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1. Introduction

Consider a simple linear model

Y=01+Bx+e=An+e, A=[1,x], n=©4,p), (11)
where Y = (Yi,...,Yy) is the response vector and ¥ = (xq, ..., xp)  is a fixed vector of known
constants, while € = (&1, ..., &,)’ is the n-vector of random errors distributed according to the law

belonging to the class of elliptically contoured distributions (ECDs), EC,(0, o2V, ¥) for ¢ € Rt and
un-structured known matrix V € S(n), where S(n) denotes the set of all positive definite matrices of
order (n x n) with the following characteristic function

Ge(t) = ¥ (azt’Vt) (12)
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for some functions v : [0, c0) — R say characteristic generator [9].
If € has a density, then it is of the form

1 1
fle) x|o?V| 2g (; e’V_le) : (13)

where g(.) is a non-negative function over R™ such that f(.) is a density function w.r.t (with respect
to) a o -finite measure w on R?. In this case, notation & ~ EC,(0, 02V, g) would probably be used.

Some of the well-known members of the class of ECDs are the multivariate normal, Kotz Type,
Pearson Type Il and VII, multivariate Student’s t, multivariate Cauchy, Logistic, Bessel and generalized
slash distributions. Dating back to Kelker [14], there are many known results concerning ECDs, in
particular the mathematical properties and its application to statistical inference. These results have
been put forward by Muirhead [21] and Fang et al. [9] among others .

It is sometimes difficult to have complete analysis of the regression model with ECD errors of the
type (1.2) or (1.3). To overcome such difficulties, one may consider any of the three sub-classes of ECDs,
namely,

(i) scale mixture of normal distributions,
(ii) Laplace class of mixture of normal distributions, and
(iii) signed measure mixture of normal distributions.

General formula for the above mixture of distributions is given by

fo@ = [~ Wb 0,010 (0, (14)

where ¢y (g 1~152y)(.) is the pdf (probability density function) of N, (0, t~'o?V).
(a) If
yo? v/2 Jo?
W(t) =2 (I‘()//Z))_1 (2) t_(V'H)e_?, 0<vy, 02,7 <00 (1.5)
then we have

fle) =

r (”"‘TV) |V|_% e'V-le —3(+y)
1+ , (1.6)
(ry)"2T (y/2) o™ ( yo? )

where E(¢) = 0 and E(ee’) = ’;Vf;v =oZfory > 2.
(b) Chu [7] considered

W(t) = 2m) 5 |o2V|2t 2 71 [f (s)], (1.7)

£71[f(s)] denotes the inverse Laplace transform of f(s) with s = [’ (¢*V)~'x/2]. For some
examples of f(.) and W(.) see Arashi and Tabatabaey [5].

The inverse Laplace transform of f (.) exists provided that the following conditions are satisfied.

(i) f(¢) is differentiable when t is sufficiently large.

(ii) f(t) = o(t ™ ™)ast — oo, m > 1.
Although, it is rather difficult to derive the inverse Laplace transform of some functions, we
are able to handle it for many density generators of elliptical densities. We refer the readers to
Debnath and Batta [8] for more specific details.

The mean of € is the zero-vector and the covariance-matrix of € is
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00
%, = Cov(e) = / Cov(e|)w(t)dt
JO
00
=/ W(t)Cov [Ny(0, £ 102V) | e
0

= (/OOO t_lw(t)dt) ov (18)

provided the above integral exists.
Comparing the models (1.3) and (1.4), since £ = Cov(e) = —2v’(0)o 2V, it can be concluded
that

—2v/(0) = /OOO t~Iw(t)de.

Now suppose that X ~ EC,(ut, V, g). Then itisimportant to point out that since [, f(x)dx = 1,
using Fubini’s theorem we have

= /x/o WO, (u.c-1v) R)dtdx
:/O W(r)L¢Nn(u,t—1v)(X)dxdt

= /OOO W(t)dt.

Thus for nonnegative function W(.), it is a density. For nonnegative function W(.), the elliptical
models can be interpreted as a scale mixture of normal distributions.
Srivastava and Bilodeau [27] considered the signed measure, W (t) such that

—~
(@)
~—

(i) /Ooo =Wt (dt) < oo,
(ii) /0 * W dn) < oo, (1.9)

where W — W™ is the Jordan decomposition of W in positive and negative parts. Note that
from (i) — (ii) of (1.9),

/OOo Iwdr) < oo (110)

and thus, Cov(e) exists under the sub-class defined above.
This subclass contains the subclass defined by (b).

Remark 1.1. Regarding the above classifications, we should take the following notes:

1. In all the above classes we have
/ 2 *® 2
3. = 29/ (0)02V = (/ - W(t)dt) o2V
0

resulting in —2v/(0) = [° ¢~ wi(t)dt.

2. The subclass (a) is neither contained in subclass (b) nor in the subclass (c). However, subclass
(b) in contained in the subclass(c). Thus, all the implications about the subclass (c) can be used
for the subclass (b).

3. For the subclass (c) we can assure that —2v/(0) = fg’o t~W(t)dt exists. However it may not
exist for the subclass (b).
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Throughout the paper, we assume that

ol = =2y’ (0)0”. (1.11)

There have been many studies in the area of the ‘improved’ estimation following the seminal work
of Bancroft [6] and later Han and Bancroft [10]. They developed the preliminary test estimator that
uses uncertain non-sample prior information (not in the form of prior distributions), in addition to the
sample information. Stein [29] elegant approach dominates the usual maximum likelihood estimators
under the squared error loss function. In a series of papers Saleh and Sen [25,26] explored the prelimi-
nary test approach to Stein-rule estimation. Many authors have contributed to this area, notably Judge
and Bock [13], Stein [28], Khan [15-17], Kibria [18], Kibria and Saleh [19,20], Ahmed et al. [1,2], Saleh
and Kibria [23,24], Hassanzadeh Bashtian et al. [ 11,12], Arashi et al. [4] and Arashi [3]. The recent book
of Saleh [22] presents a comprehensive discussion of this area.

2. Estimation and testing

For convenience we express some notations due to the rest of the work. Let

K =1v 1,

K, =xV7lx,

Kz =1vx=xVv 1,

K=AVvV'A (2.1)

2.1. Estimator of

Based on the LS/ML principle, the unrestricted estimator of n = (@, B) is given by

i=(av'a) (avly)

—1 -
K K3 1'v-ly On
= = . 1. (2.2)
K3 K, Xvly B
Theorem 2.1. Assume in the simple linear model (1.1), Y |6, B, 0% ~ ECy(n, o2V, f); then we have

i~ EG(n,o’K™, f).

Proof. Under the assumption Y|0, 8, 62 ~ Nu(n, o2t~ 'V, f), the exact distribution of #§ follows
No(ny, o2t 71K, where

—1
K= @v-iai= (6
K3 Ky

1 Ky —Ks
Kiko — K3\ —K3 K

Thus we get
o
A ®) =/0 WA, (0. 0% 'K dr,

which completes the proof. O
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Also the unbiased estimator of o2 is S2 given by

S2=m N (Y-AD'V I (Y—-A]); (m=n-2). (2.3)

u —
2.2. Test of intercept parameter

At this step, first we propose test statistic of the parameter 1, and then we focus on the problem of
estimation of the intercept parameter in a more precise setup.

Theorem 2.2. Let

Q={(n,0.V):neR? o eR",V>0}, and
w={no,V): 7727702(90»,80)/7 Mo ERZ,G €R+,V> 0}.

Moreover, suppose y% f(y) has a finite positive maximum yy. Then the LR criterion for testing the hypothesis
H, : n = n, is given by

o1 . ~
£ =5, | = o) KG = no)|
and it has the following modified generalized non-central F distribution

(21

m

g;m(l:n) = Z

>0r B (242, 1) (14 22,

) %(2+2r+m) ’
2

where A% = £ /a2 for& = (1 — 10)'K(n — 1), and

AZ r [ee] _ A2
1<}h>(A2)=(2) /0 £=he =2 W(t)dt. (2.4)

Proof. For the test of the null hypothesis H, : 1 = 1o VS Ha : ) % 1y, let
Gy = (Y — Ano) V™I (Y — Anp).
Then using Theorem 2.1 we have
Ao ML) (su)”f ()
maxg L(y) oe) fOp)
B [ (Y — A’V (Y — Afj) } B ( ms; )
(Y — Aq,)'V-1(Y — Ajj,) mSg + (11 — 10)'K (1 — o)

1 n
N\t )

Hence, £;* is the LR test for testing the underlying null hypothesis. For its non-null distribution, we
note that under normality £, follows the non-central F-distribution with (1, m) d.f. and non-centrality

’
parameter A? = 7("_"‘;),1’(;3_77")
pleted. O

.Then integrating over t w.r.t. the signed measure , the proof is com-

Accordingly, we have
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Corollary 2.2.1. Under H,, the pdf of £}\* is given by

2
* ([:** _ (m)

(.2) 1+ o

)%(m+m’

which is the central F-distribution with (2, m) d.f.

Corollary 2.2.2. The power function at y -level of significance of £}:*, say, modified generalized non-central
F cumulative distribution function of the statistic £;* is given by

1 1 m
Gpm(ly; A7) = > —KO(AY), [f (p + 2r), f] ,
= 2 2

where I, (., .) is the incomplete Beta function, x = mlﬁ andl, = Fi m(y).
Y

Straightforward consequences of Theorem 2.2, gain the test statistics for individuals H, : 6 = 6y
and H, : B = B,.In order to test the null hypothesis H, : 8 = B, against an alternative Hy : 8 # B,,
one uses the test statistic £, defined by

o .
o B BoKa 1<4=( Ky )

Ly =" —
" s2 KiKy — K3

Then the exact distribution of £, under H, has the central F-distribution with (1, m) d.f. Similarly, for
the test of H, : 0 = 6, against Ha : 6 # 6, one uses the test-statistic

Gy — 6,)2K: K -1
£m=LL7g—3 &:(22) . (2.5)
52 KKy — K2

The exact distribution of £, under H, is central F-distribution with (1, m) d.f. Note that based on the
virtue of (2.5), one can directly conclude the following result.

Lemma 2.1. The LR criterion Ly, for testing the hypothesis H, : 6 = 6, has the following distribution

(l)%(wzr) ﬁ%(zri])Kr(o)(Az)

m

gT,m(ﬁn) = z
>0t B (2 1) (14 L,

where A? = & /o2 for € = K5(0 — 0,)°.

)%(1+2r+m) ’

Now we turn our attention to estimation of the intercept parameter 6 when it is suspected that
the slope parameter 8 may be f3,. As a special case it covers the two-sample problem of estimating one
mean when it is suspected that the two means may be equal. Also, one-sample estimation of mean is
obtained by letting x = 0 and prior information 6 = 6,

2.3. Estimators of 0

In addition to én and SLZI, we present a few more estimators of 6 and 062. First of all note that we
have

O =K "VTY — K K3 By
=KY — KB, K=K "'V KF =K 'Ks. (2.6)
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Replacing V by I, in (2.6), results én =Y - )?En as in Saleh [22, p. 56].
If we suspect S to be ,, then the restricted estimator (RE) of 6 is given by

On = KIY — K3 Bo. (2.7)

Now following Saleh [22], we define the estimators given below:
Preliminary test estimator (PTE) of 6 is given by

O =0, 105 < Fr (@) + 6y 1L} = Fy (@)

=0n + (Bn — BOIGI(LE < Fi m(a)), (2.8)

where F; () is the a-level upper critical value of a central F-distribution with (1, m) d.f. and I(A) is
the indicator function of the set A.
Shrinkage type estimator (SE) of 8 is given by

*1]
Lr2
n

05 = 0 + c(Bn — Bo)K} , >0 (2.9)

3. Properties of intercept parameter

In this section, we derive the exact bias and MSE expressions for the proposed estimators of the
intercept parameter.

Lemma 3.1 (Saleh, [22]). IfZ ~ N(A, 1), then

E(Z]) = \/ze +AQOMA) 1)

E[ z } =1-—2®(—A)

1Z| ’

where ®©(.) is the cdf of the standard normal distribution.
3.1. Bias expressions of the estimators

The biases of én and én are obvious and given by

b1(6n) =0, by(6n) = K5 (B — Bo)- (31)
For the PTE, we have
b3 (65") =E [0 + (Ba — BIGI(L) < Fym(e)) — 0]
= IGE[(Br — BI(L} < Frm(@))]
t~1o}

Zz
=F {E EZI| —— < Fy (o) )|t
t K (x%/m 1,m( ))I

2
N [(ﬂ - &N@(“)}

X2/m

1
= K3 /Kaoe AGS (gFLm(a); AZ) , (3.2)
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where A2 = tA? = t(B=P)Ka ’3") K4 and G(h) ;.) is given by

00 p+m+2r
+2r m
VNS EDY %Kﬁmwm [p— —] ;
r—o I'(55)I'(m/2) 2 2
_Dq
m+pq’
Finally for the bias expression of SE, taking Z = ('g”_fif"l)‘/zm we have
GE
o - - 1)1
ba(0;) =E [en (B — BIKG |37 — 9]
— K [c(ﬁ B e o }
— Iy n — Po
= Bo)VK.

w, _1
= cK3Ky 2E\E|Z| =

)

(3.3)

Since Z|t ~ N(A¢, 1), Ay =/ (ﬁt ff‘gzk“, tm]Su [t ~ xm and Z|t is independent of53|t, using Lemma

3.1 the expression in (3.3) simplifies to

) v —1 [
ba(65) = KKy~ /0 W()E [z 2u ]dt
KiK, "2 /OOW(t)E J mSi ,/t_102|t El el a
=_C -
2™ t—1o2 m 1Z|

m+1
2
(m+1)

2
= K, e /(T/ I (1 — 20 (—Ay))dt.

3.2. MSE expressions of the estimators
Using Theorem 2.1 we get
My (6y) = 02Ka (K1 Ky — K2) 71,
For the restricted estimator, applying Theorem 2.1 we have
~ ~ . 5 2
My () =E [0 — 0) + K5 (B — Bo)]
=Mi(6n) + K3°E(Bn — o) + 2UGE [(én —0)(Ba — Bo)]

2 -1, 2| Kio
=0 K (KK — K3) ™' + K m +(B— o) | — 2K3
3

(3.4)

(3.5)
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Ky — K3K3) + Ka 'A% (KK — K3)
= g,
(KiKy — K3) ¢
- (K;l + A% ") 0. (3.6)

For the MSE of PTE, using equation (3.2.9b) of Saleh [22] we can obtain

Ms @) = E [(Gr — 0) + K3 (B — Bo)I(C], < Fum(@)]
=M1 ) + G °E [ (Ba — Bo) (L < Frm(@)]
+2KGE[(6n — 0) (Bn — P (L < Fim(@))]

2
=My (6n) + K3 *Ky 7 'E; [E [(r—lag)ﬂ( 22 < FLm(a)) |r“
Xim/m

ZZ
—21<;‘21(4]Et[E [(rlaj)zzl( 5 < F1,m(a))|t”
X /m
ZZ
+21<§21<4‘106A5t [E [,/Nagﬂ( 2/ < F1,m(oz))|t“
Xm/m

= 02Ky (K1Ky — K2) ™" + 202 A2K32K, ! [G(O) (3& m(@): A )}

1 1
—o 2K %Ky ! [G“) (35 m(@); Az) + A% (EFL,T,(a); AZ)]. (3.7)
Finally, for the shrinkage estimator, using Lemma 3.1 we have
~ - - 1 2
Ma(@5) = E [+ c(Bo — BoIKF1371! =6
5 2,52 5 2| pk =2 * 5 3 *3 -1
=My @) + CGE | (o — o132 |+ 205E | G — 0) (B — Pl ||
=M;(6y) + K2R, TE (52)
z
—2cK;} K;lEt[\/t 152 E[Su( At)”
1Z| |Z|
=02l (KiKy — K371 + Pk3Pky "o

1 2 -af
— 20K} 2Ky o EE[Sult)E [t_f (,/—eT[ T AL2D(A) — 1)
T

—A{1— 2<I>(—At)}”t], (3.8)

E.E [Sylt] F(m;l),/(’2 /Oow(t)r%dr
t u - P
F(%) 2m Jo

where

:/ \/> -3t ZoW(t)dt. (3.9)
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4. Comparison

In this section we compare the proposed estimators with respect to their MSE functions. The mean-
square relative efficiency (MRE) of 6, compared to 8,, may be written as

Ml (én)
M (6n)
(KK, —K3) 1o}
K+ A2k D2

MRE(0,; 6) =

K1 K4Ky
(Kq + A2K)) (K1 Ky — K3)
K
=2 (41)
K4 + A2K;
The efficiency is a decreasing function of A%. Under H, : 8 = S, it has the maximum
A~ K,
MRE(Op; 0p) = —. (4.2)
Ky
In general to compare én and 6y, using (4.1) MRE(én; én) > 1 whenever A% < (%)2.
The relative efficiency of é,‘:T compared to én is given by
MRE(,"; 0n) = [1 +g(aH)] ™", (43)
where
K32Ky (
g(a?) = —2—[65;( Fim(@); A )
K 3

+A2 (G(O) (SFlm(oz) A) 265, (3F1m(oz) A ))] (4.4)

Under H,, it has the maximum value

~ ~ K* K -1
MRE('"; 6,) ={ 21< “2 26 (35 m(@); o)} . (4.5)
2

In general, MRE(é,fT; én E 1 according as

G(l) (%Fl,m(a)' AZ)

A% S ) (4.6)
>
265 (3F1m(@); A%) = G, (3F1m(@); 42)

The relative efficiency of é,f compared to én, is given by

MRE(05: ) = [1+h(a%)]™", (4.7)
where

1 (") [o? o o
h(A%) =M; ' (6 {czk*zk o2 — 20Kk, ! 2 —/ t~le 2 Wit dt}.
( ) 1(n) 2 K4 2 I\ F(%) m Jo ()

(4.8)
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Fig. 1. Graph of bias function for PTE.
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Fig. 2. Graph of bias function for PTE.

It is a decreasing function with respect to A2. Under H,, it simplifies to

MRE(6S; 6,) = {1 + M (6n) [c2k;21<4—1az + 4y (0) ek 2Ky !

res ”_] >1 (49)
X——= .
L(3)/mm
whenever by Remark 1.1
A (Mt
0<c< ! )1//(0). (4.10)

JrmI(%)
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Fig. 3. Graph of bias function for SE.
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Fig. 4. Graph of risk function for UE and RE.

4.1. Optimum level of significance ofér’fT

Following Section 3.2.4 of Saleh [22], denote the relative efficiency of é,’;T compared to én by
MRE(e, A?). Its maximum value occurs at A> = 0 as given in (4.5), i.e. max 2 MRE(c, A% =
MRE(, 0). Subsequently, in order to obtain preliminary test estimator with a minimum guaranteed
efficiency Eq say, we adopt the following procedure: If A2 < 1, we always choose 6,,. However, in
general, A2 is unknown, so there is no way to choose an estimator that is uniformly best. For this
reason, we select an estimator with minimum guaranteed efficiency, such as Eg, and look for a suitable

o from the set Ag = {a|MRE(a, A?) > Eo}. The estimator chosen maximizes MRE(c, A?) over all
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Fig. 5. Graph of risk function for PTE.

~ o o R

m— o
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1

Delta

Fig. 6. Graph of risk function for PTE.
o € Ag and A?. Thus, we solve the following equation for the optimum o*:
min MRE(e, A?) = E(a, Aj(@)) = Eo. (4.11)
A

The solution o™ obtained this way gives the PTE with minimum guaranteed efficiency Eg.

5. Numerical example

In this section, we proceed by a numerical example based on the multivariate Student’s t (Mt)
distribution, a well-known member of ECDs. First of all assume that &€ in the model (1.1), follows a Mt
distribution with the scale matrix
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Fig. 7. Graph of risk function for SE.

25
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MRE
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Fig. 8. Graph of MRE (RE vs UE).

[2.57 0.85 1.56 1.79 1.33 0.42 |
0.85 37.00 3.34 13.47 7.59 0.52
1.56 3.34 8.44 5.77 2.00 0.50
1.79 13.47 5.77 34.01 10.50 1.77
1.33 7.59 2.00 10.50 23.01 3.43

| 0.42 0.52 0.50 1.77 3.43 4.59 |

and v degrees of freedom with the pdf as in (1.6). Then we have

v(vt/2)"/2~1

w(t) = 22T (v)2)°
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Fig. 9. Graph of MRE (PTE vs UE).
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Fig. 10. Graph of MRE (PTE vs UE).

The respective expressions for Gf,{',)n (q, A%),EM [XP_Z(AZ)] and E™ [Xp_4(A2)] can be found in Khan
[15].
Further assume thatx’ = (26183 4).

According to the result of Section 3, the graphs of PTE and SE biases vs A are displayed in Figs. 1-3.
As it can be realized, when the both level of significance « and degrees of freedom v increase the bias
of PTE decreases. The bias of SE performs the same as v increases. Similar conclusions can be made for
the MSE graphs in Figs. 4-7.

For the MRE graphs in Figs. 8-11, it can be concluded that the efficiency of én relative to én is a

decreasing function as discussed in Section 4. MRE(OATII3 T. én) is a decreasing function relative to A and
also for small level of significance «, the UE performs better than the PTE. This scenario has a little bit
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Delta

Fig. 11. Graph of MRE (SE vs UE).

Table 1
Maximum and minimum guaranteed efficiencies forn = 6.

a & 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

005Emsx 112 127 147 175 216 282 406 723 3283
Emin 075 060 050 043 038 034 030 027 025
A2, 1210 1210 1210 1210 1210 1210 1210 1210 1210

01 Emsx 109 121 135 154 178 211 260 338 481
Emn 084 073 064 057 052 047 044 040 038
A2, 870 870 870 870 870 870 870 870 870

015Emsx 107 116 127 140 156 175 201 235 283
Emn 089 080 073 067 062 058 054 050 040
A2, 710 710 710 710 710 710 710 710 710

020Emx 106 113 121 130 141 153 169 187 210
Emn 092 085 079 074 070 066 062 059 056
A2, 620 620 620 620 620 620 620 620 620

025Em 104 110 116 123 130 139 149 160 173
Emn 094 088 084 080 076 072 069 066 064
A2, 560 560 560 560 560 560 560 560 560

030Ems 103 108 112 117 123 129 135 142 151
Emn 095 091 087 08 081 078 075 073 070
A2, 520 520 520 520 520 520 520 520 520

035Emsx 103 106 109 113 117 121 126 130 136
Emn 095 093 090 08 085 083 080 078 076
A2 490 490 490 490 490 490 490 490 490

min

change for the degrees of freedom v; its behavior can be verified from Fig. 10. Finally the shrinkage
estimator performs better than the unrestricted estimator as v increases.

*2
7% and @ = 0.05(0.05)0.35 for

To conclude this section, Table 5 gives selected values of £ = 5

the procedure of choosing the level a™* of significance.
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