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1. Introduction

Let GLn and Sp2n denote respectively the general linear group and the symplectic group over the
complex number field C. Combinatorics of tableaux provides a unifying scheme to understand repre-
sentation theory of GLn and geometry of the flag varieties and the Grassmann varieties. In particular,
the theory of double tableaux gives a finite presentation of the coordinate ring of the affine space
Mn,m ∼= Cn ⊗ Cm which is compatible with the natural action of GLn × GLm . Moreover, we can explic-
itly describe weight bases of representation spaces from the combinatorial structure of tableaux.

In this paper, we develop a parallel theory for the Sp2n-nullcone Nk,2n which is defined by
Sp2n-invariant polynomials on the space Mk,2n with vanishing constant terms. We begin with
a known algebro-combinatorial description of the space Mn,m as a cell of the Grassmann variety
of n-dimensional spaces in Cm+n . Using this observation, we construct a convex polyhedral cone
C(Mn,m) associated with the space Mn,m and study the integral points in the cone. Then we charac-
terize the defining ideal of Nk,2n in terms of integral points in C(Mk,2n). This characterization provides
a convex polyhedral cone C(Nk,2n) associated with Nk,2n compatible with the action of GLk × Sp2n .
Our construction of the polyhedral cone C(Nk,2n) turns out to be related to a fiber product of the
Gelfand–Tsetlin patterns.
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We also describe explicit joint weight vectors of GLk ×Sp2n in the coordinate ring of Nk,2n in terms
of standard double tableaux. As a result, we obtain standard monomial theory for the nullcone and
show that the nullcone can be degenerated to an affine toric variety presented by an algebra over a
distributive lattice.

The toric degenerations of spherical varieties (e.g., [1,4,8,32]) and standard monomial theory
(e.g., [27,29]) have been actively studied. Using classical invariant theory, we can study such com-
binatorial and geometric results in connection with various representation theoretic questions.

The recent papers [16–18] and their sequels construct algebras encoding branching rules of rep-
resentations of the classical groups, and then study their standard monomial bases and toric degen-
erations. With a similar philosophy, [19] and [22] study tensor products of representations for the
classical groups with explicit highest weight vectors. By degenerating the multi-homogeneous coor-
dinate rings of the flag varieties, [20] and [21] describe weight vectors of the classical groups in
terms of the Gelfand–Tsetlin polyhedral cone. This paper may be understood as an application of such
approaches to the nullcone in the multi-vector representation of the symplectic group to obtain ex-
plicit combinatorial and representation theoretic descriptions of it. For the nullcone associated with
representations of reductive groups and its interesting applications, we refer readers to [24,25].

This paper is arranged as follows: In Section 2, we introduce notations for tableaux and patterns,
and review standard monomial theory for the coordinate ring C[Mn,m] of Mn,m . In Section 3, we
define the convex polyhedral cone C(Mn,m) associated with a degeneration of Mn,m , and study its
connection to representations of the general linear group. In Section 4, we study the coordinate ring
R(Nk,2n) of Nk,2n and show its standard monomial theory and toric degeneration. In Section 5, we
describe the integral points in the convex polyhedral cone C(Nk,2n) for Nk,2n and explain its relations
to representation theory.

2. Affine space: Mn,m

In this section, we review some results on the Young tableaux, the Gelfand–Tsetlin patterns, and
their applications to representation theory and geometry of the Grassmann varieties.

2.1. Tableaux

Let Mn,m = Mn,m(C) be the space of complex n by m matrices:

Mn,m = {
(xij): 1 � i � n, 1 � j � m

}
. (2.1)

A Young diagram or shape is an array of square boxes arranged in left-justified horizontal rows
with each row no longer than the one above it (e.g., [7,31]). We identify a shape D with its sequence
of row lengths D = (r1, r2, . . .). Then the transpose Dt of D is a shape (c1, c2, . . .) where ci is the
length of the i-th column of D . The length �(D) of shape D is the number of rows in D . For a subset
I = [i1, . . . , il] (respectively J = [ j1, . . . , jl]) of {1, . . . ,n} (respectively {1, . . . ,m}), which we can think
of a filling of shape (1, . . . ,1) of length l with its elements, we shall call the pair [I : J ] an one-line
tableau of length �([I : J ]) = l. We assume that the entries of I and J are listed in increasing order,
i.e., 1 � i1 < · · · < il � n and 1 � j1 < · · · < jl � m.

A partial order �, called the tableau order, can be imposed on the set of one-line tableaux

D(n,m) = {[I : J ]: |I| = | J | � min(n,m)
}

as follows: [I : J ] � [I ′ : J ′], if the length of [I : J ] is not smaller than that of [I ′ : J ′], and ik � i′k and
jk � j′k for each k not bigger than the length of [I ′ : J ′]. Then it is easy to see that with respect to the
tableau order D(n,m) forms a distributive lattice (D(n,m),∧,∨).

Consider a collection {[I1 : J1], . . . , [Iu : Ju]} ⊂ D(n,m) with lk = �([Ik : Jk]) for each k. A concate-
nation t of its elements is called a double tableau, if they are arranged so that lk � lk+1 for all k. The
shape sh(t) of t is the Young diagram (l1, . . . , lu)t . We note that by considering first components Ik
and the second components Jk separately, we can think of a double tableau of shape D in terms of a
pair of fillings of the same shape D .
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Let us write δ[I: J ] for the map from Mn,m to C by assigning to a matrix X ∈ Mn,m the determinant
of the l × l submatrix of X with rows and columns indexed by I and J respectively:

δ[I: J ] = det

⎡
⎢⎣

xi1 j1 · · · xi1 jl
...

. . .
...

xil j1 · · · xil jl

⎤
⎥⎦ .

For a double tableau t consisting of {[Ik : Jk]}, we define the corresponding element in the coordinate
ring C[Mn,m] of Mn,m to be the following product:

�(t) =
∏

1�k�u

δ[Ik : Jk].

Definition 2.1. A double tableau t is called a standard tableau if the one-line tableaux in t form a
multiple chain in D(n,m), i.e.,

[I1 : J1] � · · · � [Iu : Ju].
For a standard tableau t, we call �(t) a standard monomial.

Now, let us consider the following subposet:

L(n,m) = {[I : J ] ∈ D(n,m): I = [
1, . . . , | J |]}

∼= {[ j1, . . . , jl]: l � min(n,m), 1 � j1 < · · · < jl � m
}
.

For each [I : J ] ∈ L(n,m), since the first component I is determined by the size of J , we shall
write J for [I : J ]. Similarly, we can also think of the subposet L′(n,m) consisting of [I : J ] with
J = [1, . . . , |I|]. Then, a semistandard tableau as found in the literature (e.g., [7,31]) can be defined as
a multiple chain in such posets with respect to the tableau order.

This poset L(n,m) has been extensively studied for the flag varieties, the Grassmann varieties, and
the determinantal varieties. For example, the elements of L(n,m + n) with fixed length n, which
we shall denote by Pl(n,m + n), may encode the Plücker coordinates for the Grassmann variety
Gr(n,m + n) of n-dimensional spaces in Cm+n . In fact, this case is general enough to study double
tableaux thanks to the following correspondence.

Lemma 2.2. The following map ξ gives an order isomorphism from D(n,m) to the subposet of L(n,m+n) con-
sisting of all the elements of length n except [m + 1, . . . ,m + n]: for [I : J ] ∈ D(n,m) with I = [i1, i2, . . . , ih]
and J = [ j1, j2, . . . , jh],

ξ : [I : J ] 
→ [ j1, j2, . . . , jh,m + u1,m + u2, . . . ,m + un−h]
where {uk} is defined so that {n + 1 − u1, . . . ,n + 1 − uh} is complement to I in {1,2, . . . ,n}.

For the proof, see [30, p. 519].

2.2. Gelfand–Tsetlin patterns

The poset L̂(m,m), L(m,m) with an extra top element, with respect to the tableau order � turns
out to be a distributive lattice whose join-irreducibles form the following poset, which we shall call
the Gelfand–Tsetlin (GT) poset:

Γm = {
z(i)

j : 1 � j � i � m
}
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satisfying z(i+1)
j � z(i)

j � z(i+1)
j+1 for all i and j [20, Theorem 3.8]. We call z(i) = (z(i)

1 , z(i)
2 , . . . , z(i)

i ) the

i-th row of Γm . We will draw it in a reversed triangular array so that z(i)
j are decreasing from left to

right along diagonals. For example, Γ4 can be drawn as

z(4)
1 z(4)

2 z(4)
3 z(4)

4

z(3)
1 z(3)

2 z(3)
3

z(2)
1 z(2)

2

z(1)
1

Definition 2.3. A GT pattern p of GLm is an order preserving map from Γm to the set of non-negative
integers:

p :Γm → Z�0,

and the i-th row of p is p(z(i)) = (p(z(i)
1 ),p(z(i)

2 ), . . . ,p(z(i)
i )).

The m-th row of a GT pattern p of GLm will be alternatively called the top row of p. By identifying p
with its values, our definition agrees with the original one in [10].

Note that for each i, since p(z(i)
1 ) � p(z(i)

2 ) � · · · � p(z(i)
i ) � 0, the i-th row p(z(i)) of a pattern p

can be seen as a Young diagram. There is a well-known conversion procedure between semistandard
Young tableaux and GT patterns compatible with successive branching rules of GLk down to GLk−1 for
2 � k � m. See, e.g., [11, Proposition 8.1.6].

Lemma 2.4. The following procedure gives a bijection from the set of GT patterns of GLm with a fixed m-th
row D and the set of semistandard tableaux of shape D with entries from {1, . . . ,m}: for a given GT pattern p
of GLm with p(z(m)) = (r1, . . . , rm), fill in the cells in Young diagram (r1, . . . , rm) corresponding to the skew
diagram p(z(i))/p(z(i−1)) with i for 2 � i � m, then fill in the cells corresponding to p(z(1)) with 1.

The collection P (m) of all the GT patterns of GLm with the function addition forms a semigroup,
or more precisely a commutative monoid with the zero function as its identity, which we shall call
the semigroup of patterns for GLm:

P(m) = {p: Γm → Z�0}. (2.2)

Then P (m) is generated by characteristic functions over order increasing subsets of Γm and these
generators correspond to elements of L(m,m) via Lemma 2.4. In this connection, one can realize the
semigroup ring of P (m) as the Hibi algebra [12] over the distributive lattice L(m,m). Moreover, the
semigroup structure is compatible with the combinatorial correspondence given in Lemma 2.4 in the
following sense: the GT pattern corresponding to a semistandard Young tableau t or equivalently a
multiple chain J1 � · · · � Ju in L(m,m) is the product of the corresponding GT patterns p Jk in the
semigroup P (m), i.e.,

t = ( J1 � · · · � Ju) 
→ pt =
u∑

k=1

p Jk (2.3)

and also p J + p J ′ = p J∧ J ′ + p J∨ J ′ . We refer readers to [15] and [20] for further details.

2.3. Standard monomials

Let us review standard monomial theory for the Grassmann variety Gr(n,m + n) of n-dimensional
spaces in Cm+n and its application to a presentation of the coordinate ring C[Mn,m] of the space Mn,m .
The proofs of the results discussed in this subsection and further details on the structure of C[Mn,m]
can be found in [3, §7] and [30, §13].
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Note that the Plücker coordinates for Gr(n,m + n) can be matched with the elementary basis
elements of

∧n Cm+n . By taking them as elements of L(n,m + n) with fixed length n:

Pl(n,m + n) = {
K ∈ L(n,m + n): |K | = n

}
,

we shall continue to denote by δK ∈ C[Mn,m+n] the maximum minors over Mn,m+n whose columns
are indexed by K ∈ Pl(n,m + n). Then for any incomparable pair K , K ′ ∈ Pl(n,m + n), by applying the
Plücker relations to δK δK ′ , we obtain its standard expression.

Lemma 2.5. (See [9, pp. 234, 236].)

i) For K , K ′ ∈ Pl(n,m + n), the corresponding product δK δK ′ ∈ C[Mn,m+n] can be uniquely expressed as a
linear combination of standard monomials, i.e.,

δK δK ′ =
∑

r

crδTr δT ′
r

(2.4)

where Tr � T ′
r in Pl(n,m + n) for each r.

ii) In the right-hand side, δK∧K ′δK∨K ′ appears with coefficient 1, and Tr � K ∧ K ′ � K ∨ K ′ � T ′
r for all r.

Moreover, for each (Tr, T ′
r) �= (K ∧ K ′, K ∨ K ′), let a be the smallest integer such that the sum s of the

a-th entries of Tr and T ′
r is different from the sum s0 of the a-th entries of K and K ′ . Then s > s0 .

By applying the above identities, one can show that any product
∏

δK ∈ C[Mn,m+n] with K ∈
Pl(n,m + n) can be uniquely expressed as a linear combination of standard monomials �(t) =∏

j δK j

with K1 � K2 � · · · . See [3,9,13] for further details.
Note that all the maximal minors δK ∈ C[Mn,m+n] are invariant under the left multiplication of

the special linear group SLn on C[Mn,m+n] and in fact the maximal minors generate the invariant ring
C[Mn,m+n]SLn . This shows that the invariant ring C[Mn,m+n]SLn forms an algebra with straightening
laws (ASL) with standard monomials �(t) as its basis.

Now, let us consider the embedding Mn,m → Mn,m+n given by X 
→ (X ′ | In) and

M0
n,m+n = {(

X ′ ∣∣ In
)}⊂ Mn,m+n

where In is the n×n identity matrix and X ′ is the matrix obtained by reversing the rows of X = (xi, j),
i.e.,

X ′ =

⎛
⎜⎜⎝

xn,1 · · · xn,m−1 xn,m

xn−1,1 xn−1,m−1 xn−1,m
...

. . .
...

x1,1 · · · x1,m−1 x1,m

⎞
⎟⎟⎠ .

For each K ∈ Pl(n,m + n) which is not [m + 1, . . . ,m + n], consider the restriction δ0
K to M0

n,m+n

of the maximal minor δK ∈ C[Mn,m+n]. Then δ0
K is equal to, up to sign, the minor δξ−1(K ) ∈ C[Mn,m]

over Mn,m with rows and columns given by the one-line tableau ξ−1(K ) ∈ D(n,m) via the map ξ

defined in Lemma 2.2. This provides an algebraic realization of the space Mn,m ∼= M0
n,m+n as a cell of

the Grassmann variety Gr(n,m + n).

Proposition 2.6. (See [3, Lemma 7.2.6], [30, p. 522].) The map ξ̂ from C[Mn,m+n]SLn to C[Mn,m]:
ξ̂ : δK 
→ δξ−1(K )

gives an isomorphism between C[Mn,m+n]SLn /ker ξ̂ and C[Mn,m] where ker ξ̂ is the ideal generated by
(δ[m+1,...,m+n] − 1).

Since [m + 1, . . . ,m + n] is the largest element in Pl(n,m + n), standard monomial basis elements∏
r δKr which do not end with δ[m+1,...,m+n] form a C-basis for C[Mm,n]SLn /ker ξ̂ . Using this map ξ̂ ,
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we can transfer the multiplicative structure of C[Mn,m+n]SLn to C[Mn,m]. In particular, since ξ in
Lemma 2.2 is an order isomorphism, the properties of straightening laws given in Lemma 2.5 can be
also transferred to any product δ[I: J ]δ[I ′ : J ′] in C[Mn,m].

Corollary 2.7. Let A, B be elements in D(n,m). Then in the algebra C[Mn,m], the corresponding product δAδB
can be expressed as a linear combination of standard monomials

δAδB =
∑

r

crδXr δYr (2.5)

such that for each r we have either Xr � A ∧ B � A ∨ B � Yr or Xr � A ∧ B with δYr = 1, and δA∧BδA∨B
appears in the right-hand side with coefficient 1.

Let us consider a non-standard monomial
∏

r δ[Ir : Jr ] with lr = �([Ir : Jr]) and l1 � l2 � · · · . Then,
by applying the above relations as many times as necessary, we can express

∏
r δ[Ir : Jr ] as a linear

combination of standard monomials with shapes (l′1, l′2, . . .)t such that
∑k

r=1 l′r �
∑k

r=1 lr for each
k � 1. Hence we can impose a filtration Fsh = {Fsh

D } by shapes on the algebra C[Mn,m], and then
consider its associated graded algebra:

C[Mn,m] =
∑

�(D)�min(n,m)

Fsh
D

(
C[Mn,m]),

grsh(C[Mn,m])=
∑

�(D)�min(n,m)

grsh
D

(
C[Mn,m]). (2.6)

Finally, we obtain standard monomial theory for C[Mn,m].

Corollary 2.8. (See [3, Theorem 7.2.7], [30, p. 530].) Standard monomials �(t) form a C-basis of C[Mn,m]. For
its associated graded algebra, the D-graded component grsh

D (C[Mn,m]) is spanned by standard monomials of
shape D.

We refer readers to [3,30] and [5,6] for further details on the ASL structure of C[Mn,m] and double
tableaux.

3. Lattice cone for Mn,m

A lattice cone is the intersection of a convex polyhedral cone in Rl for some l with Zl . We shall
construct a lattice cone associated with the space Mn,m in terms of order preserving maps on a
subposet of the GT poset Γm+n for GLm+n . Once C[Mn,m] is shown to be a flat deformation of the
Hibi algebra H D(n,m) over D(n,m), the lattice cone for Mn,m can be understood as a cone encoding
the affine toric variety Spec(H D(n,m)). The lattice cone for Mn,m is related to the Gelfand–Tsetlin cones
attached to the flag varieties studied in [20,23,28].

3.1. The semigroup Pn,m

Let us write 1̂ for [m +1, . . . ,m +n] ∈ Pl(n,m +n). For the semigroup P (m +n) defined in (2.2), let
P (n,m) denote its subsemigroup generated by the GT patterns p J corresponding to J ∈ Pl(n,m + n).
Recall that for a subtractive subset B of a monoid (A,+), the quotient monoid A/B is defined by the
following equivalence relation: a ∼ a′ if there are b and b′ in B such that a + b = a′ + b′ .

Definition 3.1. The semigroup Pn,m of patterns for Mn,m is the quotient of P (n,m) by the multiples
of the pattern p 1̂ corresponding to 1̂:

Pn,m = P(n,m)/〈p 1̂〉.
Let C[Pn,m] denote the semigroup ring of Pn,m .
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We can obtain a more explicit description for the elements of Pn,m . Simple computations of the
bijection given in Lemma 2.4 can easily show the following.

Lemma 3.2.

i) For every p ∈ P (n,m), the support of p is contained in

Γ n
m+n = {

z(i)
j ∈ Γm+n: j � n

}
.

ii) If p ∈ P (n,m), then for all z(a)

b ∈ Γm+n with z(a)

b � z(m+n)
n we have p(z(a)

b ) = p(z(m+n)
n ).

iii) If p = p 1̂ , then p(z(a)

b ) = 1 for z(a)

b � z(m+n)
n and p(z(a)

b ) = 0 otherwise.

Example 3.3. The ordered elements [1,2,3], [1,3,4], [2,5,6], 1̂ = [5,6,7] of Pl(3,7) form the follow-
ing semistandard tableau t of shape (4,4,4):

1 1 2 5
2 3 5 6
3 4 6 7

and we can visualize its corresponding GT pattern pt for GL7 by listing its values as

4 4 4 0 0 0 0
4 4 3 0 0 0

4 3 2 0 0
3 2 2 0

3 2 1
3 1

2

Note that its support is exactly Γ 3
7 ⊂ Γ7, and p(z(a)

b ) = 4 for all z(a)

b � z(7)
3 .

Then, from the description of supports for p ∈ P (n,m) and p 1̂ , we obtain the following characteri-
zation for the elements of the quotient Pn,m .

Corollary 3.4. Every element of the semigroup Pn,m of patterns for Mn,m can be uniquely represented by an
order preserving map to the set of non-negative integers from

Γn,m = Γ n
m+n\

{
z(a)

b : z(a)

b � z(m+n)
n

}
.

Then the GT pattern for GL7 shown in Example 3.3 corresponds to the following order preserving
map defined on Γ3,4:

3
3 2

3 2 2
3 2 1

3 1
2

(3.1)

Now we define the convex polyhedral cone associated with the space Mn,m as the collection of all
non-negative real valued order preserving maps over Γn,m:

C(Mn,m) = { f : Γn,m → R�0}.
Then, by identifying f with its values ( f (z(a)

b )) ∈ Rnm for z(a)

b ∈ Γn,m , we can realize the semigroup
Pn,m of patterns for Mn,m as the set of integral points in C(Mn,m), i.e., the lattice cone for Mn,m:

Pn,m = C(Mn,m) ∩ Znm.
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3.2. Degeneration of C[Mn,m]

We want to consider a degeneration of the algebra C[Mn,m]. We shall use basically the same
degeneration technique shown in [8].

Recall that the Hibi algebra HL over a distributive lattice L is the quotient ring

HL ∼= C[zx: x ∈ L]/(zxzy − zx∧y zx∨y)

of the polynomial ring by the ideal generated by {zxzy − zx∧y zx∨y}. Then the Hibi algebra defines an
affine toric variety [12].

To extract the Hibi algebra structure from the algebra C[Mn,m], we will use the following weight
defined via the correspondence given in Lemma 2.2.

Definition 3.5. Let us fix an integer N greater than 2(n + m). For [I : J ] ∈ D(n,m) and ξ([I : J ]) =
[q1, . . . ,qn], we define their weights wt([I : J ]) = wt([q1, . . . ,qn]) as

wt
([I : J ])=

∑
r�1

(m + r − qr)Nn−r .

The weight of a double tableau t consisting of {[Ik : Jk]} is defined to be the sum of individual weights,
i.e., wt(t) =∑

k wt([Ik : Jk]).

We shall assume that, by extending the above formula, the weight of [m + 1, . . . ,m + n] is equal
to zero. We define the weight of �(t) to be the weight of the corresponding double tableau t.

Proposition 3.6. For A, B ∈ D(n,m), let

δAδB =
∑

r

crδXr δYr

be the standard expression of δAδB given in (2.5). Then, wt(A) + wt(B) � wt(Xr) + wt(Yr) for all r and the
equality holds only for (Xr, Yr) = (A ∧ B, A ∨ B).

It follows directly from Lemma 2.5 and Corollary 2.7. Let ξ(A) = K , ξ(B) = K ′ , ξ(Xr) = Tr , and
ξ(Yr) = T ′

r . If K = [k1, . . . ,kn] and K ′ = [k′
1, . . . ,k′

n], then the i-th entry of K ∧ K ′ is min{ki,k′
i} and

the i-th entry of K ∨ K ′ is max{ki,k′
i} for 1 � i � n. Therefore, if (Tr, T ′

r) = (K ∧ K ′, K ∨ K ), then
we have wt(A) + wt(B) = wt(Xr) + wt(Yr). Otherwise, from the second statement of Lemma 2.5 we
have wt(A) + wt(B) > wt(Xr) + wt(Yr). Note that if δYr is 1, then as discussed after Definition 3.5 the
weight of the corresponding element [m +1, . . . ,m +n] is 0, and therefore we still have the inequality
wt(A) + wt(B) > wt(Xr) + wt(Yr) = wt(Xr).

Theorem 3.7. The algebra C[Mn,m] is a flat deformation of the Hibi algebra H D(n,m) over D(n,m). More pre-
cisely, there is a flat C[t] module whose general fiber is isomorphic to C[Mn,m] and special fiber is isomorphic
to the Hibi algebra over D(n,m).

Proof. Let us define a Z-filtration Fwt = {Fwt
d } on C[Mn,m] with respect to the weight wt, i.e.,

Fwt
d (C[Mn,m]) is the C-span of the set{

�(t): wt(t) � d
}
.

The filtration Fwt is well defined, since every product
∏

δA can be expressed as a linear combination
of standard monomials with smaller weights by the above proposition. For all pairs A, B ∈ D(n,m),
since wt(A) + wt(B) = wt(A ∧ B) + wt(A ∨ B), δAδB and δA∧BδA∨B belong to the same associated
graded space. Therefore, we have sA ·gr sB = sA∧B ·gr sA∨B where sC are elements corresponding to δC

in the associated graded ring grwt(C[Mn,m]) of C[Mn,m] with respect to the filtration Fwt . Then it is
straightforward to show that the associated graded ring grwt(C[Mn,m]) forms the Hibi algebra over
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D(n,m). From the general properties of the Rees algebras (e.g., [1]), the Rees algebra Rt of C[Mn,m]
with respect to Fwt:

Rt =
⊕
d�0

Fwt
d

(
C[Mn,m])td

is flat over C[t] with its general fiber isomorphic to C[Mn,m] and special fiber isomorphic to the
associated graded ring which is H D(n,m) . �
3.3. Representations

Every irreducible polynomial representation of GLk is, via the correspondence between dominant
weights and Young diagrams, uniquely labeled by a Young diagram with no more than k rows. Let ρD

k
denote the irreducible representation of GLk labeled by Young diagram D . Now we impose an action
of GLn × GLm on the space Mn,m by

(g1, g2)Q = (
gt

1

)−1
Q g−1

2 (3.2)

for g1 ∈ GLn , g2 ∈ GLm , and Q ∈ Mn,m . Then we have the following decomposition of the coordinate
ring C[Mn,m] with respect to the action:

C[Mn,m] =
∑

�(D)�min(n,m)

ρD
n ⊗ ρD

m

where the summation runs over all D of length �(D) less than or equal to min(n,m). This result is
known as GLn-GLm duality. See [11, Corollary 4.5.19] and [14, Theorem 2.1.2].

Every minor δ[I: J ] over Mn,m with [I : J ] ∈ D(n,m) is scaled under the action of the diagonal
subgroups of GLn and GLm . Therefore, standard monomials �(t) = ∏r

k=1 δ[Ik : Jk] can be seen as joint
weight vectors for the irreducible GLn × GLm representation ρD

n ⊗ ρD
m where D is equal to sh(t), i.e.,

D = (�([I1 : J1]), . . . , �([Ir : Jr]))t . Then, by Corollary 2.8 the above representation decomposition is
compatible with the associated graded algebra in (2.6) in that grsh

D (C[Mn,m]) = ρD
n ⊗ ρD

m and

grsh(C[Mn,m])=
∑

�(D)�min(n,m)

ρD
n ⊗ ρD

m .

On the other hand, if we write P D
n,m for the collection of elements p in the lattice cone Pn,m for

Mn,m such that p(z(m)) = D , then Pn,m can be expressed as the following disjoint union:

Pn,m =
⋃

�(D)�min(n,m)

P D
n,m

over Young diagrams D of length not more than min(n,m).
Recall that the GT patterns p of GLk with fixed top row p(z(k)) = D encode weight basis elements

for the irreducible representation ρD
k of GLk with highest weight D [10]. Hence the joint weight

vectors of ρD
n ⊗ρD

m can be encoded by pairs of GT patterns of GLn and GLm with the same top row D .

Proposition 3.8. The Hibi algebra H D(n,m) over D(n,m) is isomorphic to the semigroup ring C[Pn,m].

Proof. Since the multiple chains in D(n,m) provide a C-basis of the Hibi algebra over D(n,m) [12], let
us find a bijection between the set of standard tableaux of shape D and P D

n,m . For a standard tableau t
of shape D consisting of {[Ik : Jk]}, consider the GT pattern p of GLn+m corresponding to the semis-
tandard tableau whose columns are {ξ([Ik : Jk])} where ξ is the bijection given in Lemma 2.2. Then
this correspondence is injective, and it is straightforward to check that p is an element of P (n,m)

satisfying p(z(m)) = D . To see surjectivity, note that p as an element of Pn,m = P (n,m)/〈p 1̂〉 can be

decomposed into two parts having supports in {z(a)

b ∈ Γn,m: a � m} and in {z(a)

b ∈ Γn,m: a � m} respec-
tively, and therefore GT patterns of GLn and GLm with the same top rows D . So we have a one-to-one
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correspondence between P D
n,m and the set of standard tableaux of shape D . This bijection provides an

algebra isomorphism from our discussion (2.3). �
In the proof we used the following observation: Γn,m can be seen as a gluing of two GT posets Γn

and Γm along their top rows. For instance, the pattern in the quotient Pn,m given in (3.1) can be seen
as a fiber product of GT patterns for GL3 and GL4 over their top rows:

3 2 2
3 2

3
and

3 2 2 0
3 2 1

3 1
2

Remark 3.9. This is a GT pattern version of the correspondence given in Lemma 2.2 for tableaux. That
is, for a standard monomial �(t) = ∏

k δ[Ik : Jk] , let T − and T + be the semistandard tableaux whose
columns are {Ik} and { Jk} respectively, and let ξ([Ik : Jk]) = Kk ∈ Pl(n,m + n) for each k. Then the
pattern p ∈ P (n + m) corresponding to the semistandard tableau with columns {Kk} can be, as an
element of Pn,m , identified with the gluing of p− and p+ along their top rows where p− ∈ P (n) and
p+ ∈ P (m) are the GT patterns corresponding to T − and T + respectively.

4. Standard monomial theory for Nk,2n

In this section, we define the nullcone Nk,2n in the multi-vector representation of the symplectic
group and consider the GLk × Sp2n action on it. Then we study standard monomial theory and a toric
degeneration of Nk,2n . Having an explicit description of the standard monomials for C[Mk,2n], we
develop a relative theory to Mk,2n for Nk,2n by investigating the defining ideal of Nk,2n .

4.1. Nullcone for Sp2n

For the space C2n with the elementary basis {ei}, let us fix our skew symmetric bilinear form 〈 , 〉
on it such that for every i, e2i−1 and e2i form an isotropic pair with 〈e2i−1, e2i〉 = 1. We can con-
sider the space Mk,2n of k × 2n complex matrices as k copies of C2n with the natural action of
the symplectic group Sp2n . Then by the first fundamental theorem of invariant theory (e.g., [11, Theo-
rem 4.2.2], [14, Theorem 3.8.3.2]), the Sp2n-invariants of C[Mk,2n] are generated by the basic invariants
ri j = 〈vi, v j〉 obtained from row vectors vi and v j , or in terms of the coordinates specified in (2.1),

ri j =
n∑

u=1

(xi,2u−1x j,2u − x j,2u−1xi,2u)

for 1 � i < j � k.

Definition 4.1. The nullcone Nk,2n for Sp2n is the subvariety of Mk,2n defined by the Sp2n-invariants
with vanishing constant terms.

If we let I denote the ideal of C[Mk,2n] generated by {ri j: 1 � i < j � k}, then it is a radical ideal
and the coordinate ring of Nk,2n is

R(Nk,2n) = C[Mk,2n]/I.

See [14, Theorem 3.8.6.2]. One can also study the nullcone Nk,2n as the zero fiber π−1(0) of the
quotient π : Mk,2n → Mk,2n//Sp2n and investigate the orbit structure. See [26] for this direction.

From the action of GLk × GL2n on Mk,2n given in (3.2), by taking Sp2n as a subgroup of GL2n , we
can consider the action of GLk × Sp2n on C[Mk,2n]. Moreover, since GLk and Sp2n commute with each
other in this action, the ideal I is stable under GLk × Sp2n . Therefore, we can regard R(Nk,2n) as a
GLk × Sp2n stable complement of I .
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Recall that by highest weight theory, every polynomial representation of GLk and Sp2n can be
uniquely labeled by a Young diagram with no more than k and n rows respectively. We let ρD

k and
σ D

2n denote the irreducible representations of GLk and Sp2n respectively labeled by Young diagram D .

Proposition 4.2. (See [14, Theorem 3.8.6.2].) Under the action of GLk × Sp2n, we have the following decompo-
sition:

R(Nk,2n) =
∑

r(D)�min(n,k)

ρD
k ⊗ σ D

2n

where the summation runs over all Young diagrams D with length no more than min(k,n).

We remark that the space H(Mk,2n) of Sp2n-harmonics in C[Mk,2n] can be defined by the kernel of
the symplectic analogs of Laplacian differential operators. Then, as is the case for R(Nk,2n), the space
of harmonics is stable under the action of GLk × Sp2n . In fact, H(Mk,2n) and R(Nk,2n) share the same
decomposition under the action of GLk × Sp2n [11,14]. Therefore, our results may be used to study the
space of harmonics.

4.2. Standard monomials for Nk,2n

Let us fix some notations. We write ω for the following Sp2n-invariant element in
∧2 C2n:

ω =
n∑

u=1

e2u−1 ∧ e2u ∈
∧2

C2n.

For J = [ j1, . . . , jp] ∈ L(2n,2n), write e J for the elementary basis element e j1 ∧ e j2 ∧ · · · ∧ e jp ∈∧p C2n .

Definition 4.3. An ω-sum of Sp2n is a linear combination
∑r

d=1 cd Jd of elements from L(2n,2n) such
that

r∑
d=1

cde Jd ∈ ω ∧
(∧p−2

C2n
)

for some p � 2. We denote by Ω2n the collection of ω-sums of Sp2n .

Proposition 4.4. The following set generates the ideal I ⊂ C[Mk,2n] of the nullcone Nk,2n:

Θ =
{∑

d

cdδ[I: Jd]:
∑

d

cd Jd ∈ Ω2n

}
.

Proof. The ideal generated by Θ contains I , because the basic Sp2n-invariants ri j are elements of Θ

with I = [i, j], Jd = [2d − 1,2d] and cd = 1 for 1 � d � n. For ek1 ∧ ek2 ∧ · · · ∧ ekp−2 ∈∧p−2 C2n , let us

consider the following elements in ω ∧ (
∧p−2 C2n):

ω ∧ (ek1 ∧ ek2 ∧ · · · ∧ ekp−2) =
n∑

u=1

e2u−1 ∧ e2u ∧ ek1 ∧ ek2 ∧ · · · ∧ ekp−2

=
n∑

u=1

σu(e j1 ∧ e j2 ∧ · · · ∧ e jp )

=
n∑

σue Ju
u=1
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where { j1, . . . , jp} = {2u − 1,2u,k1, . . . ,kp−2} with j1 � · · · � jp . If there is a repetition in {2u −
1,2u,k1, . . . ,kp−2}, then σu = 0. If there is no repetition in {2u − 1,2u,k1, . . . ,kp−2}, then σu is the
signature of the permutation sorting 2u −1,2u,k1, . . . ,kp−2 in increasing order. Since ω∧ (

∧p−2 C2n)

is spanned by these elements, the elements of Θ are linear combinations of their associated elements∑n
u=1 σuδ[I: Ju ] . The column expansions for the determinants δ[I: Ju ] show that

∑
u σuδ[I: Ju ] is an ele-

ment of the ideal generated by the basic Sp2n-invariants {ri j}. This shows that Θ is contained in I ,
and therefore Θ generates the ideal I . �

Next, we characterize standard monomials of C[Mk,2n] associated with the elements of the ideal I ,
and then we define standard monomials for the quotient R(Nk,2n). Let us impose the lexicographic
order on the elements of the same length in L(2n,2n). We say [i1, . . . , ip] >lex [ j1, . . . , jp] if the left-
most non-zero entry of (i1 − j1, . . . , ip − jp) ∈ Zp is positive. We fix the element J̃ = [1,3, . . . ,2n − 1]
of length n having 2d − 1 as its d-th smallest entry for 1 � d � n.

Lemma 4.5. Let
∑

d=1 cd Jd be an ω-sum of Sp2n. Then the smallest element J1 among { Jd} with respect to
the lexicographic order satisfies J1 � J̃ . Conversely, if J1 ∈ L(2n,2n) satisfies J1 � J̃ , there is an ω-sum of
Sp2n whose smallest non-zero term with respect to the lexicographic order is J1 .

In particular, note that if �( J ) > n, then J � J̃ . The above lemma is from computations of the
fundamental representations of Sp2n , which can be realized in the quotient of

∧
C2n by the ideal

generated by ω. Its proof can be found in [20, Propositions 5.6, 5.9] and [7, §17]. See also [2] for a
combinatorial description of such computations.

Definition 4.6. Let us define a distributive lattice D(N ) for N = Nk,2n as

D(N ) = {[I : J ] ∈ D(k,2n): �
([I : J ])� min(k,n) and J � J̃

}
.

A multiple chain t = (X1 � X2 � · · ·) in the poset D(N ) is called an N -standard tableau, and the
corresponding monomial �(t) =∏

r δXr ∈ C[Mk,2n] is called an N -standard monomial.

Proposition 4.7.

i) For A, B ∈ D(N ), the corresponding product δAδB in R(Nk,2n) can be expressed as a linear combination
of N -standard monomials:

δAδB =
∑

r

crδXr δYr

where δYr can possibly be 1, and δA∧BδA∨B appears in the right-hand side with coefficient 1.
ii) Moreover, in the above expression, wt(A) + wt(B) � wt(Xr) + wt(Yr) and the equality holds only for

(Xr, Yr) = (A ∧ B, A ∨ B).

Proof. Note that for A, B ∈ D(N ), A ∧ B and A ∨ B belong to D(N ) and the corresponding ele-
ment δA∧BδA∨B appears in the standard expression of δAδB in C[Mk,2n] by Proposition 3.6. Then
the first statement follows easily from the following computation: starting from the standard expres-
sion

∑
r crδXr δYr of δAδB in C[Mk,2n] given in Proposition 3.6, if there is Xr = [I : J ] which is in

D(k,2n)\D(N ) then we can obtain the N -standard expression of δXr δYr by successive applications of
the elements (δ[I: J ] −∑

d sdδ[I: Jd]) in the generating set Θ of the ideal I such that [I : Jd] >lex [I : J ]
for all d, combined with the relations in Proposition 3.6 if necessary. We can always find such el-
ements in Θ by Lemma 4.5. For the second statement, note that after replacing a non-N -standard
term δXr δYr by (

∑
d sdδ[I: Jd])δYr , the weights of new terms wt([I : Jd]) + wt(Yr) are strictly smaller

than wt(Xr) + wt(Yr). If a term δXr δYr is already N -standard, then the inequality of the weight di-
rectly follows from Proposition 3.6. �

Now we state standard monomial theory for the nullcone Nk,2n and show its degeneration by the
same method used for C[Mn,m] in Section 3.
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Theorem 4.8. The N -standard monomials in C[Mk,2n] project to a C-basis of R(Nk,2n). In particular, the
N -standard monomials �(t) of shape sh(t) = D project to a basis of ρD

k ⊗ σ D
2n.

Proof. For a standard monomial
∏

r δ[Ir : Jr ] of C[Mk,2n], if J s � J̃ for some s, then we find δ[Is : J s] −∑
d cdδ[Is : Jd,s] ∈ Θ with Jd,s >lex J s for all d by Lemma 4.5. Then(

δ[Is : J s] −
∑

d

cdδ[Is : Jd,s]
)∏

r �=s

δ[Ir : Jr ]

is in the ideal I having the monomial
∏

r δ[Ir : Jr ] as its initial term. By repeating this procedure,
combined with the relation in Proposition 4.7 if necessary, we can express

∏
r δ[Ir : Jr ] as a linear com-

bination of N -standard monomials. This implies that N -standard monomials project to a spanning
set of the space R(Nk,2n). Moreover, since the subspace of R(Nk,2n) spanned by N -standard mono-
mials of shape D is stable under GLk × Sp2n , the dimension of the space ρD

k ⊗σ D
2n is less than or equal

to the number of N -standard monomials of shape D .
Now we claim that the number of N -standard monomials of shape D is exactly the dimension of

the space ρD
k ⊗ σ D

2n . For an N -standard monomial
∏

r δ[Ir : Jr ] of shape D , the row indices {Ir} form a
semistandard tableau T − of shape D with entries from {1, . . . ,k}. Then, the number of such semis-
tandard tableaux is equal to the dimension of ρD

k (e.g., [7,11]). On the other hand, the column indices
{ Jr} form a semistandard tableau T + of shape D such that each column is greater than or equal
to J̃ . The set of all possible such semistandard tableaux T + with entries from {1, . . . ,2n} labels the
weight basis of σ D

2n (e.g., [2,20]). Therefore, the number of all the N -standard monomials �(t) with
sh(t) = D is equal to the dimension of ρD

k ⊗ σ D
2n . This finally shows that the N -standard monomials

with shape D project to a C-basis of ρD
k ⊗ σ D

2n . �
Theorem 4.9. The algebra R(Nk,2n) is a flat deformation of the Hibi algebra over D(N ). More precisely, there
is a flat C[t] module whose general fiber is R(Nk,2n) and special fiber is isomorphic to the Hibi algebra H D(N )

over D(N ).

Proof. From Theorem 4.8, every element of R(Nk,2n) can be uniquely expressed as a linear combi-
nation of N -standard monomials �(t). Hence, we can impose the same filtration Fwt of C[Mk,2n] on
R(Nk,2n) via the weights wt on N -standard monomials (Definition 3.5 with D(k,2n)): Fwt

d (R(Nk,2n))

is the C-span of the set{
�(t): wt(t) � d

}
.

This filtration is well defined, since in the standard expression
∑

r cr�(tr) of any product
∏

δA , the
weights wt(tr) are smaller than the weight of

∏
δA by Proposition 4.7. Moreover, since the equality

holds only for (Xr, Yr) = (A ∧ B, A ∨ B), as in the case for the space Mk,2n , we have the relation
sA ·gr sB = sA∧B ·gr sA∨B where sC are elements corresponding to δC in the associated graded algebra
grwt(R(Nk,2n)) with respect to Fwt . Therefore it is easy to see that the associated graded algebra forms
the Hibi algebra over D(N ). Now for the flat degeneration, we can construct the Rees algebra Rt :

Rt =
⊕
d�0

Fwt
d

(
R(Nk,2n)

)
td

with respect to Fwt , then from the general properties of the Rees algebras (e.g., [1]), Rt is flat over
C[t] with general fiber isomorphic to R(Nk,2n) and special fiber isomorphic to the associated graded
algebra which is H D(N ) . �
5. Lattice cone for Nk,2n

In this section we study a lattice cone associated with Nk,2n . As is the case for Mn,m , it turns out
that each point in the lattice cone for Nk,2n can be identified with a pair of Gelfand–Tsetlin patterns.
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Proposition 5.1. Let �(t) =∏
r δ[Ir : Jr ] be an N -standard monomial and pt ∈ Pk,2n be the pattern correspond-

ing to �(t). Then, pt has its support in the following subposet of Γk,2n:

�k,2n = Γk,2n\(A ∪ B) (5.1)

where the subsets A and B of Γ2n+k are defined as

A = {
z(a)

b ∈ Γ2n+k: a � 2n and b > (a + 1)/2
};

B = {
z(a)

b ∈ Γ2n+k: z(2n)

min(k,n)+1 � z(a)

b

}
.

We shall prove it in a few steps. First, note that if a GT pattern p ∈ P (k+2n) of GL2n+k corresponds
to an N -standard monomial, then this proposition says that the length of the 2n-th row is at most
min(k,n) and the support of p corresponding to the bottom 2n rows is contained in the “left half ” of
Γ2n ⊂ Γ2n+k .

Example 5.2. For k = 4 and n = 3, let us consider the following N -standard monomial for N4,6:

δ[123:135]δ[124:136]δ[12:24]δ[13:35]δ[1:4].

Then the corresponding semistandard tableau with respect to ξ given in Lemma 2.2 is the following
chain in Pl(4,10):

1 1 2 3 4
3 3 4 5 7
5 6 7 7 8
7 8 8 9 9

and we can visualize its corresponding GT pattern for GL10 by listing its function values as

5 5 5 5 0 0 0 0 0 0
5 5 5 5 0 0 0 0 0

5 5 5 3 0 0 0 0
5 5 4 1 0 0 0

5 4 2 0 0 0
5 4 1 0 0

5 3 0 0
4 2 0

3 0
2

Note that the length of the 6-th row (5,4,2) is 3 and the support corresponding to the bottom six
rows is contained only in the “left half” of the poset of Γ6 ⊂ Γ10.

Let us write 1̂ for [2n + 1, . . . ,2n + k] ∈ Pl(k,2n + k), and write p 1̂ for the GT pattern of GL2n+k

corresponding to 1̂ via Lemma 2.4. Recall that J̃ = [1,3, . . . ,2n − 1] ∈ L(2n,2n).

Lemma 5.3. Let [I : J ] ∈ D(k,2n) be an one-line tableau and K = ξ([I : J ]) be the element of Pl(k,2n + k)

corresponding to [I : J ] via Lemma 2.2. Let supp(pK ) denote the support of the GT pattern pK corresponding
to K . If J � J̃ , then the following intersection

supp(pK ) ∩ {
z(a)

b ∈ Γ2n+k: a � 2n and b > (a + 1)/2
}

is non-empty. Conversely, if J � J̃ , then the intersection is empty.

Proof. This is an easy computation similar to [20, Lemma 5.11]. �
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Recall that for each standard monomial �(t) =∏
r δ[Ir : Jr ] of C[Mk,2n], by the bijection constructed

in the proof of Proposition 3.8, we can find its corresponding pattern pt ∈ Pk,2n for Mk,2n . More
precisely, pt as an element of P (k,2n) is the sum of GT patterns pr of GL2n+k corresponding to ξ([Ir :
Jr]) where ξ is the bijection given in Lemma 2.2. If �(t) = ∏

r δ[Ir : Jr ] is an N -standard monomial,
then Jr � J̃ for all r. Therefore, by the above lemma, the support of pt ∈ Pk,2n does not intersect

with {z(a)

b ∈ Γk+2n: a � 2n and b > (a + 1)/2}. Also, note that J � J̃ if �( J ) > n and that �(I) � k.

Then the condition that pt is supported in Γk,2n\{z(a)

b ∈ Γk+2n: z(2n)

min(k,n)+1 � z(a)

b } follows from the fact
�([I : J ]) � min(k,n) for [I : J ] ∈ D(N ). This finishes the proof of Proposition 5.1.

Now by using the poset identified in (5.1), we can define the semigroup and the cone for Nk,2n .

Definition 5.4. The semigroup P (Nk,2n) of patterns for Nk,2n is the set of order preserving maps
from �k,2n to the set of non-negative integers with the usual function addition as its product. We let
C[P (Nk,2n)] denote the semigroup ring of P (Nk,2n).

We can define the convex polyhedral cone associated with the space Nk,2n as the collection of all
non-negative real valued order preserving maps on �k,2n:

C(Nk,2n) = { f : �k,2n → R�0}.
Then, by identifying f with its values ( f (z(a)

b )) ∈ RN for z(a)

b ∈ �k,2n , we can realize the semigroup
P (Nk,2n) of patterns for Nk,2n as the intersection of C(Nk,2n) with ZN , i.e., the lattice cone for Nk,2n:

P(Nk,2n) = C(Nk,2n) ∩ ZN

where N is equal to the number of elements in the poset �k,2n . Let us denote by P (Nk,2n)D the
collection of p ∈ P (Nk,2n) whose 2n-th row is equal to Young diagram D , i.e., p(z(2n)) = D . Then the
lattice cone for Nk,2n can be expressed as the disjoint union

P(Nk,2n) =
⋃

D

P(Nk,2n)D

over all D with �(D) � min(k,n).
The following is a lattice cone version of Theorem 4.8.

Proposition 5.5.

i) For N = Nk,2n, the Hibi algebra H D(N ) over D(N ) is isomorphic to the semigroup ring C[P (Nk,2n)].
ii) There is an one-to-one correspondence between P (Nk,2n)D and the set of weight vectors for ρD

k ⊗ σ D
2n

in R(Nk,2n).

Proof. The proof of the first statement is parallel to that of Proposition 3.8. Note that the multiple
chains in D(N ) provide a C-basis for the Hibi algebra H D(N ) over D(N ) [12]. The pattern corre-

sponding to an N -standard tableau consists of two parts having supports in {z(a)

b ∈ �k,2n: a � 2n}
and in {z(a)

b ∈ �k,2n: a � 2n} respectively, and therefore GT patterns of GLk and GL2n with the
same top row D . Furthermore, by Proposition 5.1, such GT patterns of GL2n have their supports in
{z(a)

b ∈ �k,2n: a � 2n and b � (a + 1)/2}, and then they represent GT patterns for Sp2n (e.g., [20]).
Hence the correspondence given in Proposition 3.8 provides a bijection between the set of N -standard
monomials of shape D and the set of pairs of patterns (p−,p+) where p− and p+ are GT patterns for
GLk and Sp2n respectively with the same top row D . Therefore, we obtain the bijection between the
set of weight vectors for ρD

k ⊗ σ D
2n and P (Nk,2n)D . �

Example 5.6. The GT pattern of GL10 given in Example 5.2, considered as an element of P4,6 =
P (4,6)/〈p 1̂〉, can be visualized as a pattern over Γ4,6 as follows:
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5
5 3

5 4 1
5 4 2 0

5 4 1 0
5 3 0 0

4 2 0
3 0

2

Note that the non-zero entries are corresponding to the poset �4,6. As we discussed in Remark 3.9 for
Mn,m , it can also be seen as the fiber product of two GT patterns, one for GL4 and the other for Sp6,
along their top rows:

5 4 2 0
5 4 1

5 3
5

and

5 4 2
5 4 1

5 3
4 2

3
2

The above GT patterns correspond to the following semistandard tableaux of shape (5,4,2) via the
conversion procedure given in Lemma 2.4:

1 1 1 1 1
2 2 2 3
3 4

and
1 1 2 3 4
3 3 4 5
5 6

They were denoted by T − and T + respectively in the proof of Theorem 4.8, and they can be easily
read from the row indices and the column indices of the N -standard monomial in Example 5.2.

Finally, we remark that the discussion in [15] on a simplicial decomposition of a polyhedral cone
and its relation with an algebra decomposition can be directly applied to our case, and then we can
interpret standard monomial theory of R(Nk,2n) in terms of a simplicial decomposition of C(Nk,2n).
More precisely, if we take a maximal linearly ordered subset S of D(N ), then all the products of
elements from

Ŝ = {
δ[I: J ] ∈ R(Nk,2n): [I : J ] ∈ S

}
are N -standard monomials. Therefore, elements in Ŝ are algebraically independent and generate a
polynomial subring of R(Nk,2n). On the other hand, a computation of Lemma 2.4 shows that S must
be induced from a linearization of the poset �k,2n . Moreover, from our construction of C(Nk,2n) in
terms of �k,2n , all possible linearizations of �k,2n give rise to a simplicial decomposition of the cone
C(Nk,2n). Consequently, we can obtain a decomposition of R(Nk,2n) into polynomial rings. This de-
composition is not disjoint, however, it is compatible with a simplicial decomposition of C(Nk,2n)

induced from linearizations of �k,2n . For more details in this direction, we refer readers to [15].
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