased estimator of σ 2
ε is S2u given by

S2u = m−1(Y − Aη̃)′V−1(Y − Aη̃) ; (m = n − 2). (2.3)

2.2. Test of intercept parameter

At this step, first we propose test statistic of the parameter η, and then we focus on the problem of

estimation of the intercept parameter in a more precise setup.

Theorem 2.2. Let


= {(η, σ,V) : η ∈ R
2, σ ∈ R

+,V > 0}, and

ω= {(η, σ,V) : η = ηo = (θo, βo)
′, ηo ∈ R

2, σ ∈ R
+,V > 0}.

Moreover, suppose y
n
2 f (y) has a finite positive maximum yf . Then the LR criterion for testing the hypothesis

Ho : η = ηo is given by

L∗∗
n = S−2

u

[
1

2
(η̃ − ηo)

′K(η̃ − ηo)

]

and it has the following modified generalized non-central F distribution

g∗
2,m(Ln) = ∑

r�0

(
2
m

) 1
2
(2+2r) L

1
2
(2r)

n K
(0)
r (�2)

r! B
(
2r+2
2
, m

2

) (
1 + 2

m
Ln

) 1
2
(2+2r+m)

,

where�2 = ξ/σ 2
ε for ξ = (η − ηo)

′K(η − ηo), and

K(h)r (�2)=
(
�2

2

)r ∫ ∞
0

tr−he
−t�2

2 W(t)dt. (2.4)

Proof. For the test of the null hypothesis Ho : η = ηo vs HA : η 	= ηo, let

σ̃ 2
ε = (Y − Aηo)

′V−1(Y − Aηo).

Then using Theorem 2.1 we have

�= maxω L(y)

max
 L(y)
=
(
Su

σ̃ε

)n
f (yf )

f (yf )

=
[
(Y − Aη̃)′V−1(Y − Aη̃)

(Y − Aη̃o)
′V−1(Y − Aη̃o)

]n
=
(

mS2u

mS2u + (η − ηo)′K(η − ηo)

)n

=
(

1

1 + 1
m
L∗∗
n

)n

.

Hence, L∗∗
n is the LR test for testing the underlying null hypothesis. For its non-null distribution, we

note that under normalityLn follows the non-central F-distributionwith (1,m)d.f. and non-centrality

parameter�2
t = (η−ηo)′K(η−ηo)

t−1σ 2 . Then integrating over tw.r.t. the signedmeasureW , the proof is com-

pleted. �

Accordingly, we have
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Corollary 2.2.1. Under Ho, the pdf of L∗∗
n is given by

g∗
2,m(L∗∗

n ) =
(

2
m

)
B
(
1, m

2

) (
1 + 2

m
Ln

) 1
2
(m+2)

,

which is the central F-distribution with (2,m) d.f.

Corollary 2.2.2. The power function atγ -level of significance ofL∗∗
n , say,modified generalized non-central

F cumulative distribution function of the statistic L∗∗
n is given by

Gp,m(lγ ;�2) = ∑
r�0

1

r!K
(0)
r (�2)Ix

[
1

2
(p + 2r),

m

2

]
,

where Ix(., .) is the incomplete Beta function, x = lγ
m+lγ

and lγ = F1,m(γ ).

Straightforward consequences of Theorem 2.2, gain the test statistics for individuals Ho : θ = θ0
and Ho : β = βo. In order to test the null hypothesis Ho : β = βo, against an alternative HA : β 	= βo,
one uses the test statistic L∗

n , defined by

L∗
n = (β̃n − βo)

2K4

S2u
; K4 =

(
K1

K1K2 − K2
3

)−1

.

Then the exact distribution of Ln under Ho has the central F-distribution with (1,m) d.f. Similarly, for

the test of Ho : θ = θo against HA : θ 	= θo one uses the test-statistic

Ln = (θ̃n − θo)
2K5

S2u
; K5 =

(
K2

K1K2 − K2
3

)−1

. (2.5)

The exact distribution of Ln under Ho is central F-distribution with (1,m) d.f. Note that based on the

virtue of (2.5), one can directly conclude the following result.

Lemma 2.1. The LR criterion Ln for testing the hypothesis Ho : θ = θo has the following distribution

g∗
1,m(Ln) = ∑

r�0

(
1
m

) 1
2
(1+2r) L

1
2
(2r−1)

n K
(0)
r (�2)

r! B
(
2r+1
2
, m

2

) (
1 + 1

m
Ln

) 1
2
(1+2r+m)

,

where�2 = ξ/σ 2
ε for ξ = K5(θ − θo)

2.

Now we turn our attention to estimation of the intercept parameter θ when it is suspected that

the slope parameterβmay beβo. As a special case it covers the two-sample problem of estimating one

mean when it is suspected that the two means may be equal. Also, one-sample estimation of mean is

obtained by letting x = 0 and prior information θ = θo

2.3. Estimators of θ

In addition to θ̃n and S2u , we present a few more estimators of θ and σ 2
ε . First of all note that we

have

θ̃n = K
−1
1 1′V−1Y − K

−1
1 K3β̃n

= K∗
1 Y − K∗

2 β̃n, K∗
1 = K

−1
1 1′V−1, K∗

2 = K
−1
1 K3. (2.6)
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Replacing V by In in (2.6), results θ̃n = Ȳ − x̄β̃n as in Saleh [22, p. 56].

If we suspect β to be βo, then the restricted estimator (RE) of θ is given by

θ̂n = K∗
1Y − K∗

2βo. (2.7)

Now following Saleh [22], we define the estimators given below:

Preliminary test estimator (PTE) of θ is given by

θ̂PTn = θ̂n I(L∗
n < F1,m(α))+ θ̃n I(L∗

n � F1,m(α))

= θ̃n + (β̃n − βo)K
∗
2 I(L∗

n < F1,m(α)), (2.8)

where F1,m(α) is the α-level upper critical value of a central F-distribution with (1,m) d.f. and I(A) is
the indicator function of the set A.

Shrinkage type estimator (SE) of θ is given by

θ̂ Sn = θ̃n + c(β̃n − βo)K
∗
2

∣∣∣∣L∗
n

1
2

∣∣∣∣−1

, c > 0 (2.9)

3. Properties of intercept parameter

In this section, we derive the exact bias and MSE expressions for the proposed estimators of the

intercept parameter.

Lemma 3.1 (Saleh, [22]). If Z ∼ N(�, 1), then

E(|Z|)=
√

2

π
e−

�2

2 +�(2�(�)− 1)

E

[
Z

|Z|
]

= 1 − 2�(−�),

where�(.) is the cdf of the standard normal distribution.

3.1. Bias expressions of the estimators

The biases of θ̃n and θ̂n are obvious and given by

b1(θ̃n) = 0, b2(θ̂n) = K∗
2 (β − βo). (3.1)

For the PTE, we have

b3(θ̂
PT
n )= E

[
θ̃n + (β̃n − βo)K

∗
2 I(L∗

n < F1,m(α))− θ
]

= K∗
2 E
[
(β̃n − βo)I(L∗

n < F1,m(α))
]

= Et

⎧⎪⎨
⎪⎩E
⎡
⎢⎣
√√√√ t−1σ 2

ε

K4

ZI

(
Z2

χ2
m/m

< F1,m(α)

)
|t
⎤
⎥⎦
⎫⎪⎬
⎪⎭

= K∗
2

√
K4Et

[
(β − β0)

√
K4I

(
χ2
3

χ2
m/m

)]

= K∗
2

√
K4σε�G

(0)
3,m

(
1

3
F1,m(α);�2

)
, (3.2)
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where�2
t = t�2 = t

(β−βo)2K4
σ 2

ε
and G

(h)
p,m(.; .) is given by

G(h)p,m(q, �
2)=

∞∑
r=0


( p+m+2r

2
)


( p+2r

2
)
(m/2)

K(h)r (�2)Ix

[
p + 2r

2
,
m

2

]
;

x = pq

m + pq
.

Finally for the bias expression of SE, taking Z = (β̃n−βo)√K4√
t−1σ 2

ε

, we have

b4(θ̂
S
n )= E

[
θ̃n + c(β̃n − βo)K

∗
2

∣∣∣∣L∗
n

1
2

∣∣∣∣−1

− θ

]

= K∗
2 E

[
c(β̃n − βo)

Su

(β̃n − βo)
√

K4

]

= cK∗
2 K4

− 1
2 Et

{
E

[
Z

∣∣∣∣Su
Z

∣∣∣∣ |t
]}
. (3.3)

Since Z|t ∼ N(�t, 1),�t =
√
(β−βo)2K4

t−1σ 2 ,
mS2u

t−1σ 2 |t ∼ χ2
m and Z|t is independent of S2u|t, using Lemma

3.1 the expression in (3.3) simplifies to

b4(θ̂
S
n )= cK∗

2 K4
− 1

2

∫ ∞
0

W(t)E
[
Z

∣∣∣∣Su
Z

∣∣∣∣ |t
]
dt

= cK∗
2 K4

− 1
2

∫ ∞
0

W(t)E
⎡
⎣
√

mS2u

t−1σ 2

√
t−1σ 2

m
|t
⎤
⎦ E

[
Z

|Z| |t
]
dt

= cK∗
2 K4

− 1
2

(m+1

2
)√

2
(m
2
)

∫ ∞
0

W(t)
√
t−1σ 2

m
E

[
Z

|Z| |t
]
dt

= cK∗
2 K4

− 1
2

(m+1

2
)


(m
2
)

√
σ 2

2m

∫ ∞
0

t−
1
2 W(t)(1 − 2�(−�t))dt. (3.4)

3.2. MSE expressions of the estimators

Using Theorem 2.1 we get

M1(θ̃n) = σ 2
ε K2(K1K2 − K2

3 )
−1. (3.5)

For the restricted estimator, applying Theorem 2.1 we have

M2(θ̂n)= E
[
(θ̃n − θ)+ K∗

2 (β̃n − βo)
]2

= M1(θ̃n)+ K∗
2
2
E(β̃n − βo)

2 + 2K∗
2 E
[
(θ̃n − θ)(β̃n − βo)

]

= σ 2
ε K2(K1K2 − K2

3 )
−1 + K∗

2
2

[
K1σ

2
ε

K1K2 − K2
3

+ (β − βo)
2

]
− 2K∗

2

K3σ
2
ε

K1K2 − K2
3
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= (K2 − K∗
2 K3)+ K4

−1�2(K1K2 − K2
3 )

(K1K2 − K2
3 )

σ 2
ε

=
(
K

−1
1 +�2K4

−1
)
σ 2

ε . (3.6)

For the MSE of PTE, using equation (3.2.9b) of Saleh [22] we can obtain

M3(θ̂
PT
n )= E

[
(θ̃n − θ)+ K∗

2 (β̃n − βo)I(L∗
n < F1,m(α))

]2
= M1(θ̃n)+ K∗

2
2
E
[
(β̃n − βo)

2I(L∗
n < F1,m(α))

]
+2K∗

2 E[(θ̃n − θ)(β̃n − βo)I(L∗
n < F1,m(α))]

= M1(θ̃n)+ K∗
2
2
K4

−1Et

{
E

[
(t−1σ 2

ε )Z
2I

(
Z2

χ2
m/m

< F1,m(α)

)
|t
]}

−2K∗
2
2
K4

−1Et

{
E

[
(t−1σ 2

ε )Z
2I

(
Z2

χ2
m/m

< F1,m(α)

)
|t
]}

+2K∗
2
2
K4

−1σε�Et

{
E

[√
t−1σ 2

ε ZI

(
Z2

χ2
m/m

< F1,m(α)

)
|t
]}

= σ 2
ε K2(K1K2 − K2

3 )
−1 + 2σ 2

ε�
2K∗

2
2
K4

−1

[
G
(0)
3,m

(
1

3
F1,m(α);�2

)]

−σ 2
ε K

∗
2
2
K4

−1

{
G
(1)
3,m

(
1

3
F1,m(α);�2

)
+�2G

(0)
5,m

(
1

5
F1,m(α);�2

)}
. (3.7)

Finally, for the shrinkage estimator, using Lemma 3.1 we have

M4(θ̂
S
n )= E

[
θ̃n + c(β̃n − βo)K

∗
2 |L∗

n

1
2 |−1 − θ

]2

= M1(θ̃n)+ c2K∗
2
2
E

[
(β̃n − βo)

2|L∗
n

1
2 |−2

]
+ 2cK∗

2 E

[
(θ̃n − θ)(β̃n − βo)|L∗

n

1
2 |−1

]

= M1(θ̃n)+ c2K∗
2
2
K4

−1E
(
S2u

)

−2cK∗
2
2
K

−1
4 Et

{√
t−1σ 2E

[
Su

(
Z2

|Z| −�t

Z

|Z|
)]}

= σ 2K2(K1K2 − K2
3 )

−1 + c2k∗
2
2
k4

−1σ 2

−2cK∗
2
2
K4

−1σEtE[Su|t]Et
[
t−

1
2

{√
2

π
e

−�2
t

2 +�t{2�(�t)− 1}

−�t{1 − 2�(−�t)}
}∣∣∣∣t
]
, (3.8)

where

EtE [Su|t] = 
(m+1
2
)


(m
2
)

√
σ 2

2m

∫ ∞
0

W(t)t− 1
2 dt

Et

⎡
⎣t− 1

2

⎧⎨
⎩
√

2

π
e

−�2
t

2 +�t{2�(�t)− 1} −�t{1 − 2�(−�t)}
⎫⎬
⎭
⎤
⎦

=
∫ ∞
0

√
2

π
t−

1
2 e

−�2
t

2 W(t)dt. (3.9)
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4. Comparison

In this sectionwe compare the proposed estimatorswith respect to theirMSE functions. Themean-

square relative efficiency (MRE) of θ̂n compared to θ̃n may be written as

MRE(θ̂n; θ̃n)= M1(θ̃n)

M2(θ̂n)

= (K1K2 − K2
3 )

−1σ 2
ε

(K−1
1 +�2K

−1
4 )σ 2

ε

= K1K4K2

(K4 +�2K1)(K1K2 − K2
3 )

= K2

K4 +�2K1

. (4.1)

The efficiency is a decreasing function of�2. Under Ho : β = βo it has the maximum

MRE(θ̂n; θ̃n) = K2

K4

. (4.2)

In general to compare θ̂n and θ̃n, using (4.1) MRE(θ̂n; θ̃n) > 1 whenever�2 < ( K3
K1
)2.

The relative efficiency of θ̂PTn compared to θ̃n is given by

MRE(θ̂PTn ; θ̃n) = [1 + g(�2)]−1, (4.3)

where

g(�2) = −K∗
2
2
K1

K2

{
G
(1)
3,m

(
1

3
F1,m(α);�2

)

+�2

(
G
(0)
5,m

(
1

5
F1,m(α);�2

)
− 2G

(0)
3,m

(
1

3
F1,m(α);�2

)) }
. (4.4)

Under Ho, it has the maximum value

MRE(θ̂PTn ; θ̃n) =
{
1 − K∗

2
2
K1

K2

G
(1)
3,m

(
1

3
F1,m(α); 0

) }−1

. (4.5)

In general, MRE(θ̂PTn ; θ̃n) � 1 according as

�2 �
G
(1)
3,m

(
1
3
F1,m(α);�2

)
2G
(0)
3,m

(
1
3
F1,m(α);�2

)
− G

(0)
5,m

(
1
5
F1,m(α);�2

) . (4.6)

The relative efficiency of θ̂ Sn compared to θ̃n, is given by

MRE(θ̂ Sn ; θ̃n) = [1 + h(�2)]−1, (4.7)

where

h(�2)= M
−1
1 (θ̃n)

{
c2k∗

2
2
k4

−1σ 2 − 2cK∗
2
2
K4

−1σ × 
(m+1
2
)


(m
2
)

√
σ 2

πm

∫ ∞
0

t−1e
−�t
2 W(t)dt

}
.

(4.8)
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Fig. 1. Graph of bias function for PTE.

Fig. 2. Graph of bias function for PTE.

It is a decreasing function with respect to�2. Under Ho, it simplifies to

MRE(θ̂ Sn ; θ̃n)=
{
1 + M

−1
1 (θ̃n)

[
c2k∗

2
2
k4

−1σ 2 + 4ψ ′(0)cK∗
2
2
K4

−1

× 
(m+1
2
)


(m
2
)
√
πm

]}−1

� 1 (4.9)

whenever by Remark 1.1

0 < c �
−4
(m+1

2
)√

πm
(m
2
)
ψ ′(0). (4.10)



1686 M. Arashi et al. / Linear Algebra and its Applications 437 (2012) 1675–1691

Fig. 3. Graph of bias function for SE.

Fig. 4. Graph of risk function for UE and RE.

4.1. Optimum level of significance of θ̂PTn

Following Section 3.2.4 of Saleh [22], denote the relative efficiency of θ̂PTn compared to θ̃n by

MRE(α,�2). Its maximum value occurs at �2 = 0 as given in (4.5), i.e. max�2 MRE(α,�2) =
MRE(α, 0). Subsequently, in order to obtain preliminary test estimator with a minimum guaranteed

efficiency E0 say, we adopt the following procedure: If �2 � 1, we always choose θ̃n. However, in

general, �2 is unknown, so there is no way to choose an estimator that is uniformly best. For this

reason, we select an estimator withminimum guaranteed efficiency, such as E0, and look for a suitable

α from the set A0 =
{
α|MRE(α,�2) � E0

}
. The estimator chosen maximizes MRE(α,�2) over all
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Fig. 5. Graph of risk function for PTE.

Fig. 6. Graph of risk function for PTE.

α ∈ A0 and�2. Thus, we solve the following equation for the optimum α∗:

min
�2

MRE(α,�2) = E(α,�2
0(α)) = E0. (4.11)

The solution α∗ obtained this way gives the PTE with minimum guaranteed efficiency E0.

5. Numerical example

In this section, we proceed by a numerical example based on the multivariate Student’s t (Mt)

distribution, a well-known member of ECDs. First of all assume that ε in the model (1.1), follows a Mt

distribution with the scale matrix
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Fig. 7. Graph of risk function for SE.

Fig. 8. Graph of MRE (RE vs UE).

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.57 0.85 1.56 1.79 1.33 0.42

0.85 37.00 3.34 13.47 7.59 0.52

1.56 3.34 8.44 5.77 2.00 0.50

1.79 13.47 5.77 34.01 10.50 1.77

1.33 7.59 2.00 10.50 23.01 3.43

0.42 0.52 0.50 1.77 3.43 4.59

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ν degrees of freedom with the pdf as in (1.6). Then we have

W(t) = ν(νt/2)ν/2−1

2eνt/2
(ν/2)
.
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Fig. 9. Graph of MRE (PTE vs UE).

Fig. 10. Graph of MRE (PTE vs UE).

The respective expressions for G
(h)
p,m(q, �

2), E(h)
[
χ−2
p (�2)

]
and E(h)

[
χ−4
p (�2)

]
can be found in Khan

[15].

Further assume that x′ = (2 6 1 8 3 4).

According to the result of Section 3, the graphs of PTE and SE biases vs� are displayed in Figs. 1–3.

As it can be realized, when the both level of significance α and degrees of freedom ν increase the bias

of PTE decreases. The bias of SE performs the same as ν increases. Similar conclusions can bemade for

the MSE graphs in Figs. 4–7.

For the MRE graphs in Figs. 8–11, it can be concluded that the efficiency of θ̂n relative to θ̃n is a

decreasing function as discussed in Section 4. MRE(θ̂PTn ; θ̃n) is a decreasing function relative to� and

also for small level of significance α, the UE performs better than the PTE. This scenario has a little bit
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Fig. 11. Graph of MRE (SE vs UE).

Table 1

Maximum and minimum guaranteed efficiencies for n = 6.

α ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05Emax 1.12 1.27 1.47 1.75 2.16 2.82 4.06 7.23 32.83

Emin 0.75 0.60 0.50 0.43 0.38 0.34 0.30 0.27 0.25

�2
min 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10 12.10

0.1 Emax 1.09 1.21 1.35 1.54 1.78 2.11 2.60 3.38 4.81

Emin 0.84 0.73 0.64 0.57 0.52 0.47 0.44 0.40 0.38

�2
min 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70

0.15 Emax 1.07 1.16 1.27 1.40 1.56 1.75 2.01 2.35 2.83

Emin 0.89 0.80 0.73 0.67 0.62 0.58 0.54 0.50 0.40

�2
min 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10

0.20Emax 1.06 1.13 1.21 1.30 1.41 1.53 1.69 1.87 2.10

Emin 0.92 0.85 0.79 0.74 0.70 0.66 0.62 0.59 0.56

�2
min 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.20

0.25Emax 1.04 1.10 1.16 1.23 1.30 1.39 1.49 1.60 1.73

Emin 0.94 0.88 0.84 0.80 0.76 0.72 0.69 0.66 0.64

�2
min 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60

0.30Emax 1.03 1.08 1.12 1.17 1.23 1.29 1.35 1.42 1.51

Emin 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.70

�2
min 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20

0.35Emax 1.03 1.06 1.09 1.13 1.17 1.21 1.26 1.30 1.36

Emin 0.95 0.93 0.90 0.88 0.85 0.83 0.80 0.78 0.76

�2
min 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90

change for the degrees of freedom ν; its behavior can be verified from Fig. 10. Finally the shrinkage

estimator performs better than the unrestricted estimator as ν increases.

To conclude this section, Table 5 gives selected values of ξ = K∗
2
2
K1

K2
and α = 0.05(0.05)0.35 for

the procedure of choosing the level α∗ of significance.
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