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The Kitagawa–Takahashi diagram in its commonly used form allows to predict, for cracks of given length
and stress range, the allowable stress range for infinite life. However, caution is advised if a crack ema-
nates not directly from the plane surface but from a sharp, crack-like notch instead. In this contribution, it
is shown that taking the crack length equal to the total flaw depth (sum of notch depth and crack length)
gives non-conservative results. Based on a simple mechanical model, a 3-dimensional Kitagawa–
Takahashi diagram considering the build-up of crack growth resistance as well as the influence of the
notch depth is developed. Comparison of model predictions and experimental results shows good
agreement.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

The Kitagawa–Takahashi (KT) diagram [1] is a widespread tool
for fracture mechanics based design of components and fracture
control concepts such as the safe-life or fail-safe concepts. It com-
bines the fatigue crack growth threshold and the fatigue endurance
limit into a single plot, thereby defining the area of non-propagat-
ing cracks (leading to infinite fatigue life). Using the fictitious
intrinsic crack length a0,H introduced by El Haddad [2], a smooth
transition from the threshold of long cracks to the endurance limit
is given (Fig. 1). This intrinsic length is computed as

a0;H ¼
1
p

DKth;lc

Y � Dre

� �2

ð1Þ

and the endurance limit stress range dependent on the crack size a
– i.e., the threshold stress range for crack propagation – is calcu-
lated by

Drthða0;HÞ ¼
DKth;lc

Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � ðaþ a0;HÞ

p ; ð2Þ
where DKth,lc denotes the fatigue crack growth threshold for long
cracks, Dre the endurance limit stress range of polished specimens
without flaws, and Y is the geometry factor of the crack.

However, for cracks which have not built up crack closure com-
pletely (short cracks) the threshold of stress intensity range can be
significantly smaller [3–7] and as a consequence the approxima-
tion according to El Haddad is non-conservative. So the build-up
of crack closure has to be considered in the KT diagram. One
method to describe the build-up of crack closure was proposed
by McEvily and Minakawa [8], using an exponential function. Cha-
petti [9] used this exponential function to calculate the threshold
stress for physically short cracks and showed that the threshold
stress prediction obtained using the El Haddad correction is par-
tially significantly higher, and therefore non-conservative. Similar
behaviour has been shown by Tabernig et al. [10]. In other words,
the endurance limit stress for physically short cracks is smaller
than that one predicted using the intrinsic length scale a0,H accord-
ing to El Haddad (see Fig. 1).

However, whereas Chapetti’s approach to the KT diagram
accounts for short crack effects, it still neglects the influence of
the depth of a pre-existing flaw (which may be conveniently
regarded as a sharp notch). In order to avoid non-conservative pre-
dictions, especially in the context of fracture control concepts, it is
indispensable to account for effects due to the initial flaw. Tanaka
and Akiniwa [4] investigated experimentally the influence of notch
depth on the KT diagram and showed that the region of non-prop-
agating cracks becomes smaller with increasing initial notch depth.
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Nomenclature

Da crack extension length
a0 notch depth
a0,H fictitious intrinsic length scale following El Haddad
a total crack length
A elongation at fracture
B thickness of specimen
E elastic modulus
HV Vickers hardness
DK stress intensity factor range
DKth threshold of intensity factor range for crack propagation
DKth,eff intrinsic (effective) threshold stress intensity factor

range
DKth,lc long crack growth threshold stress intensity factor

range

li fictitious length scales
L length of specimen
R load ratio
Rp0,2 0.2% offset yield stress
Rm tensile strength
Dr stress range
Dre endurance limit stress range of polished specimens

without flaws
Drth threshold stress range for crack propagation
Drth,lc threshold stress range for crack propagation calculated

using DKth,lc

vi weighting factors
W width of specimen
Y geometry factor
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In this paper, a modified KT diagram is developed that accounts for
all of the aforementioned effects and is therefore readily applicable
in the context of fracture control concepts in mechanical design.
Fig. 2. Schematic illustration of the proposed mechanical model: emanating from a
deep sharp notch a0, a crack of extension Da grows. Only on this crack extension Da
the build-up of crack closure is possible.
2. Build-up of crack closure

The model for the build-up of crack closure at the threshold as
proposed by the authors in [11] is based on a simple mechanical
model as shown in Fig. 2.

To calculate the stress intensity factor

DK ¼ Y � Dr �
ffiffiffiffiffiffiffiffiffiffi
p � a
p

ð3Þ

the total crack length

a ¼ a0 þ Da ð4Þ

is used, which is a combination of notch depth a0 and crack exten-
sion Da.

In contrast, for the build-up of crack closure not the total crack
length a should be used, except the crack starts immediately at the
surface of a component (a0 = 0). If a crack starts from a notch (e.g.,
real design notches, casting defects or notches caused due to a
forging lap, inappropriate handling, foreign object damage, et cet-
era) Da must be used, because the crack flanks can be in contact
only over this length. In other words, the notch depth a0 is not sub-
ject to any crack closure even under compression loading; only by
the crack extension Da the build-up of crack closure is possible.
Fig. 1. Kitagawa–Takahashi diagram, showing the areas of non-propagating cracks
according to El Haddad and Chapetti, respectively.
For the description of the threshold build-up starting from the
intrinsic value of DKth,eff at a crack extension of Da = 0 to the long
crack growth threshold DKth,lc at large Da, the empirical approach

DKth ¼ DKth;eff þ ðDKth;lc � DKth;eff Þ � 1�
Xn

i¼1

v i � exp �Da
li

� �" #
ð5Þ

with the constraint
Fig. 3. Illustration of the crack resistance curve caused by two different closure
mechanisms; each closure mechanism is built up completely over a specific crack
extension (described by the fictitious length scales li).
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Xn

i¼1

v i ¼ 1 ð6Þ

is used [11]. The li can be interpreted as fictitious length scales for
the formation of crack closure effects (see Fig. 3), similar to El Had-
dad’s a0,H, and determined in conjunction with the vi by fitting
experimentally determined crack resistance curves (where DKth is
plotted against Da). Such crack resistance curves may be obtained,
e.g., from SENB (Single Edge Notched Bending) specimens with dif-
ferent notch depth, using the constant load increasing technique
following the approach of Tabernig et al. [10]. The description of
the increase of DKth with crack length is in principle similar to
the idea of McEvily and Minakawa [8]. However, the different li in
this approach take into account that different crack closure mecha-
nisms need different lengths to build up completely.
Fig. 4. Crack resistance curve: experimental data points and analytically estimation
curve from Eq. (5).

Table 2
Parameters for the model predictions for 25CrMo4.

Parameter Value Unit

DKth,eff 2.5 MPa m1/2

DKth,lc 14.65 MPa m1/2

a0,H 0.113 mm
l1 0.08 mm
l2 1.55 mm
v1 0.45 –
v2 0.55 –
Y 1.12 –
3. Considered example material

As material for the experimental investigations, the QT steel
25CrMo4 was chosen. The material has a bainitic microstructure
without observable preferred orientation and a hardness of
�245 HV10. In the tensile test, a 0.2% offset yield stress of
512 MPa, a tensile strength of 674 MPa, and an elongation at frac-
ture of 18.9% are obtained. The material properties are summarized
in Table 1.

For determining the crack resistance curve (see Fig. 4) of the
material, SENB specimens measuring L = 100 mm, B = 6 mm,
W = 20 mm with different notch depths a0 (0.35 mm, 1 mm,
5.3 mm) were machined. The notches were sharpened by means
of razor blade polishing with diamond paste (1 lm). The samples
were then compression pre-cracked at a load ratio of R = 10 to
obtain a fatigue pre-crack. The samples are subjected to cyclic
loading under eight-point bending in a resonance test rig at a test-
ing frequency of 108 Hz. The crack growth is measured using the
direct current potential drop (DCPD) method. The experiments
are conducted under step-wise increasing constant loads. More
detailed information about the experimental procedure to deter-
mine the crack resistance curve of this material can be found in
[11]. The determined parameters for the model predictions are
shown in Table 2.
4. Considering various notch depths in the KT diagram

The threshold stress range for crack propagation considering
the model for build-up of crack closure introduced in Section 2
can now be calculated using Eqs. (3)–(5):

Drth¼min
DK th;effþðDK th;lc�DK th;eff Þ � 1�

Pn
i¼1v i �exp �D

li

� �h i
Y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � ða0þDaÞ

p ;Dre

0
@

1
A;
ð7Þ

where for very small total crack lengths the threshold stress range is
limited by the fatigue endurance limit of polished specimens with-
out flaws Dre.
Table 1
Material properties for 25CrMo4.

Material property Value Unit

E 216 GPa
Rp0,2 512 MPa
Rm 674 MPa
A 18.9 %
HV 245 HV10
Using Eq. (7), the threshold stress range for any notch depth a0

and crack extension Da can now be determined. In Fig. 5a, a three-
dimensional extension of the KT diagram is shown, varying both
the notch depth a0 and the crack extension Da. In Fig. 5b, in addi-
tion the conventional threshold stress range

Drth;lc ¼
DKth;lc

Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � ða0 þ Daþ a0;HÞ

p ð8Þ

calculated using El Haddad’s approach, Eq. (2), is plotted (grey sur-
face). It is assumed that a0 and Da are small compared to the com-
ponent size, and that the stress gradients are small. A comparison
between these surfaces shows that they are congruent for long crack
extensions Da (i.e. for cracks which have built up their crack closure
completely). However, for short crack extensions a lifetime estima-
tion based on El Haddad’s approach can lead to non-conservative
results, because crack propagation is possible also at stress ranges
far below the limit given by Eq. (8) (and actually most likely, as
Fig. 5b implies). To emphasize the difference between the conven-
tional KT diagram and the new approach, cuts have been made
through this 3-dimensional illustration of the KT diagram along
the a0 and Da directions. Fig. 6 shows one at a constant notch depth
(a0 = 1 mm, curve 1) and another at a constant crack extension
(Da = 1 mm, curve 2). The lines 3 and 4 represent the respective
intersections with the non-conservative threshold stress range
according to Eq. (8). Here, the cuts were also done at constant notch
depth or constant crack extension, respectively, of 1 mm.

A comparison of these curves shows clearly why it is useful to
account separately for notch depth a0 and crack extension Da,
and therefore to introduce an additional axis in the KT diagram.
In Fig. 7a the cuts from Fig. 6 are compared. The total crack length
a = a0 + Da of all curves is identical for each point on their respec-
tive X-axis. However, curve 1 deals with a constant notch depth a0

and increasing crack extension Da, whereas curve 2 deals with
constant crack extension and increasing notch depth. Curve 3 is,



Fig. 5. Threshold stress range Drth plotted over crack extension Da and notch depth a0 (three-dimensional Kitagawa–Takahashi diagram).

Fig. 6. Cuts in the 3-dimensional KT diagram at constant notch depth a0 = 1 mm and at constant crack extension Da = 1 mm, respectively.

Fig. 7. Comparison of two cracks with the same total crack length a – the green line for a constant notch depth varying the crack extension and the red line with a constant
crack extension varying the notch depth. The conventional prediction following El Haddad, Eq. (8), is shown in black. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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due to the symmetry of Eq. (8), identical for increasing a0 and
increasing Da.

The region of non-propagating cracks predicted from Eq. (7) for
a constant notch depth (under curve 1) is now completely different
to the region predicted from a constant crack extension (under
curve 2), although the total crack length a is the same for each
point of the X-axis. As the fatigue crack builds up crack closure only
with increasing crack extension Da, curve 1 starts at a low limit of
stress ranges where no crack propagation occurs corresponding to
the intrinsic crack growth threshold and increases gradually due to
the build-up of closure until it reaches the long crack prediction
given by the inclined branch of curve 3. Curve 2 for constant crack
extension Da = 1 mm lies somewhat below the conventional El
Haddad prediction (Eq. (8), curve 3) as crack closure is not yet fully
developed at Da = 1 mm. In contrast, Fig. 7b shows the analogous
curves for a0 = 5 mm and Da = 5 mm. Here, crack closure is fully



Fig. 8. Limiting curves for non-propagating cracks in dependence of notch depth a0

and total crack length a = a0 + Da.

Fig. 9. Threshold stress range against crack extension emanating from different
notch depths.

Fig. 10. Comparison of the crack extension predicted from the threshold stress range
5.39 mm.
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developed for curve 2, and so this curve is identical to the conven-
tional El Haddad prediction. Curve 1 shows again the gradual
build-up of crack closure until it approaches the long crack
prediction.

If one plots the intrinsic threshold for crack propagation DKth,eff

and the long crack threshold for crack propagation DKth,lc in a dou-
ble logarithmic diagram against the total crack length a = a0 + Da, it
is rather easy to estimate the limiting curves for non-propagating
cracks. The threshold stress range Drth of non-propagating cracks
of total length a = a0, extension Da = 0, and therefore non-existent
closure, is given by:

Drthða ¼ a0Þ ¼
DKth;eff

Y � ffiffiffiffiffiffiffiffi
pa0
p ð9Þ

Now it depends on the length of the notch how steep the limit-
ing curve is in the beginning. The deeper a notch, the steeper is
the initial increase of the limiting curve. After a certain increase
the limiting curve becomes shallower and finally approaches the
asymptotic line given by the long crack threshold DKth,lc, see also
Fig. 8. Here for different notch depths the associated limiting curve
for non-propagating cracks are plotted over the total crack length
a. The curves are limited by an upper bound due to the endurance
limit.

In Fig. 9, the threshold stress range for various notch depths a0

is plotted against the crack extension Da only. One can see that, for
shallow notches, crack closure is not built up sufficiently fast to
generate cracks which stop after a certain crack extension. That
means that the region of non-propagating cracks (the area below
the threshold stress range) is much larger for cracks emanating
from a shallow notch or from a smooth surface than for cracks
emanating from deep notches. Moreover, from this figure one
can easily extract the allowable crack extension for a given applied
stress range. Supposed we have an applied stress range of 100 MPa
and a notch of 1 mm depth. For these conditions the crack is able to
grow until a crack extension of approximately 0.1 mm is reached.
Then the crack will arrest, whereas for a notch of 5 mm depth an
applied stress range of 100 MPa would lead to finite life (the corre-
sponding curve for non-propagating cracks does not reach the
value of 100 MPa).

To verify the model predictions, experiments with three differ-
ent notch depths (0.813 mm, 2.19 mm and 5.39 mm) were per-
formed. In Fig. 10 the theoretically possible crack extensions due
to the predicted threshold stress curves are drawn as red dashed
lines. The crack can grow until the crack extension Da intersects
the predicted threshold curve, where crack arrest occurs. Subse-
quently, the load may be increased until either crack arrest occurs
with experimental results for samples with different notch depths a0 = 0.81, 2.19,



Table 3
Comparison between experimental and predicted threshold stress range.

Notch depth a0 (mm) Experimental determined Da (mm) Threshold stress range Drth (MPa) Discrepancy (%)

Experiment Prediction

0.813 0.011 51.2 57 10.2
0.042 79 84.6 6.6
0.1 112 113.6 1.4
0.185 133.4 130.4 2.3

2.19 0.094 58 70.3 17.5
0.135 74 78.5 5.7
1.181 90.4 93.8 3.6

5.39 0.055 28.7 37.2 22.8
0.114 42.7 51.8 17.6
0.313 56.5 60.6 6.8
2.805 68.9 75.4 8.6
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again or the crack propagates to finite life. The experimentally
determined crack extensions until crack arrest occurs are drawn
as green points in the diagrams. As can be seen from Fig. 10, good
agreement between model predictions and experiment is
observed. Table 3 compares the experimental and the predicted
threshold stress range. As it can be seen, the percentage discrep-
ancy between experiment and prediction is higher the smaller
the crack extension length Da. In general, the experiments showed
a slightly lower threshold stress range than the prediction. There-
fore, for a damage tolerance assessment of cyclically loaded com-
ponents, a safety factor in the threshold predictions has to be
taken into account and/or the fit of the crack resistance curve
(cf. Fig. 4) should be chosen more conservative.
5. Conclusion

Based on a simple mechanical model, a 3-dimensional KT dia-
gram was proposed considering the fact that a crack consists of
two different contributions, namely the notch depth where frac-
ture surface contact does not take place and a real crack extension.
It was shown that it depends on both contributions – rather than
only on their sum – whether a crack is in the area of non-propagat-
ing cracks or in the finite life area. Finally, the modified KT diagram
was verified using experimental data. Special attention has to be
paid to the fact that the deeper the initial notch is compared to
the total crack length, the lower is the resistance against crack
propagation. If one does not consider this marked influence of
the initial notch depth, the endurance limit of a component may
be severely over-estimated. In this respect, the modified KT dia-
gram is expected to become a useful tool for the damage tolerance
assessment of notched components.

Finally, especially for possible applications in mechanical design
and damage tolerance assessment, one has to keep in mind the
scope of validity of the proposed model with respect to crack
length, loading and notch geometry:

The derivation has been based on Mode I stress intensity factor
for physically short cracks. Description of crack closure and loading
by the cyclic crack resistance curve and Mode I stress intensity fac-
tors does not allow for a description of the behaviour of micro-
structurally short cracks; this means that the initial crack length
has to exceed the largest characteristical microstructural length
scale. Cracks of this size typically grow in Mode I perpendicular
to the direction of the maximum principal stress; i.e., it has been
implicitly assumed here that the maximum principal stress is per-
pendicular to the crack flanks. Although the examples were given
for alternating loading (load ratio R = �1), the KT diagram can be
constructed easily for any load ratio R: one needs only the appro-
priate crack resistance curve measured at that specific R value as
well as the fatigue endurance limit; the latter can be obtained from
high cycle fatigue testing at that R value, or – if at hand – from the
Haigh diagram of the material. As the build-up of crack closure is
modelled by means of the cyclic crack resistance curve, crack
closure at any time depends only on the current crack extension
Da and not on the loading history; i.e., as it is typical for the stan-
dard LEFM approach, overload effects and load history effects other
than the dependence of the stress intensity factor on the current
stress and crack length are not accounted for.

Concerning the geometry of the notch, it is modelled as a sharp
crack of length a0, thereby giving an upper bound for notches of
any acuity. For blunt notches, the diagram will therefore give con-
servative predictions. If the geometry of the initial notch is known
exactly, more precise estimates may be obtained by using appro-
priate geometry factors [12,13]. The modelling concept becomes
then formally equivalent to the fictitious crack method [14] except
that it assesses the behaviour of actually observed cracks; vice
versa, the length of the observed non-propagating cracks could
be useful for predicting the averaging length for the fictitious crack
model.
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