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Abstract 

The theory in this paper was motivated by an example of an inverse semigroup important 
in Girard’s ‘Geometry of interaction’ programme for linear logic. At one level, the theory is 
a refinement of the Wagner-Preston representation theorem: we show that every inverse semi- 
group is isomorphic to an inverse semigroup of all partial symmetries (of a specific type) of 
some structure. At another level, the theory unifies and completes two classical theories: the the- 
ory of bisimple inverse monoids created by Clifford and subsequently generalised to all inverse 
monoids by Leech; and the theory of 0-bisimple inverse semigroups due to Reilly and McAlister. 
Leech showed that inverse monoids could be described by means of a class of right cancella- 
tive categories, whereas Reilly and McAlister showed that 0-bisimple inverse semigroups could 
be described by means of generalised RP-systems. In this paper, we prove that every inverse 
semigroup can be constructed from a category acting on a set satisfying what we term the ‘orbit 
condition’. @ 1999 Elsevier Science B.V. All rights reserved. 

A MS ClussiJicution. 20Ml8; 18840; 18DO5 

1. Introduction 

The ultimate origins of this paper lie in the pioneering work of Clifford [l]. He 

showed that every bisimple inverse monoid could be described in terms of a right 

cancellative monoid in which the set of principal left ideals is closed under finite 

intersections. This result was subsequently generalised to bisimple inverse semigroups 

by Reilly [ 171, but to accomplish this, right cancellative monoids were replaced by 

what Reilly termed ‘RI-systems’. These systems were viewed as partial semigroups 
satisfying certain cancellation conditions. Later, McAlister [ 1 l] observed that 0-bisimple 

inverse semigroups could be described in terms of ‘generalised RP-systems’. 
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This work was developed in two important ways. Firstly, McAlister showed [12] that 

arbitrary semigroups in which the intersection of two principal left ideals is either empty 

or again a principal left ideal can be used to construct inverse monoids; the lack of any 

cancellation condition is overcome by the use of the &?*-relation, a generalisation of 

Green’s g-relation. Secondly, Leech [8] directly generalised Clifford’s result to arbitrary 

inverse monoids: he showed that inverse monoids could be described by means of right 

cancellative categories having a weak initial object and possessing pushouts of all pairs 

of morphisms with a common domain. 

In this paper, we complete this process by providing a joint generalisation of 

McAlister’s and Leech’s work; in this way we obtain a description of all inverse 

semigroups. Our work is based on two key observations: 

1. The usual description of RP-systems as partial semigroups is not helpful for 

formulating generalisations. But a little thought reveals them to be nothing other than 

a special class of monoid actions. In view of Leech’s work, this suggests that arbitrary 

inverse semigroups will arise from category, rather than monoid, actions. 

2. The fact that actions would be the key to describing arbitrary inverse semigroups 

occurred to us whilst reading a paper of Girard [5] on linear logic. Girard introduces 

an algebraic structure which quickly revealed itself to be an inverse semigroup. Signif- 

icantly, the multiplication in this semigroup was similar to the multiplication defined 

in McAlister’s paper on 0-bisimple semigroups [12], but the semigroup here was ev- 

idently not 0-bisimple. Girard’s semigroup, which we call the ‘clause semigroup’, is 

defined in terms of the Unification Algorithm. A description of unification in terms of 

category theory in [18] led us to the correct definition of category actions needed for 

our generalisation. 

The background required to understand this paper is very modest. The relevant in- 

verse semigroup theory may be found in [6]; we need little beyond the basic definitions 

and properties, including the natural partial order, and Green’s relations. Most of the 

category theory may be found in the first few chapters of [9]. For category actions 

consult [lo]. 

It is worth pointing out that categories are employed in two different ways in this 

paper. Firstly, categories are used in the familiar way as ‘categories of structures’: one 

considers a collection of objects which are often sets with structure and the morphisms 

between them. Secondly, categories are regarded as algebraic structures in their own 

right: as sets equipped with a partial binary operation satisfying certain axioms; in this 

point of view, categories are generalisations of monoids. The second approach was 

adopted by Ehresmann [3] in his work on the role of inverse semigroups in differential 

geometry; it is the basis of a programme enunciated by Lawvere [7] who suggested 

that the fi_mdamental structures of mathematics were themselves categories; and it has 

become a vital ingredient in contemporary semigroup theory principally as a result of 

Tilson’s seminal [ 191. 

Bearing these two approaches in mind we can now state the chief object of this paper: 

we shall show that the category of inverse semigroups is equivalent to a category whose 

objects are special kinds of category actions. 
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The theory is developed in seven sections: 

Section 2. We show how to construct an inverse semigroup with zero from a category 

action satisfying what we call ‘the orbit condition’. We do this in two, equivalent, 

ways. Firstly, we show that a natural family of partial bijections of the action (the 

‘partial symmetries’ of the action) forms an inverse semigroup. Then we show that 

this inverse semigroup may be concretely described by means of equivalence classes 

of ordered pairs. 

Section 3. We show that a category action can be constructed from an inverse 

semigroup. The actions which arise possess additional properties, which motivate the 

definition of a special class of category actions called ‘systems’. 

Section 4. The work of the previous two sections is put on a categorical footing. We 

define functors between the category of systems and their morphisms and the category 

of inverse semigroups with zero and their morphisms. 

Section 5. An important class of morphisms between systems is introduced called 

‘equivalences’. We prove that equivalent systems have isomorphic inverse semi- 

groups. 

Section 6. We study the composites of the fimctors introduced in Section 4. We 

prove that every inverse semigroup is isomorphic to an inverse semigroup arising from 

a system, whereas every system is equivalent to a system arising from an inverse 

semigroup. 

Section 7. The category of inverse semigroups with zero is shown to be equivalent 

to a suitable quotient of the category of systems. 

Section 8. A number of special cases and concrete examples are discussed. In par- 

ticular. we show that under the equivalence we have established between inverse semi- 

groups and systems, inverse monoids correspond to cyclic systems, and 0-bisimple 

semigroups correspond to monoid systems. We also obtain natural characterisations of 

O-simple and O-E-unitary inverse semigroups in terms of systems. The paper concludes 

with a description of Girard’s clause semigroup. 

Terminology concerning categories of inverse semigroups. 

An inverse semigroup might, or might not, have a zero element; if it does, then 

we can choose to treat the zero as just another element or we can elect to make the 

zero a distinguished element. An inverse semigroup with a distinguished zero we call 

an inverse semigroup with zero. If S and T are inverse semigroups with zero then 

a homomorphism 0 from S to T is a semigroup homomorphism with the additional 

property that O(0) = 0. A homomorphism of inverse semigroups with zero is said to be 

O-restricted if (P’(O) = (0). The basic category of inverse semigroups considered in 

this paper is the category of ‘inverse-semigroups-with-zero’ together with ‘O-restricted- 

homomorphisms’. 

An inverse semigroup means an inverse semigroup pure and simple, which may 

well have a zero element, but which we choose not to distinguish. Homomorphisms of 

inverse semigroups are just semigroup homomorphisms; any zero element receives no 

special treatment. 
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Although these distinctions may sound academic, they are important in understanding 

the relationship between our work and that of Leech. This will be fully explained in 

the relevant parts of the text. 

2. A class of category actions 

In order to fix notation and terminology we begin with the formal definition of 

‘category’ regarded as a generalisation of a monoid. 

Definition. Let C be a set equipped with a partial binary operation which we shall 

denote by . or by concatenation. If x, y E C and the product x. y is defined we write 

3x. y. An element e E C is called an identity if 3e. x implies e .x =x and 3x . e 

implies x. e =x. The set of identities of C is denoted Co. The pair (C, . ) is said to 

be a category if the following axioms hold: 

(Cl ) x. (y . z) exists if, and only if, (x . y).z exists, in which case they are equal. 

(C2) x ’ (y ’ z) exists if, and only if, X. y and y. z exist. 

(C3) For each x E C there exist identities e and f such that 3x. e and 3f .x. 

From (C3), it can easily be deduced that the identities e and f are uniquely de- 

termined by x. We write e = d(x) and f =r(x). Observe that 3.x. y if, and only if, 

d(x) = r(y). If C is a category and e and f identities in C then we put 

hom(e, f) = {x E C : d(x) = e and r(x) = f}, 

the set of all homomorphisms from e to f. We also put end(e) = hom(e,e), the 

endomorphism monoid at e. We now define what is meant by a ‘category acting 

on a set’. 

Definition. Let C be a category, X a set, and p :X -+ CO a function. Let C *X be the 

set 

C*X={(a,x)~c xX:d(a)=p(x)}. 

We suppose in addition that there is a function C *X +X, denoted by (a,x) H a .x. 

We shall write 3a. x if (a,~) E C *X. We say that C acts on X (on the left), and that 

X is a left C-system if the following axioms hold: 

(Al) 3p(x).x and p(x).x=x for all XEX. 

(A2) If 3a.x then p(a.x)=r(a). 

(A3) If 3ab in C and 3(ab).x then 3b.x and 3a.(b.x) and (ab).x=a.(b.x). 

We write CX to indicate the fact that X is a set on which C acts on the left. 

Let X be a left C-system. For x EX put 

C.x=(a.x:aEC and 3a.x). 
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By (Al), x~C.x. If X’CX then define 

C.X’=U{C.x:xEX’}. 

A subset Y LX is said to be C-invariant or a left C-subsystem if C. Y C Y. It is 

clear that if Y is C-invariant it can be regarded as a left C-system in its own right. 

Subsets of the form C .x are always C-invariant and so form a special class of left 

C-subsystems called cyclic. Alternatively, C. x can be regarded as the orbit of x under 

the action of C. We now define morphisms between actions. 

Definition. Let C *X -+X and D * Y 4 Y be two actions. A morphism from cX to D Y 

is a pair (F, 0) consisting of a functor F : C ---f D and a function 0 :X ---f Y satisfying 

the following two axioms: 

(Ml) p(O(x))=F(p(x)) for all x EX. 

(M2) If 3a.x in C*X then ~(a~x)==F(a)~O(x). 
If C = D and F is the identity functor then we may replace the pair (F, 0) by 0 

and under these circumstances we say that t) is a C-homomorphism, A bijective 

C-homomorphism is called a C-isomorphism. 

The definitions above are generalisations of notions famililar in semigroup theory. 

Let S be a semigroup and X a set. Then S is said to act on X on the left if there is 

a function S x X +X, given by (s,x) H s.x, satisfying (st).x=s.(t.x) for all s,t ES 

and x E X. If S is a monoid with identity 1 then the pair (S,X) is called a left S-system 
if S acts on X and 1 .x =x for all x E X; if C is a category with one identity, then 

a left C-system in the monoid sense is precisely a left C-system in the category sense. 

Actions of monoids are discussed in [6], and actions of categories are discussed in [lo]. 

Now let the semigroup S act on the left on the sets X and Y. A function 0 :X + Y is 
said to be an S-homomorphism if e(s .x) = s. Q(x) for all s E S and x E X. When S is 

a monoid and X and Y are left S-systems the monoid definition of S-homomorphism 

agrees with the category definition. 

Lemma 1. (i) Let X and Y be two left C-systems, and f) :X + Y a C-isomorphism. 
Then O-’ : Y +X is a C-isomorphism. 

Let X be a left C-system, and let A and B be C-invariant subsets of’ X. Let 
(I : A ---f B be a C-isomorphism. Then 

(ii) If A’ c A is a C-invariant subset of A then Q(A’) is a C-invariant subset of' B. 

(iii) If B’ C B is a C-invariant subset of B then I!-‘(B’) is a C-invariant subset 
ofA. 

(iv) Let C .x C A be a cyclic C-invariant subset of A. Then O(C .x) is a cyclic 
C-invariant subset of B equal to C. d(x). 

(v) Let C. y 2 B be a cyclic C-invariant subset of B. Then W’( C. y) is a cyclic 
C-invariant subset of A equal to C. O-‘(y). 

Proof. (i) We show that 0-l satisfies (Ml) and (M2). 
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(Ml) holds: let y E Y and put x = F’(y). Then 

PUWY)) = p(x) = P(&X)) = P(Y). 

using the fact that 8 satisfies (Ml). 

(M2) holds : let y E Y and put x = O-‘(y). Suppose that 3~. y. By definition, d(u) = 
p(y). Since (Ml) holds for 0-l we have that p(y)=p(x). Thus la-x, and so 3~. 0-l 

(y). But 8 satisfies (M2), and so @a .x) = a. O(x). Hence ~!?(a. F’(y)) = a. y, conse- 

quently O-'(a . y) = a. O-i(y), as required. (ii) Let y E &A’), and suppose that 3a. y 

where a E C. Put O(x) = y. By definition, d(u)=p(y). But l3 is a C-homomorphism 

so that p(y) = p(O(x)) = p(x). Hence d(u) = p(x), and so 3u .x. But A’ is C-invariant 

and x E A’. Hence a .x E A’, and so B(u .x) E &A’). But &a. X) = a. O(x) = a. y. Hence 

a. y E &A’). Thus t&4’) is a C-invariant subset of B. 
(iii) Immediate from (i) and (ii). 

(iv) By (ii), 8(C .x) is a C-invariant subset of B. Thus it only remains to show 

that e(C .x) is cyclic. We claim that B(C .x) = C . e(x). Clearly, f3(C. X) c C . O(x). 

Let a. e(x) E C . O(x). Then d(u) = p(O(x)). By (Ml), p(O(x)) = p(x). Thus 3u .x. But 

U.XEC.X and O(a.x)=a-B(x), and SO C.Q(x)cO(C.x). Hence f?(C.x)=C.B(x). 

(v) Immediate from (i) and (iv) above. 0 

Let X be a left C-system. Denote by I(&) the set of all C-isomorphisms between 

C-invariant subsets of X. 

Proposition 2. Z(&) is an inverse subsemigroup of I(X), the symmetric inverse 
monoid on X. 

Proof. By Lemma 1, I(&) is closed under inverses. Let 8, p E Z(cX). Then dam(0) 

and im(cp) are both C-invariant, and so A = dom(0) n im(cp) is C-invariant. By 

Lemma 1, q-l(A) is C-invariant. The functions 

(cp (q’(A)): q-‘(A) + A and (O(A):A --$ O(A) 

are C-isomorphisms and so 

eocp=(t+t)o(rpIcp-i(4) 

is a C-isomorphism. 0 

Definition. Let X be a left C-system. We say that it satisfies the orbit condition if 

C-xnC.y nonempty implies that C.xflC.y=C.z for some ZEX. 

Notation. We shall denote any element z as above by x A y. We denote by x * y and 

y *x elements of C chosen so that 

xAy=(x*y).y=(y*x).x. 

We now come to our most important definition. 
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Definition. J(cX) denotes the subset of I(cX) consisting of those C-isomorphisms 

between cyclic C-subsystems of X together with the empty map. 

Theorem 3. Let X be a left C-system. Then J(cX) is an inverse subsemigroup of 

I(cX) if, and only if CX satisjes the orbit condition. 

Proof. Suppose that J(cX) is an inverse subsemigroup of I(&). The nonzero idem- 

potents of J(cX) are the identity functions on the cyclic C-subsystems. The orbit 

condition now follows from the fact that the product of two idempotents in J(cX) 

is the identity function on the intersection of their domains. Conversely, suppose that 

CX satisfies the orbit condition. Let l9 : C .x + C. y be a C-homomorphism, and let 

C. u C C .x. From Lemma 1, we have that B(C. u) = C. O(u). The proof that J(cX) 

is an inverse subsemigroup of I(cX) is now straightforward. 0 

We have succeeded in associating an inverse semigroup with zero J(cX) to every 

left C-system X satisfying the orbit condition. Inverse semigroups can be constructed 

when a strengthened form of the orbit condition holds. 

Definition. Let X be a left C-system. Then CX satisfies the strong orbit condition if 

for all x, y E X and for some z E X 

c.xnc. y=c.z. 

Put J*(cX)=J(cX)\{O}. The proof of the following is straightforward. 

Theorem 4. Let the category C act on the set X on the left and sutisfy the strong 

orbit condition. Then the product of any two nonzero elements of J(eX) is nonzero. 

Consequently, J*(cX) is an inverse semigroup. 

To obtain an explicit description of the multiplication in J(cX), we need to introduce 

an equivalence relation 9* on the set X determined by the action of C. 

Definition. Let X be a left C-system. We define a relation 9* on X as follows: 

(x, y) E 9* if, and only if, p(x) = p(y) and for all a, b E C such that a. x and b x are 

defined, we have that 

a.x=b.x H a. y=b.y; 

both sides of these two equations always exist since from p(x) = p(y) we have that 

3a .x@Ela . y and 3b.x@3b. y. 

It is clear that BY* is an equivalence relation on X, and that if (x, y) E 3* and 3c .x 

and 3~. y then (c.x,c.y)~.$?*. 

Lemma 5. Let X be a left C-system and x, y E X. Then the following are equivalent: 

(i) (x, y) E B?*. 

(ii) There exists 0 E Z(eX) such that Q(x) = y. 
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Proof. (i) + (ii). Define a function 0: C .x + C. y by @(a .x) = a . y. First, 19 is well- 

defined, for if a. x = a’ . x then a. y = a’ . y since (x, y) E 9*. Clearly, O(x) = y. Next, 

0 is injective, for suppose that @a. x) = B(b . x). Then a . y = b. y, and so a. x = b. x, 

since (x, y) E B*. To see that 19 is surjective, let a . y E C . y. Then d(u) = p(y) = p(x) 

since (x, y) E 94!*. Thus 3u .x and clearly &a .x) = a. y. We finish off by showing 

that 8 is a C-homomorphism by checking that (Ml) and (M2) hold. 

(Ml ) holds: let x’ E C. x, where x’ = a . x. Then 

p(O(x’)) = p(B(u .x)) = p(u . y) = r(u). 

But r(u) = p(u -x) = p(x’). Hence p(B(x’)) = p(x’). 

(M2) holds: let ~‘=a .x and a’ E C such that 3u’.x’. Then 

@a’ .x’) = &a’ . (ax)) 

= &(~‘a) .x) by (A3) 

=(u’u).y=u’.(u.y)=u’.B(u.x)=u’~8(x’). 

(ii) + (i). Let 6 EI(&) be such that O(x)= y. Then p(x)=p(y) by (Ml). Sup- 

pose that a. x = b .x. Since dam(B) is a left C-system we have that a .x E dam(B). 

Hence @a .x) = 8(b .x). But 0 is a C-homomorphism and so a. Q(x) = b. d(x). But 

B(x) = y and so a. y = b. y. Conversely, O-‘(y) =x and 8-l E I(&) by Lemma 1. 

Thus u.y=b.y implies u.x=b.x. Hence (x,y)~%*. 0 

Let X be a left C-system, and let x and y be a pair of elements such that p(x) = p(y). 

Then if uEC such that 3u.x (and so 3u.y) then we write (u.x,u.y)=u.(x,y). 

Lemma 6. Let X be a left C-system satisfying the orbit condition. On the set of 
ordered pairs .?2? dejne a relation N by 

(x, Y > N (x’, Y’) * (x, Y > = u . (x’, Y’) and (x’, Y’) = v . (x, Y > 

for some u, v E C. Then N is un equivalence relation. 

Proof. This is almost immediate; the only case that requires any comment is re- 

flexivity, and this follows from the fact that if (x, y) E 9?* then p(x) = p(y) and so 

(x,Y)=P(x).(x,Y) by (Al). 0 

Denote by [x, y] the N -equivalence class containing the pair (x, y). We can now 

obtain an explicit description of the multiplication in J(cX). 

Theorem 7. Let X be a left C-system satisfying the orbit condition. Let S be the set 
of N -equivalence classes together with a new symbol 0. Dejine a product on S us 
follows: 

Lx, VI @ [WI = 
{ 

[(w*y).x,(y*w).z] ifc.yflc~w#0 
o else 
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and all other products equal to 0. Then (S, 63 ) is an inverse semigroup isomorphic to 

J(cW. 
In the semigroup (S, 18 ) we have that 

[x7 ~1~’ = [vJI, Lx, VI-’ @ k ul = [y, ~1, and Lx, ~18 [x, yl-’ = [x,x], 

the idempotents are all the elements of the form [x,x] for some x E X and the natural 

partial order is given by 

[x,y]L[~,~]~(x,y)=u~(w,z) for some uEC. 

Proof. Since the proof of the main claim is rather long, we split it into four parts. 

1. (w * y) .x is 92*-reluted to (y * w) .z. 

By definition (w * y) . y = (y *w) w, so that p((w * y) . y) = p((y * w) . w). Thus 

r(w*y)=r(y*w) by (A2). But p((w*y).x)=r(w*y) and p((y*w).z)=r(y*w) 

by (A2). Hence 

p((w* y>.x)=p((y*w).z). 

Now suppose that 

a.[(w*y).x]=b.[(w*y).x]. 

Then (4~ * y)) .x = (b(w * y)) .x by (A3). Thus (a(w * y)) . y = (b(w c y)) . y since 
(x,Y)E.%*, and so 

by (A3). By definition (w * y) . y = (y * w) w. Thus 

u.[(y*w).w]=b.[(y*w).w]. 

But (a(y * w)) . w = (b(y *w)) w by (A3). Hence (a(y *w)) .z = (b(y * w)) .z since 

(w,z)E~?*. We thus have 

n.[(y*w).z]=b.[(y*w).z] 

by (A3). We may similarly show that 

a.[(y*w).z]=b.[(y*w).zl 

implies 

a.[(w*y).x]=b.[(w*y).x]. 

Hence (w*y).x is 9*-related to (y*w).z. 

2. @ is a well-defined binary operation. 
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Let [x, y] = [x’, y’] and [w,z] = [w’,z’]. We show that 

[x, yl @ [w,zl = Lx’, Y’l @ [w’dl. 

From the definition there are elements u, u, a, b E C such that 

(x, y) = u . (x’, y’) and (x’, y’) = u. (x, y) 

and 

(w,z)=a.(w’,z’) and (w’,z’)=b,(w,z). 

Now y = u . y’ and y’ = u. y imply that C. y = C. y’. Similarly C. w = C. w’. Thus 

C.yflC.w#0 * C~y’nc~w’f0. 

Hence 

[x, y] @I [w, z] = 0 @ [X’, y’] 8 [w’, z’] = 0. 

We shall consider the case where C. y n C. w # 0. Let 

C.ynC.w=C.(yAw) and C.y’nC.w’=C.(y’Aw’) 

for some y A w and y’ A w’. Using the notation introduced earlier we have that 

yAw=(y*w).w=(w*y).y 

and 

y’ A w’ = ( y’ * w’) . w’ = (w’ * y’ ) . y’. 

From the definition 

[~x,Yl@~wJl=[(w*Y)~x,(Y*w)~zl 

and 

[x’, y’] @ [w’,z’] = [(w’ * y’) . x’, (y’ * w’) . z’]. 

Since C . (y A w) = C. (y’ A w’) there exist elements c, d E C such that 

c.(yAw)=y’Aw’ and d.(y’Aw’)=yAw. 

NowyAw=(y*w).w andsoc.(yAw)=(c(y*w)).w. Thus y’Aw’=(c(y*w)).w. 

But w = aw’ and so y’ A w’ = (c(y * w)a) . w’. Also y’ A w’ = (y’ * w’) . w’. Hence 

(y’ * w’) . w’ = (c(y * w)a) . w’. 

Now (w’,z’) E 92* and so 

(y’*w’).z’=(c(y*w)a).z’. 



M. K LawsonlJournal of Pure and Applied Algebra 137 (1999) 57-101 67 

We can similarly show that 

(w’ * y’) . n’ = (c(w * y)u) .x’. 

But a.z’=z and u.x’=x and so 

(y’*w’)~z’=c~[(y*w)~z] and (w’*y’).x’=c,[(w*y).x], 

hence 

((w’*~~‘)~x’,(y’*w’).z’)=c.((w*y).x,(y*w).z). 

We may similarly prove that 

d~((w’*y’)~x’,(y’*w’)~z’)=((w*y)~n,(y*w)~z). 

Hence 

3. For each (x, y) E 92’” define a function OC~,~) : C ’ y 4 C .x by Ocx,y)(a I y) = a. x. 

From the proof of Lemma 5 we have that t3~~,~) E J(cX). We claim that 

O&y) = @(x’,y’) * (x3 Y) N (x’, “v’). 

Suppose that Ocx,v) = O(x~,Y~I. Then 

C.y=C.y’, C.x=C.x’ and (x,y),(x’,y’)~%!*. 

Thus, in particular, y = a ‘ y’ and y’ = b. y for some a, b E C. Now 

Ocx.y)(Y)=O(x,y)(P(Y)~Y)=x 

and 

O(,f,y)(y) = O(,~,,f)(a. y’) = a +x’. 

But f&,,)(y)= O~,~,Y~,(y). Thus x= a .x’. Similarly, x’= b .x. Thus (x,y) = a. (2, y’) 
and (x’, y’) = b . (x, y ), and so (x, y) N (2, y’). 

Now suppose that (x, y) - (x’, y’). We show that Olx,Yj = O~,J,,~). By assumption, 

(x,y)=a.(x’,y’) and (x’,y’)=b.(x,y) 

for some a, b, E C. Clearly, C .x = C .x’ and C. y = C. y’. We show that the func- 

tions Oc,,,) and 8~x/,,~, take the same values. Let d. y =d’ . y’ E C. y= C. y’_ Then 

O,,,,(~.Y) = d. x and O~,~,,/,(d’. y’) = d’ .x’. Now d .y = d' y’ implies d. y = 

(d/b). y. But (x, y) E 92* so that d. x = (d’b) .x. Hence d. x = d’ . x’, as required. 

4. De&e u flmction 0 :S-+ J(cX) as follows: O(0) is just the empty,function on 
X av2d @(Lx, y]) = O(x,y). Then 0 is an isomorphism. 
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Our calculations above show that the definition of O([x, y]) is independent of the 

choice of representative of [x, y]. It also follows from our calculations above that 0 is 

an injective function. To show that 0 is surjective let cp E J(&) where ye : C. y + C .x. 

Clearly, C. q(y) = C ’ x, and so by Lemma 6, we have that (y, q(y)) E 9*. It is now 

clear that q = Bc~(~),~) and so @([q(y), y]) = 40. 

To show that 0 is a homomorphism we compute the product 1!9(,,,) o 8(,,). Suppose 

that C ’ y O C. w # 0. Then C. y n C. w = C. (y A w), and with the notation introduced 

earlier we have 

yAw=(y*w).w=(w*y).y. 

Now 

e~~Z~(c -(yA w))= B&,(C. (y* w). w)= c .(y*w) .z. 

Also 

e(*,u,(c.(yAw))=B(,,)(C.(w * Y).Y)=c~(w*Y).x. 

Thus %,y) 0 Q(w,z) has domain C. (y * w) . z and image C. (w * y) . x. We now calculate 

the effect of this composite function: 

(kY) 0 4+4((4y * 4) 4 = ~(x,y)(~(w,Z)((4y * 4) 4) 

= qX,,V)((4y * 4). 4 

= 4,da. (V A 4) 

= 4,,,((4w * v)) . V) 

= (a(w * y)) .x 

= 4b * Y). X>(Y *w) .Z,((dY * w)) .z)* 

We have shown that if C.yflC.w#0 then 

e(l,Y) 0 e(,,, = t+(w*Y) .X,(Y * w). + 

If on the other hand C . y n C. w = 0 then 8(,,,) o B(,,,=) is the empty function. It is now 

immediate that 0 is a homomorphism and so an isomorphism of semigroups. 

The remaining assertions are all straightforward to prove. 0 

3. Category actions from inverse semigroups with zero 

In the last section, we showed how to construct an inverse semigroup with zero 

from a left C-system satisfying the orbit condition. In this section, we show how to 

construct a category action from an inverse semigroup with zero. 

Definition. Let S be an inverse semigroup. Put 

C’(S)={(s,e)ESxE(S):s-Isle}. 
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Define d(s, e) = (e, e), r(s, e) = (ss-‘,ss-’ ) and a partial product 

(styf) if e= tt-‘, 
(s,e).(t,f)= 

undefined else. 

If S is an inverse semigroup with zero then put Z = {(O,e) : e E E(S)} and C(S) = 

C’(S)\Z. 

Proposition 1. (i) (C’(S), . ) is a right cancellative category. 
(ii) The isomorphisms in C’(S) are the elements of the form (s,s-‘s). 

(iii) If S is an inverse semigroup with zero then (0,O) is a terminul object in 

C’(S), the unique morphism from (e,e) to (0,O) being (0,e). Furthermore, the only 
morphism with domain (0,O) is (0,O). 

(iv) If S is an inverse semigroup with zero then C(S) is a full subcategory of 

C’(S). 

Proof. (i) Observe that 3(s, e) . (t, f) precisely when d(s, e) = r(t, f ). It is now a simple 

matter to show that (C’(S), . ) is a category with identities {(e,e): e E E(S)}. We now 

show that (C’(S), . ) is right cancellative. Suppose that 

(s, e) (4 f) = (u, i) . (t, f ). 

Then (st, f) = (ut, f) so that st = ut. Thus stt-’ = utt-‘. But e = tt-’ = i and K’S, 

u-‘use. Hence S=U and e=i, and so (s,e)=(u,i). 
(ii) Observe first that the products (s,s-1 s).(s-‘,ss-‘) and (s-‘,ss-‘).(s,s-‘s) are 

defined, and that 

(s,.~~‘s)~(s~l,ss-‘)=(ss-‘,ss-‘)=r(s,s-’s), 

and 

(.F-‘,ss-‘)+,s-ls)=(s-‘s,s-ls) =d(s,s-‘s). 

Thus (s,s-‘s) is invertible with inverse (s-‘,ss-’ ). Conversely, suppose that (s,e) is 

an invertible element. Then there exists an element (t, f) such that (s, e) . (t, f) and 

(t, f ). (s, e) are defined and 

(s,e).(t, f)=r(s,e) and (t,f).(s,e)=d(s,e). 

Thus 

(st, f) = (ss-‘,ss-‘) and (ts,e)=(e,e). 

Then e = tt-‘, f =ss-‘, st = ss-’ and ts = e. From st = ss-’ we obtain sts = s. From 

ts=e we obtain tst=et=tt-‘t=t. Thus t=s-‘. Hence e=s-‘s. 

(iii) Clearly, (0,e) is a morphism from (e,e) to (0,O). Now suppose (s,e) is a mor- 

phism from (e, e) to (0,O). Then r(s, e) = (r(s), r(s)) = (0,O). But this implies that s = 0. 

Now suppose d(s, e) = (0,O). Then e = 0 and sP1s < 0. Thus s-‘s = 0 and so s = 0. 
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(iv) Consider the full subcategory of C’(S) determined by the identities 

C’(%\{(O,O)}. W e h ave that (s,e) belongs to this subcategory if, and only if, d(s,e), 

r(s, e) # (0,O). It is easy to check that (s, e) belongs to this subcategory if, and only 

if, (s,e)@Z. 0 

The category C(S) is one of the key ingredients in our construction. Observe that 

if S = (0) then C(S) is the empty category. 

Definition. We say that a left C-system X satisfies the right cancellation condition if 

whenever c. x and d .x exist and c. x = d .x then c = d. We shall call a pair (C,X) 

a system if the following axioms hold: 

(Sl ) C is a right cancellative category acting on the set X on the left. 

(S2) The orbit condition holds. 

(S3) The function p :X + CO is sutjective. 

(S4) The right cancellation condition holds. 

Definition. Let S be an inverse semigroup with zero. Put Xs = S\(O). Define p :& --f 

C(S)0 by p(x) =(xx-‘,xx-‘) and define a function C(S) *& -Xs by (s,e) .x=.sx if 

d(s, e) = p(x). 

Theorem 2. For every inverse semigroup with zero 5’ the pair (C(S),&) is a system. 

Proof. (Sl ) holds: observe first that the function C(S) * X, +Xs is well-defined. For 

suppose 3(s,e).x where s,e,x#O and (s,e).x=sx=O. Then sxx-‘=O. But e=xx-’ 

and s-‘s <e, and so s = 0, which contradicts our choice of s. Thus if $8, e) .x then 

(s, e) . x EXS. Next we show that Xs is a left C(S)-system by checking that the axioms 

(Al)-(A3) hold. 

(Al) holds: by definition, p(x) = (xx-‘,xx-‘) and d(p(x)) = (xx-‘,xr-‘). Thus 

3p(x).x. By definition p(x).x=xx-‘x=x. 

(A2) holds: suppose that 3(s, e) . x. Then by definition (s, e) . x = sx. Now 

p(sx) = ((sx)(sx)_‘,(sx)(sx)-1) =(sxx-ls-l,sxx-kl). 

But d(s, e) = p(x) and so e =xx-‘, also s-‘s<e and so ses-’ = ss-l. Thus 

p(sx)=(ss-‘,ss-‘)=r(s,e). 

(A3) holds: suppose that 3(s,e)(t,f) and 3((s,e)(t,f)) .x. Then 

(s,e)(t,f)=(st,f) and ((s,e)(t,f)).x=stx. 

From the definitions 

e=tt-‘,s-‘s<e,t-‘t<f and f =xx-l. 
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3(t,f).x since f =xx-‘, and by definition (t,f).x=tx. Now d(s,e)=(e,e) and 

p(tx) = ((tx)(tx)_‘,(tx)(tx)_‘) = (txx-‘t-1, txx-‘t-1) 

= (t.ft_’ ,tft-‘)=(tt-‘,tt-‘)=(e,e). 

Thus 3(s, e) . (tx) and (s, e) . (tx) = stx. By Proposition 1, C(S) is a right cancellative 

category. 

(S2) holds: we begin by describing the cyclic C(S)-subsystems of &. By definition, 

C(S) .x = {(s, e) .x : (s, e) E C(S), 3(s, e&x} 

= {sx:s-‘s<e=xx-’ where s,e,x#O}. 

Clearly, C(S)~xCSx\{O}. Let sx~Sx\{O} and let e=xx-‘. Then 

sx = (sxx-’ )x = (se)x. 

Consider the ordered pair (se,e). Clearly, (se)-‘se<e. Thus (se,e) E C(S). Further- 

more, (se, e) . ..x = sx. Thus C(S) .x = Sx\{O}. Suppose now that 

C(S)~xnC(S)~y#0. 

Then there exists a E Sx nSy with a # 0. Now a =sx = ty for some s, t E S, and 

ax-‘x=a and ay-‘y-a. Thus ax-’ xy-’ y = a. It follows that x-‘xy-’ y # 0. Clearly, 

Sx n sy = Sx-‘xy-’ y, and so 

c(S).xnc(S).y=c(S).(x-lxy-ly). 

(S3) holds: if (e, e) is any identity of C(S) then e E S\(O) and p(e) = (e,e). 

(S4) holds: suppose that 

(s,e).x=(t,,f).x 

Then sx = tx, and e =xx-’ = f. Thus sxx-’ = txx-’ and so se = te. It follows that 

s = t since s-’ sic and t-‘tLf=e. Hence (s,e)=(t,f). 0 

The description of the cyclic C(S)-systems contained in the proof of the above 

theorem makes the proof of the following result immediate. 

Theorem 3. Let S be an inverse semigroup. Then (C(S),&) is a system satiqfying 

the strong orbit condition. 

Systems are much easier to handle than arbitrary category actions, as the following 

result indicates. 

Lemma 4. Let (C,X) be a system. 

(i) For all x, y EX we have that 

(x, Y) E g* - P(X) = P(Y). 
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(ii) In the construction of Theorem 2.7, we have that 

(x, y) - (x’, y’) @ (x, y) = 24. (x’, $1 

for some isomorphism u in C. 

Proof. (i) Suppose that p(x) = p(y), and a. x = b. x. Then by the cancellation condition 

a = b. Thus a s y = b. y. The converse is similar. Hence (x, y) E 9*. 

The converse is immediate from the definition of W*. 

(ii) Suppose that (x, y) - (x’, y’). Then from the definition there are elements u and 

v of C such that 

x=u.x’, y=u.y’, x’=v.x and y’=v.y. 

Now x = u .x’ = (uv) .x. Thus by the cancellation condition r(x) = UV. Similarly, r(x’) = 

VU. Thus u and v are mutually inverse isomorphisms. 

The converse is immediate. q 

4. Functors between systems and semigroups 

We now place the results of the previous two sections in their proper categorical 

setting. 

Definition. Let (C,X) and (D, Y) be systems and let (F, 0) be a morphism from (C,X) 

to (D, Y). We say that (F, 0) is a system morphism if the condition (M3) below holds: 

C.xnC.y=(D + D.O(x)nD.B(y)=(D 

and 

C.xnC.y=C.z + D.6(x)nD.B(y)=D.B(z). 

The two key categories of this paper are: the category Sys of systems and system 

morphisms; the category Inv of inverse semigroups with zero and O-restricted homo- 

morphisms. 

Define a function J from Sys to Inv as follows : if (C,X) is a system then J(C,X) 

is the inverse semigroup constructed in Theorem 2.7. If (F, f3): (C,X) -+(D, Y) is 

a morphism of systems then J(F, 0) : J(C,X) --f J(D, Y) is defined by J(F, O)([x, y]) = 

V(x), @Y>I and JV, Wo) = 0. 

Theorem 1. J : Sys -+ Inv is a functor. 

Proof. We begin by checking that J(F, 8) is a well-defined function. Let [x, y] E J(cX). 

Then (x, y) E 9I?*. But by Lemma 3.4(i), this is equivalent to p(x) = p(y). But F(p(x)) 
=F(p(y)) implies that p(O(x)) = p(O( y)) by (Ml). Thus by Lemma 3.4(i), we have 

that (e(x), Q(y)) E 9*. It follows that [&x),8(y)] E J(oY). Now suppose that 
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[x, y] = [x’, y’]. Then (x, y) = ZJ. (x’, y’) for some isomorphism u in C by Lemma 3.4(ii). 

Clearly, (0(x), 6(y)) = 0(u). (ox’, Qy’), and B(U) is an isomorphism in D. Thus by 

Lemma 3.4( ii), we have that [0(x), 0(y)] = [0(x’), 0( y’)]. 

We now show that J(F, 0) is a homomorphism in Inv. Let [x, y], [w,z] E J(cX). 

Suppose first that the product of [x,y] and [w,z] is zero. Then by definition of the 

product, we have that C. y f’ C. w is empty. But (F, 0) is a system morphism and so 

D. O(y) n D . O(w) is also empty. It follows that [0(x), 0(y)] @ [e(w), 0(z)] is zero. Sup- 

pose now that [x, y] @ [w,z] is nonzero. Then by assumption C y n C. w = C . (y A M’), 

and so 

[x2 Yl @ [WI = NW * Y> ‘4 (Y * w> .zl. 

Again (F,c)) is a system morphism and so D. O(y)nD.O(w)= D. @(YAW). Also 

F(w * y) .0(y) = 0(y A w) and F(y * w) .0(w) = Q(y A w). It follows that we can take 

0(w) * 0(y) to be F(w * y) and e(y) * O(w) to be F(y * w). It is now straightforward 

to show that J(F,.Q) is a homomorphism, and that J is a mnctor. 0 

A function C from Inv to Sys is defined as follows: if S is an inverse semi- 

group then C(S)= (C(S),&), as defined in Theorem 3.2. If 0: S --$ T is a homo- 

morphism in Inv then C(0): (C(S),&)+ (C(T),XT) is defined to be C(Q) = (F&B) 

where FO : C(S) + C(T) is defined by FH(s, e) = (d(s), d(e)) and 19 : & +X, is the re- 

striction of 8 to S\(O). 

Theorem 2. C : Inv t Sys is a functor. 

Proof. We show that (Fo, 0) is a system morphism by checking that the axioms (Ml ), 

(M2) and (M3) hold. 

(Ml ) holds: let x EX,. Then p(B(x)) = (@x)&x)-‘, 13(x)&x)-‘). Whereas 

FO(p(x)) = Fo(xx-‘,~.a-‘) = (&xx-‘),O(xx-‘)). 

Hence P(Q)) =Fo(p(x)). 
(M2) holds: suppose 3(s,e) .x in (C(S),&). By definition (s,e) .x = sx and so 

0((.s, e) .x) = I. On the other hand, Fn(s, e) = (O(s), O(e)), so that Fo(s, e) . Q(x) = 

ew(x). 
(M3) holds: suppose that C(S) .xn C(S). y is empty. Then 

C(S). (x-‘xy-‘y) = (sx-‘xy-’ y)\(O) 

by the proof of Theorem 3.2. Hence x-‘xy-‘y=O. It follows that 

8(x))‘8(x)&y)-‘B(y) = 0. 

Thus C(T) . e(x) n C(T). 19(y) is also empty. A similar argument shows that 
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implies 

C(T). O(x) n c(T). e(y) = c(T). O(Z). 

It is now easy to check that C is a functor. 0 

5. Equivalent systems 

In this section, we introduce a special class of system morphisms called ‘equiva- 

lences’. We shall prove that if there is an equivalence between two systems then their 

associated inverse semigroups are isomorphic. Isomorphisms between systems will be 

equivalences, but the point of the definition is that equivalences form a much broader 

class of morphisms than isomorphisms. In order to define equivalences, we need to 

describe some extra structures which the categories Sys and Inv possess. We begin by 

defining ‘transformations’ between system morphisms; these arise since system mor- 

phisms are essentially functors and so we can consider natural transformations between 

them. 

Definition. Let (F,8) and (G,cp) be system morphisms from (C,X) to (D, Y). 

A transformation z from (F, 0) to (G, cp) is defined by the following two conditions: 

(Tl ) r : F -+ G is a natural transformation. 

(T2) V(X) = rP(x) . d(x) for all x EX. 

The right-hand side of (T2) makes sense since z, E hom(F(e), G(e)) for each identity 

e in C. Thus 

d(%)) =F(P(x)) = P(@(x)), 

by (Ml), and so r,,tX). O(x) is defined. 

Definitions. The identity transformation from (F,@ to (F,@ is the identity natural 

transformation 1~ from F to itself; condition (T2) holds automatically. The transfor- 

mation z is said to be an isomorphism if r : F --f G is a natural isomorphism. In this 

case 7-i denotes the transformation from G to F defined by z;’ = (r,)-’ for each 

identity e in C. 

Lemma 1. Let (CJ) and (D, Y) be systems. 
(i) The transformations between the system morphisms from (C,X) to (D, Y) form 

a category which is a preorder. 
(ii) If z : (F, 0) + (G, cp) and CJ : (G, cp) + (F, 0) are transformations then z is an 

isomorphism and c = 7-l. 

Proof. (i) Let p be a transformation from (F, e) to (G, cp) and let v be a transformation 

from (G, cp) to (H, II/). By (Tl ), p is a natural transformation from F to G and v is 
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a natural transformation from G to H. Thus VP is a natural transformation from F to H. 

For each x E X we have by (T2) that 

V(X) = Pi . W> and $(x) = vp(x) . dx>. 

Thus 

$(x) = (V)p(x) . Q(x). 

Hence VP is a transformation. It is easy to check that if r is a transformation from 

(F, 0) to (G, 4) then rl~ = r = lor. It is now evident that the transformations form 

a category. To prove that this category is a preorder, suppose that ,LL and v are both 

transformations from (F, 0) to (G, 4). Then by (T2) 

Pp(x) . @> = VP(X) . w> 

for all x EX. Thus by the right cancellation condition, ppcX) = vpcx). But p :X ---) C, is 

a surjection, and so pe = v, for every e E CO. Thus p = v. 

(ii) Immediate from (i). 0 

The category Inv also has some extra structure, which arises from the fact that every 

inverse semigroup comes equipped with a natural partial order. Let 0,~ : S -+ T be 

two homomorphisms in Inv. We write cps 0 if q(s)< O(s) for all s ES. Thus the set 

of all homomorphisms from S to T is a partially ordered set. The link between trans- 

formations in Sys and the order relation between homomorphisms in Inv is provided 

by the following result. 

Lemma 2. (i) Let (F, Cl), (G, cp) : (C,X) 4 (D, Y) be morphisms of systems. Zf z : (F, 0) 

--) (G, cp) is a transformation then J(F, 0) < J(G, q) in Inv. 

(ii) Let 9,cp : S + T be homomorphisms in Inv such that cpL 8. Then there is 

a transformation z : C(q) + C(0). 

Proof. (i) By Theorem 4.2, 

JR Q)([x, ~1) = Mx>, Q(Y)] and J(G cp)G,~l) = [cp(x), cp(y)l. 

By (T2), we have that 

V(X) = rpcx) . e(x) and V(Y) = rpcr). Q(Y). 

But p(x) = p(y). Thus by Theorem 2.7, we have that 

[V(X)? dY)l< [Q(X)? Q(Y)l. 

Hence J(F, 13) 5 J(G, 4). 
(ii) Recall that C(O) = (Fo, d) and C(q) = (F,, cp) where 

Fn(s, e) = (B(s), 8(e)) and 0 : Xs +X, 
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and 

F&e) = (cp@), de)) and cp :XS -XT. 

For each (e, e) E C(S)0 put z(~,~) = (q(e), O(e)). Then z(~,~) E C(S) since cp(e) 5 O(e) by 

assumption. Clearly, 

d(q,,)) = We, e) and r(~,~)) = F,(e, e>. 
Thus 

Q,~) E hom(FB(e, e), F,(e, e>>. 
We show that r is a transformation of system morphisms by showing that the axioms 

(Tl) and (T2) hold. 

(Tl) holds: let (e, e), (f, j) E C(S)0 and (s, e) E hom((e, e), (f, f)). Then 

F,(s, e)r(,,) = (cp(s), cp(e))(q(e), e(e)) = (&Me), q(e)) 

which is equal to (q(s), O(e)) since s-‘s<e. Whereas 

r(j-,f)Fg(~, e) = (VU), Q(f))(&s), e(e)) = (cp(f)&), e(e)) 

which is equal to (q(s), O(e)), since cp(s) 2 O(s) and cp(s) = cp(ss-’ )0(s) = cp( f)e(s). 

(T2) holds: let x EX,. Then 

p(x) = (d’,xx-1) and rPcX) = (cp(mx-’ ), B(xu-’ )). 

Now 

z~(~). e(.q = (~p(xx-l), e(xx-l)). e(x) = ~o(xx-’ p(x) 

which is equal to q(x) since &x)50(x). 0 

We now single out a special class of system morphisms. In the definition below, we 

use the following notation : if (C,X) is a system then (lc, lx) is the identity system 

morphism at (C,X), where lc is the identity functor on C and 1~ is the identity 

function on X. 

Definition. Let (CJ) and (D, Y) be systems. A system morphism (F, 0) from (C,X) 

to (D, Y) is said to be an equivalence (of systems) if there is a system morphism 

(G, VP) from (D, Y) to (C,X) and isomorphisms 

o:(lo,lr)--+(FoG,Oocp) and r:(lc,lx)+(GoF,cpo8). 

The key properties of equivalences are described in our next result. 

Theorem 3. (i) Zf (C,X) is a system then (lc, lx) is an equivalence. 
(ii) The composition of equivalences is an equivalence. 
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(iii) Let (F,H): (C,X) + (D, Y) be an equivalence. Then J(F,O): J(C,X) + 

J(D, Y) is an isomorphism. 

Proof. The proofs of (i) and (ii) are straightforward. 

(iii) By definition there is a system morphism (G, cp) from (D, Y ) to (C,X) and 

isomorphisms g and r such that 

a:(l~,l~)~(FoG,Oocp) and r:(lc,lx)+(GoF,cpo8). 

Since J is a functor we have that 

J(F,C))J(G,4)=J(FoG,Qocp) and J(G,~)J(F,O)=J(GoF,cpoO). 

Now J(~D, 1~) is the identity homomorphism on J(D, Y) and J(lc, lx) is the iden- 

tity homomorphism on J(C,X). Thus by Lemma 2, J(Fo G, f30 cp) is an identity 

homomorphism, as is J(G OF, cp o 0). It is now immediate that J(F, (3) is an 

isomorphism. 0 

Two systems are said to be equivalent if there is an equivalence of systems between 

them. The above result implies that equivalent systems give rise to isomorphic inverse 

semigroups. An explicit description of equivalences is contained in the following result. 

Proposition 4. A system morphism (F, 0) from (C,X) to (D, Y) is an equivalence of 
systems tf, and only if, the following axioms hold: 

(ES1 ) F is an equivalence of categories. 
(ES2) For each y E Y there exists an isomorphism u E D and an element x E X 

such that y=u. B(x). 

(ES3) Zj” yi = a. y2 in oY and &xl) = yl and &x2) = y2 then there exists a’ E C 
such that XI = a’ x2. 

Proof. Let (F, g) be an equivalence of systems from (C,X) to (D, Y). Then there is 

a system morphism (G, cp) from (D, Y) to (C,X) and isomorphisms cr and r such that 

~:(l~,lr)--f(FoG,8ocp) and r:(lc,l~)+(GoF,cpoO). 

Thus 

CT: ~D+FoG and z: 1c~GoF 

are natural isomorphisms. In particular, F is an equivalence of categories, and so (ESl) 

holds. To show that (ES2) holds: let y E Y. Since o is an isomorphism from (lo, 1 y) to 

(F o G, 0 o 4), we have that O(cp(y)) = a,,~). y by (T2). Put x = q(y) and u = (o,,(~)))‘. 

Then y = U. O(x), as required. To show that (ES3) holds: let yi = a. y2 in oY and let 

0(x, ) = yi and 4x2) = ~2. Since there is an isomorphism z from (1 c, lx) to (G o F, 

q5 o t?), we have that x = rpcX). (cp o 19)(x) for all x EX by (T2). Thus 

XI =rp(X,).(~oW~) and -Q=~~(~~).((PO@(XZ). 
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Now 

x1 = rp(x,) . (cp O @(x1 ) = TP(Xl) . (P(QGR 1). 

However @xi ) = yi and so 

Xl = Tp(x, ) . dYI 1. 

Also cp(yi) = G(a). (p(y2). Thus 

xi = rp(x,) (G(a). cp(y2)). 

Since (p(y2) = 448(x2)), we have that 

xi = rp(xl) . (G(a). (~(Nx2))). 

But 

Put a’ = rpcx, )G(a)r&). Then x1 = a’ .x2. 

To prove the converse, let (F, 0): (C,X) --) (D, Y) be a system morphism satisfying 

(ESI), (ES2) and (ES3). We shall prove that it is an equivalence of systems. For 

each identity e in D there exists, by (ES1 ), an identity G(e) in C and isomorphism 

oe E hom(e,F(G(e))). In the usual way (see [9]), this information may be used to 

construct a functor G : D -+ C. Now let y E Y. By (ES2), there is an isomorphism u in 

D and element x of X, such that y = U. O(x). Now Ok. y is defined and so 

Gp(y) . Y = ($(y)U) . O(x). 

Now 

and so since F is an equivalence of categories there exists a unique isomorphism u’ 

in C such that u’ E hom(p(x), G(p(y))) and F(d) = o~(~)u. Now 

ap(y) . y = F( 24’) . O(x) = q&d . x) 

by (M2). Thus y=o&. O(u’ . x). Define q(y) = U’ .x. It is now straightforward to 

check that (G, q) is an equivalence of systems. 

By (ii) above, (F o G, 0 o cp) is an equivalence from (D, Y) to itself. We have seen 

that there is an isomorphism cre : e + F(G(e)) for each identity e in D. Together these 

isomorphisms are the components of a natural isomorphism o from 10 to F o G. It 

is also easy to check that (T2) holds. Thus o is an isomorphism from (lo, lr) to 

(FoG,Oocp). 

We shall now define an isomorphism r from (lc, lx) to (G o F, cp o 0). We begin 

by constructing a natural isomorphism from 1~ to G o F. Let f be an identity in C. 

Then by the above OF(~) is an isomorphism from F(f) to F( G(F( f))). Since F is an 
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equivalence of categories, there exists a unique isomorphism rf from f to G(F(f)) 

such that F(r,) = OF(/). It is now easy to check that the rf are the components of 

a natural isomorphism from 1~ to G o F. We finish off by showing that r satisfies (T2). 

Let x1 be an arbitrary element of X. Put Y = 6(x, ). With the notation as before, there 

is an isomorphism u in D and element x in X such that 8(x, ) = Y = u. Q(x). As above, 

there exists a unique isomorphism U’ from p(x) to G(p(y)) such that F(d) = oP(?,)u. 

Now, y = 0(x,) = u. O(x), thus by (ES3), there is a unique morphism v from p(x) to 

p(xl) such that F(v) = u and x1 = v .x. In fact, v is an isomorphism since F is an 

equivalence. Now, 

F(u’)u-’ =F(r,(,,,), 

and z.-’ = F(v)-‘. The category product ’ u v -’ is defined and so 

F(u'v-' ) = F(T,(,, ,). 

Both U’V-’ and rpcX, ) are morphisms from p(xl ) to G(F(p(xl ))), and so rr+, ) = U’K’ 
since F is an equivalence. By definition q(y) = U’ x and so 

which is equal to z,,(~,) .x1, as required. 0 

6. Composing the functors 

In this section, we shall justify the whole approach we have been adopting. In 

Section 4, we constructed fimctors J : Sys + Inv and C : Inv + Sys. We shall now com- 

pare S with (Jo C)(S), and (C,X) with (Co J)(C,X). 

We start by comparing S with (J o C)(S). Let S be any inverse semigroup with zero. 

We shall denote by S the inverse semigroup of all S-isomorphisms between principal 

left ideals of S. Define O:S-+S by O(s):Ss~ls+Sss-’ and O(s)=as-’ for each 

a E Ss-‘s. Then 0 is an injective homomorphism, since it is a restriction of the familiar 

Wagner-Preston representation (see Theorem V. 1.10 of [6]). 

Lemma 1. 0 is an isomorphism from S to 3. 

Proof. It remains only to prove that 0 is a surjection. Let (3: Sx+Sy be an S- 

isomorphism. Since S is inverse x -lx is the unique idempotent generator of Sx and 

Y-i y is the unique idempotent generator of Sy. Put a = 8(x-‘x). Now 

&sx) = o(.sxx-’ x) = @x(x-‘x)) = sxe(x-ix) = sxu.. 

Thus 8 = (pa 1 Sx), where pa is right multiplication by a. Observe that 

u = 8(x-‘x) = e((x-‘x)(x-‘x)+x-‘xu. 
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Also a E Sy and so ay-’ y = a. Hence a E x- ‘xSy-‘y. There exists a’ E Sx such that 

@a’) = y-l y since Q is surjective. Now 

y-ly = &a’) = &a/x-lx) = &q-lx) = a’a. 

Thus a’a = y-l y. It follows that 

ua’a=ay-‘y=u. 

Also a’ E Sx-‘x and so u’au’ E Sx-‘x. We calculate &a/au’): 

B(u’aa’) = a’a0(a’) = y-‘yy-l y = Q(u’). 

But f3 is injective and so a’ = u’aa’. Since S is inverse we must have that a’ = u-’ and 

so u-la = y-’ y. Now a-‘, au-’ E Sx. Thus we may calculate 

But 8(x-‘x) = a. Hence au -’ =x-Ix since 8 is injective. 

We have proved that for every 8:Sx -+Sy an S-isomorphism, the element a = 

8(x-‘x) is such that a-l = 8-‘(y-‘ y), 19 = (pa 1 Sx) and x-‘x92a9y-‘y. Thus 

@(a-‘) = 8. 0 

We may now prove that every inverse semigroup with zero is isomorphic to an 

inverse semigroup arising from a category acting on a set satisfying the orbit condition. 

Theorem 2. Let S be an inverse semigroup with zero. 
(i) The C(S)-isomorphisms from C(S) .x to C(S) . y induce, and are induced by, 

S-isomorphisms from Sx to Sy. 
(ii) S and (JoC)(S) are isomorphic. 

Proof. (i) Let 8: C(S) .x + C(S) . y be a C(S)-isomorphism. By the proof of 

Theorem 3.2, we have that C(S) .x=Sx\{O} and C(S). y=Sy\{O}. Extend 6 to 

a function from Sx to Sy by defining e(O) = 0. Clearly, 8 :Sx +Sy is a bijection. 

We show that 8 is an S-isomorphism. As a first step, we prove that sx$%(sx) for all 

s E S. We consider the cases where sx is nonzero and zero separately. Suppose that sx is 

nonzero. Then sx E C(S) .x. By (Ml), p(d(sx)) = p(sx). Then 8(sx)8(sx)-1 = (sx)(sx)-’ 

and so sx%?‘B(sx). If sx= 0 then B(sx)=O by definition and sx.!%V(sx) is immediate. 

We can now show that 8: Sx -Sy is an S-homomorphism. We need to show 

for all t ES and sx E Sx that B(t(sx)) = t&sx). Suppose that t(sx) = 0 but t,sx # 0. 
From the result above B(sx)&?sx and so since 9 is a left congruence, te(sx)&Ysx = 0. 
Thus te(sx)= 0 and so B(t(sx)) = te(sx). Thus we may suppose that t(sx)# 0. Put 

e = (sx)(sx)-‘. Then t(sx) = t(e(sx)). Consider the ordered pair (te, e). Observe that 

e # 0, for if e = 0 then sx = esx = 0 which is a contradiction. Also, te # 0 since te = 0 
implies that tesx = tsx = 0 which is a contradiction. Thus te, e # 0. Also 

(te)-‘te=et-‘tese. 
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It follows that (te, e) E C(S). Now 

d( te, e) = (e, e) = p(n). 

Thus 3(te, e) (SK) and 

(te, e) . (sx) = tesx = tsx. 

Since 0 is a C(S)-homomorphism, we have that 

O((te, e) . (SC)) = (te, e) . B(sx). 

Hence 0( tsx) = teO(sx). Now 

e = (sx)(sx)-‘9V(sx) 

by the result above. Thus teO(sx) = tQ(sx). It follows that B(t(sx)) = tQ(sx). 

Conversely, let t) : Sx --f Sy be an S-isomorphism. We can define a C(S)-isomorphism 

8’ from C(S) .x to C(S) . y by O’((s, e) .x) = I. Suppose (t, f) .x = (s, e) .x. Then 

by Theorem 3.2, (t,,f) = (s,e) and so 0’ is well-defined. It is easy to check that 

e’((t,f). ((s,e).x)> = C&f). ~‘((s,e> .x1. 
(ii) Define a function 1: S + J(cc.Q&) by 

1(s) = ps-l : C(S). (SA) + C(S). (6’ ) 

if s is nonzero, and r(O) =O. By (i) and Lemma 1 z(s) ~J(c($s), and I is an iso- 

morphism. 0 

An immediate corollary of the above theorem is that every inverse semigroup is 

isomorphic to an inverse semigroup arising from a category acting on a set satisfying 

the strong orbit condition. 

We now compare (C,X) with (C o J)(C,X); it is here that the notion of equivalence 

comes into play. 

Theorem 3. (i) Let (C,X) be a system. For each function q: Co -X, such that 

p(q(e)) = e jbr each e E Co, there exists an equivalence of systems (F,, 0,) : (C,X) + 

(Co J)(C,X). 
(ii) Let q,q’ : Co-+X be functions from Co to X such that 

P(q(e)) = e = P(q’(e)) 

for each e E Co. Then there is an isomorphic transjkwmation from (F,, 0,) to (Fg,, 0,) ). 

Proof. (i) Define (F, 0) = (Fq, 0,) as follows: F : C + C(J(cX)) is the function de- 
fined by 

0) = ([q(r(s>),s . q(d(s))l, [q(d(s)),q(d(s))l) 
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and 8 :x-+xJ(,x) is the function defined by 

Q(n) = [q(P(x))41. 

In what follows we shall use the following notation: 

es = q(G)) and fS = q@(s)). 

The fact that 8 and F are well-defined functions is straightforward to check from the 

definitions. The proof of the theorem consists of a series of verifications. We begin by 

showing that F is a fimctor. It is straightforward to check that F maps identities to 

identities. Now suppose that 1st in C. Then by definition 

Now 

d(F(s))=([e,,e,l,[e,,e,l) and r(F(t))=([f,,f,l,[f,,f,l). 

But by assumption d(s) = r(t). Thus e, = fi and so d(F(s)) = r(F(t)). We now compute 

F(s)F(t). By definition 

F(s)F(t) = ([_/Ls. es1 @ [ft, t. 4, [et,etl>. 

Now 

C.(s.e,)nC.f,=C.(s.e,). 

Thus 

e,*(,s.e,)=r(s) and (s.e,)*f,=s. 

Hence 

WY’(t) = ([.A, (s. t) .el, [et, 4), 

which is equal to F(d). Thus F is a hmctor. 

To show that (F, 0) is a morphism of systems, we have to check that (Ml), (M2) 

and (M3) hold. Both (Ml) and (M2) are straightforward to check. We show that (M3) 

holds. From the proof of Theorem 3.2, 

C(J(cX))~8(w)=J(cX)~[w,w]\{O}={[d,u~w]~J(cX)\{O}:uEC}. 

If 

is nonempty, then we can find elements in the intersection such that [a, U. x] = [b, v . y]. 

But then u.x=p.(v.y) for some ~EC, and so C.xnC.y is nonempty. Now 

suppose that C .x n C . y = C .z. It is straightforward to check that 

c(Jbu)~ e(x) f- cvkx)). w) = cvw)) f e(z). 
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To show that (F, 6) is an equivalence of systems, we have to check that (ES1 ), 

(ES2) and (ES3) hold. 

(ES1 ) holds: to prove this we have to show that F is full, faithful and dense. 

F is ,full: let e and f be identities in C and let (s,e) be a morphism in C(J(cX)) 

such that 

d(s,e)=F(e) and r(s?e)=F(f). 

Let (s, e) = ([x, y], [z,z]). Then from K’S 5 e we obtain y = u z for some u E C. From 

d(s,e) = (e,e) we obtain e = [q(e),q(e)], and so [z,z] = [q(e),q(e)], from which we 

have that z = a. q(e) for some isomorphism a. From 

we obtain x = b . q(f) for some isomorphism b. Thus 

(s,e)=(Cb.q(f),(uu).q(e)l,[u. q(e),a.q(e)]). 

d(b-‘ua) = d(u) = p(q(e)) = e, 

and 

r(b-‘ua) =r(b-‘) = d(b) = p(q( f)) = f, 

and F(b-‘uu) = (s,e). 

F is faithful: Suppose that F(s) = F(t) and 

r(S)=r(t)=f and d(s)=d(t)=e. 

We show that s = t. By assumption, 

]q(r(s)),s . q(W))1 = h@(t)), t. q(d(t))l. 

Thus from the definition of N -equivalence we have that 

q(f)=u.q(f) and s.cl(e)=u.(t.q(e)) 

for some isomorphism u in C. By the cancellation condition, u = f and so s = t. 

F is dense: Let ([x,x], [x,x]) be any identity in C(J(cX)). Consider the ordered pair 

(ru n(n(Y\~i rn(nlui\ nfnfv\~i~ \L”,Y\tY”I,,V L=l\tY~I,?\I\P\~,,,,’ 

It is easy to check that it is a well-defined isomorphism in C(J(cX)), and that 

r(kqWHl, hWW4W))l) = (kxl, [WI>, 

and 

W,qW))l, [W(x))> q(p(x))l) = F(P(x)). 
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(ES2) holds: Let [x, y] be any element of X&X). Then the ordered pair 

a = ([x9 qM_Wl, hQWMN~N1)~ 

is a well-defined isomorphism in C(J(cX)) and 

[x, VI = a. 0). 

(ES3) holds: Let 

O(x) = (s, e) . O(w). 

By assumption, 

d(s, e) = rUq(W% 4) 

and so e = [q(p(w)),q(p(w))]. Let s = [a,b]. Then [b,b] se and so b = r. q(p(w)) for 

some r E C. Now 

[qW)),xl = (s,e). [q@(w)), WI 

and so 

kl(P(x)),xl= s @ [q(p(w)h WI. 

Now 

s @ h@(w)), WI = Ia> bl @ [q(P(w)h WI 

which is equal to 

Kq(p(w)) * b). a> (b * q(p(w))). ~1. 

But 

c.bnC.q(p(w))=C.b, 

and so 

b * q(p(w)) = T- and q(p(w)) * b = p(b). 

Thus 

[q(P(x)bl = [P(b). a, y. ~1. 

Therefore, for some isomorphism u in C we have that X=(W) . W. Now we compute 

F(W). By definition, 

F(ur) = (h(r(ur)>, Cur). q(d(ur))l, [q(d(r)), q(W))l). 

But 

p(x) = r(u) and d(r) = p(w), 
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and 

b = r . q(p(w)). 

Thus 

But q(p(x)) = U. a. Hence 

F(W) = ([a, b], e) = (s, e). 

(ii) Define z : Fq + F,I by 

r, = ([s’(e), q(e>l, h(e), q(e)11 

for each e E CO. It is easy to check that r, is a well-defined isomorphism in C(J(C,X)) 
and that z, E hom(Fa(e), Fq/(e)). 

(T 1) holds: let s E hom(e, f ). Straightforward, if somewhat unwieldy, calculations 

show that 

FgG,h = ([q’(f),s~ q(e)l, h(e),q(e)l> = TP&). 

(T2) holds: for each x EX we have that T~(~) . &,(x) = Q,?(x). El 

7. An equivalence of categories 

The results of the last section show that the categories Sys and Inv are close to 

being equivalent; that they are not is due to the choice we had to make in order to 

prove Theorem 6.3: (C,X) and (Co J)(C,X) are equivalent but not canonically so. 

In this section, we shall get around this difficulty by showing that a suitable quotient 

category of Sys is equivalent to Inv. 

Definition. Define a relation E on Sys as follows: (F, 0) 2 (G, cp) if, and only if, 

(F, 19) and (G, cp) are between the same systems and there is an isomorphism from 

(F,@) to (G,cp). 

The proof of the following is immediate from the properties of natural transforma- 

tions (see [9]). 

Lemma 1. The relation 2 is a congruence on Sys. 

If (F, 0) Z (G, cp) then there is an isomorphism z : (F, 0) -+ (G, cp), and so J(F, 0) = 

J(G,cp) by Lemma 5.2. Thus the functor J :Sys+ Inv induces a functor J’ from 

Sys/ 2 to Inv. Also, the functor C : Inv -+ Sys induces a fimctor C’ : Inv -+ Sys/Z by 

composition with the natural functor from Sys to Sys/Z. By Theorem 6.2, we have 
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that (J o C)(S) Z S. Thus (J’ o C’)(S) G S. By Theorem 6.3, there is an equivalence 

(F,,@,):(C,X)--+(CoJ)(C,X) for each q:Co -+X, and all such equivalences are 

isomorphic. Thus they all represent the same morphism in Sys/Z Finally, the definition 

of equivalences implies that r-classes containing equivalences are isomorphisms in the 

category Sys/Z We have thus proved the following result. 

Theorem 2. The functors J’ and C’ induce an equivalence of categories between 

Sys/” and Inv. 

8. Special cases 

The general theory we have developed will now be specialised. In particular, we 

will describe how the classical theory of 0-bisimple inverse semigroups and the Leech 

theory of inverse monoids are special cases. 

8.1. Right cancellative categories 

We show first that finding examples of systems in category theory is not difficult. 

Definition. Let C be a category. Then C acts on itself on the left as follows: define 

p : C + Co by p(x) = r(x), and define s .x = sx if d(s) = p(x), the usual category product 

in C. 

Proposition 1. Let C be a right cancellative category considered as a left C-system. 
(i) C satisjes the orbit condition if and only if any two morphisms s, t E C such 

that us = vt for some u, v E C have a pushout in C. 
(ii) If C satisfies the condition in (i), it is a system. 

Proof. (i) Let C be a right cancellative category satisfying the orbit condition. Let 

s, t E C such that us = vt for some u, v E C. We show that s and t have a pushout. 

Since C.snC.t is nonempty we have that C.snC.t=C.p for some ~EC. Let 

p = as = bt for some a, b E C. Now let h and k be any elements of C such that hs = kt. 
Then hs = kt E C. p and so hs = kt = cp for some c E C. But then hs = cp = cas and 

so h = ca by right cancellativity. Similarly, kt = cp = cbt and so k = cb. The element c 

is unique by right cancellativity. Consequently, (a, b) is the pushout of (s, t). 

Conversely, suppose that C is right cancellative and that C has pushouts of pairs of 

morphisms which can be completed to a commutative square. Suppose that C. s n C. t 
is nonempty. Then s and t can be completed to a commutative square and so, by 

assumption, have a pushout. Let p = as = bt where (a, b) is the pushout of (s, t). We 

claim that C.srlC.t=C.p. Let zEC.snC.t. Then z=us=vt for some u,v~C. 

But then by the property of pushouts there exists c E C such that u = ca and v = cb. 
Thus z = us = cas = cp. Hence z E C . p. Conversely, let z E C . p. Then z = cp for some 

CEC, and so z=cas=cbt. Hence zEC.sf3C.t. 
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(ii) By definition (Sl) holds, and (S2) holds by assumption. (S3) holds from the 

definition of p and (S4) holds since the action is just the category product and the 

category is right cancellative. 0 

We now give three examples of this construction of increasing generality. 

Examples. 1. The bicyclic monoid. Consider the monoid (N, +) as a one-object cate- 

gory acting on itself on the left. Clearly, (N,+) is right cancellative. Observe that 

(N+m)n(N+fl)=N+max{m,n}. 

Thus ~4 N satisfies the strong orbit condition. Hence J*(N N) is an inverse semigroup 

by Theorem 1.7. Define 

{ 

m-n 
m-n = 

if m>n, 

0 else. 

Then we can write 

max{m, n} = (n-m) + m = (m-n) + II. 

Clearly the only isomorphism in N is 0. Thus J*( N N) = N x N as underlying set. The 

multiplication is given by 

(a, 6) @ (c,d) = ((clb) + a, (b-c) + d). 

Thus J*( N N ) is just the bicyclic monoid [ 161. 

2. The polycyclic monoids. Let X be any nonempty set. Denote by X* the free 

monoid on X. When X contains only one element, X* is isomorphic to N; we shall 

assume in this example that X has at least two elements. X* is a cancellative monoid 

with identity element 2, the empty string. It is easy to check that X*u nX*r # 0, for 

any strings u, v E X*, if, and only if, u is a suffix of v or v is a suffix of u. Define the 

string u/v as follows: 

UJV = 
h if u=hv, 

2 else. 

If X*u flX*v is nonempty 

X*unx*v=X*z, 

then 

where z = (v/u)u = (u/v)v. Thus _+X* satisfies the orbit condition and so J&*X*) 

is an inverse semigroup with zero. Clearly, the only isomorphism in X* is I and so 

the underlying set of J(x*X*) is just (X* xX*) U (0). The product in J(x*X*) is 

given by 

(u, v) @ (x, y> = I ((x/v)u,(v/x)y) if x*v nx*x # 0. 
0 else. 

This is just the polycyclic monoid on (XI generators [ 151. 
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3. The gerzeralised polycyclic semigroups. The bicyclic monoid and the polycyclic 

monoids are special cases of the following more general construction. 

A (directed) graph 99 consists of a set of arrows G and a set of vertices G, to- 

gether with two functions M, o : G + G, called the source and target respectively. 

If x, y E G then x and y are said to be composable if a(x)=o(y). A sequence of 

arrows (xi , . . . ,x,,) is called a composable sequence if (xi,xi+i) are composable for 

i = 1,. . . , n - 1. The free category G* generated by G is defined to be the set of all 

composable sequences together with the set { 1, : e E G,}. We define d( 1,) = 1, = r( 1,) 

and 

d(xl ,...,xn>=la(,,) and r(xl,..-,xn)=L(x,). 

A partial multiplication is defined in G” as follows: if 

d(xi ,...,x,)=r(yl,...,y,) 

then 

(Xl,-..,X,)(Yl,...,Yn)=(~I,...,~m,Yl,...,Yn), 

and the elements { 1, : e E G,} act as identities. In this way, G” is a category. It is 

easy to see that G” is a right cancellative category (in fact, it is cancellative). 

We let G” act on itself on the left. To show that the orbit condition holds, we first 

define a new partial binary operation on G”. Let U,V E G* with d(u)=d(v). Define 

u/v = 
{ 

h if u= hv, 
r(v) else. 

Suppose that 

is nonempty. Then either (xi,. . . ,xn,) is a suffix of (~1,. . . , yn), in which case 

G*(xi,...,x,)~G*(~i,...,y,)=G*(yl,...,y,), 

or (yi,..., y,) is a suffix of (xi , . . . ,x,), in which case 

G*(xi ,..., x,)nG*(yl ,..., yn)=G*(xl ,..., ;cm). 

Observe that in both cases a(~,,,) = CY( y,). Now suppose that the intersection 

G*l,nG*(x+,x,J 

is nonempty. The set G* 1, consists of all strings (~1,. . , y,,,) with d(yl, . . . , ym) = 1,. 

But d(xl ,...,xn)=l,. Hence 

G*l,nG*(xi ,..., x,)=G*(xi ,..., x,). 

Finally, if the intersection 

G*l,nG*l, 
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is nonempty then e = f. It is now straightforward to check that if G*u n G*tl is 

nonempty then 

G*un G*v = G*(v/u)u = G*(u/v)v 

for all U, v E G*. Thus P(9) =J(o* G* ) IS an inverse semigroup. It is clear that the 

only isomorphisms in G* are the identities. Thus the underlying set of P(3) is just 

{(x, y) E G* x G* : r(x) = r(y)} u (0). 

The multiplication is given by 

(u, v> @ (x, y> = 
((x/v)u, (u/x)y) if G*vn G*x # 8, 

0 else. 

The inverse semigroups P(9) are called generalised polycyclic semigroups; they 

occur naturally in the study of Cuntz-Krieger C*-algebras. The polycyclic monoids 

are special cases: they arise as the semigroups P(9) when 3 is the graph which is 

a ‘bouquet of circles’. 

8.2. Cyclic systems and inverse monoids 

In this section, we shall show that Leech’s theory of inverse monoids [S] is a special 

case of our general construction. 

Definition. A system cX is said to be cyclic if X = C .x0 for some x0 E X. 

Lemma 1. rf’ S is an inverse monoid with zero then (C(S),Xs) is a cyclic C(S)- 
system. 

Proof. We claim that XS =C(S). 1. Let XEXS. Then XES\{O}. Now (x, 1) E C(S) 

since .x-‘x 5 1. Also, 

d(x,l)=(l,l) and p(l)=(l,l), 

so that 3(x, 1). 1. But (x, 1). 1 =x1 =x. Cl 

The converse of the above result is proved below. 

Proposition 2. Let CX be a cyclic system such that X = C ‘x0. Put 1 = p(x0). Then 
(i) J(cX) is a monoid. 

(ii) For every e E Co, hom( 1, e) # 0. 
(iii) For all s, t E C, us = vt for some u, v E C implies that s and t have a pushout. 
(iv) Put C’= {a E C :d(a) = 1). Then C acts on C’ on the left by restricting the 

action by left multiplication of C on itself, CC’ is a system, and CC’ is equivalent 
to cx. 
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Proof. (i) We show that [x0,x0] is the identity of J(cX). Let [x, y] be any nonzero 

element of J(&). Then 

Now C.ynC.xo=C.y and so xo*y=p(y) and (y*xo).xo=y. Hence [x,y]@ 

[x0,x0] = [x, y]. We may similarly prove that [x0, XO] @ [x, y] = [x, y]. 

(ii) Let e E Co. Since p is surjective there exists x EX such that p(x) = e. Now 

x~C.xo and so x=a.xo for some aEC. But then 

d(a)=p(xo)= 1 and e=p(x)=p(a.xo)=r(a). 

Thus aEhom(l,e). 

(iii) By assumption US = vt for some U, v E C. Thus d(s) = d(t). Let z EX such 

that p(z)=d(s)=d(t). Thus 3s.z and 3t.z. Put x=s.z and y=t.z. Since ZEC.XO 

then z=a.xo for some aEC. Thus x=(sa).xo and y=(ta).xo and so U.X=U .y. 

Hence C. x f? C . y is nonempty. By assumption C. x n C . y = C. w for some w. Let 

w=b.x=c .y for some b,cEC. Now 

w=b.x=(b.sa).xo and w=c . y=(cta).xo. 

Thus (bsa) .x0 = (eta) .x0. By the right cancellation condition we have that bsa = eta. 

By right cancellation in C, we have that bs = ct. 

We now show that (b,c) is a pushout of (s, t). Suppose that hs = gt for some 

g,hEC. Then (hs).z=(gt).z, so that h.(s.z)=g.(t.z). But s.z=x and t.z=y 

and so h.x=g . y. Now 

h.x=g.yEC.xrlC.y=C*w 

and so h.x=g .y=d.w for some dEC. Now h~x=(hsa).xo and d.w=(dbsa).xo. 

Thus (ha) -x0 = (dbsa) .x0. By the right cancellation condition ha = dbsa, and by 

right cancellation h = db. Also g . y = (gta) .x0 and d. w = (dcta) .x0. Thus (gta) -x0 = 

(dcta) .x0. By the right cancellation condition gta=dcta, and by right cancellation 

g = dc. Thus (h, g) = d(b, c). The element d is unique by right cancellation. 

(iv) We begin by showing that CC’ is a system by checking that the axioms (Sl ), 

(S2), (S3) and (S4) hold. 

(Sl ) holds: the action of C on C’ is the restriction of the action of C on itself 

described in Section 8.1. The function p : C’ --f CO is defined by p(x) = r(x). C’ is C- 

invariant : let x E C’ and a E C be such that 3a.x. Then d(ax) = d(x) = 1 so that ax E C’. 

(S2) holds: in order to show that the orbit condition holds, we shall define a function 

O:X-+C’ as follows: let xEX. ThenxEC.xo so that x=a.xo for some aEC. But 

a is uniquely determined by the right cancellation condition. Thus we may define 0 by 

the condition x = O(x) .x0. In fact, 0 is a bijection. It is easy to see that it is injective. 

To prove that it is surjective, let a E C’. Then d(a) = 1, so that 30.~0. Put x=a .x0. 

Then clearly, e(x) = a. 
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We show first that 

C.xnC. y=0 ++ c@)nC8(y)=0. 

If CO(x) n C@(y) is nonempty, then aB(x) = b(Q) for some u, b E C. Thus 

u.x=(aO(x)).xo=(bQ(y))~xo=b .y~C.xnC .y. 

Hence C. x n C . y is nonempty. Conversely, suppose that C. x n C . y is nonempty. 

Then a .x = b y for some a, b E C. Thus (a&x)) .x0 = (be(y)) ‘x0, and so &9(x) = 

b&y). Hence C&x) n CO(y) is nonempty. 

We now show that 

c.xnc . ~=C.Z H ce(x)nce(y)=c.e(z). 

Suppose that C .x n C . y = C .z. Let w E CO(x) 0 CO(y). Then w = a@(x) = b&y) for 

some a, b E C. Thus 

and so 

w,xo=u.x=b. y. 

Hence, by assumption, w. x0 = c. z for some c E C. Thus w. x0 = (cd(z)). x0. Hence 

w = co(z) and so w E CO(x) n CO(y) and 

cecx) n cecy) g cecz). 

NOW suppose that CO(z) E CO(z). Then CO(z). x0 = c . z E C .X n C . y. Thus c . z = d x 

for some d E C, and so (c&z)) ‘x0 = (d&x)) .x0. Hence co(z) = de(x) and so c&z) E 

CO(x). Similarly, we can show that cf3(z) E CO(y). Hence 

cecx) n cety) = cc(z). 

The converse is proved similarly. 

We can now prove that the orbit condition holds. Suppose that Cu n Cb is nonempty, 

where u,b E C’. By the result above C. F’(a)n C. 8-‘(b) is nonempty. Thus 

C.O-‘(a)nC.&‘(b)=C.z for some ZEX. Hence CunCb=C@). 

(S3) holds: for if e E Co then hom( 1, e) is nonempty, so that there is an element 

c E C’ such that d(c) = 1 and r(c) = e. Thus c E C’ and p(c) = e. 

(S4) holds: since C is right cancellative. 

We now prove that the systems (C, C’) and (C,X) are equivalent. Let I : C + C be 

the identity fimctor. 

We show first that (Z,O) is a system morphism by checking that (Ml), (M2) and 

(M3) hold. 

(M 1) holds: p( O(x)) = r(B(x)) = p(x), since x = B(x) . x0. 
(M2) holds: let a E C and x E X be such that a .x exists. Now by definition a. x = 

(d(x)) .x0. Hence &a. X) = d(x). 
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(M3) holds: we have already shown this above. 

We finish off by checking that (I,@ is an equivalence of systems by showing that 

(ESl),(ES2) and (ES3) hold. 

(ES 1) holds: immediate. 

(ES2) holds: 0 is a bijection. 

(ES3) holds: straightforward. 0 

The above result shows that inverse monoids with zero are determined by categories 

C satisfying the following conditions: 

(Ll ) There is an identity 1 E C, called a weak initial object, such that hom( 1, e) # 0 

for every identity e. 

(L2) C is right cancellative. 

(L3) If s, t E C are such that US = vt for some U, v E C, then s and t have a pushout. 

The inverse semigroup is constructed by taking X = {a E C : d(a) = l} and letting C 

act on X on the left by left multiplication. 

This is essentially Leech’s construction [8]. The only difference is condition (L3); 

Leech has the condition: 

(L3)* Any two elements s, t E C with d(s) = d(t) have a pushout. 

The reason for this is that we take ‘inverse monoids with zero’ as our basic class 

of semigroups, whereas Leech takes just the class of inverse monoids: the zero is not 

a distinguished element. 

Leech’s original construction of inverse monoids from categories satisfying (Ll ), 

(L2) and (L3)* is in fact a special case of a general construction in category theory: 

the construction of categories of partial functions from categories of functions. How- 

ever, Leech discovered two important facts: first, that Clifford’s original construction 

of bisimple inverse monoids [l] could be interpreted categorically (in the algebraic 

sense described in the introduction); and secondly, that every inverse monoid could be 

constructed from a suitable category. 

8.3. Monoid systems and 0-bisimple semigroups 

In this section, we show that the classical theory of 0-bisimple inverse semigroups 

due to Clifford [I], Reilly [17] and McAlister [l l] is a special case of our theory. 

We begin by constructing a system from a 0-bisimple inverse semigroup which is 

different from the usual one. 

Proposition 1. Let S be a 0-bisimple inverse semigroup, and let e be any nonzero 
idempotent in S. Put X, =R, and C, = R, neSe. Then C, is a right cancellative 
monoid, C, xX,-+X, dejined by (a,x) H ax is a monoid action and (C,,X,) is 
a system when p :X, --) C, is dejined by p(x) = e. 

Proof. This is essentially proved in [17, 111. We simply note that for x EX, we have 

that C, . x = Sx n R,. It is easy to check that Sx n Sy = Sx-‘xy-’ y. Thus 

C,.xnC, . y=S(x-‘xy-‘y)nR,. 
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The right-hand side is empty precisely when x-’ xy-‘y = 0; to see this, suppose first 

that x-‘xy-’ y is nonzero. Then there exists z E .&I~~-, ~ nR,, since S is 0-bisimple; 

in which case 

C,.xnC, . y=SznR,=C,.z, 

and is nonempty. Conversely, suppose that w E Sx-‘xy-’ y n R,. Then w(x-‘xy-’ y) 

= w and w.%e. Since e is nonzero, w must be nonzero. But then x-‘xy-’ y must be 

nonzero. 0 

The relationship between the above system and the standard one is described below. 

Proposition 2. Let S be a 0-bisimple inverse semigroup, and e a nonzero idempotent. 

Then (C,,X,) is equivalent to (C(S),Xs). 

Proof. Define (F, 6’) as follows: F : C, + C(S) is defined by F(a) = (a, e), and 0(x) =x. 

F is well-defined since a E R, n eSe and so aa-’ = e and a-la le. Clearly, r(a, e) = 

(e,e) and so F(C,)=end((e,e)). We show first that (F,Q) is a morphism of systems 

by checking that (Ml), (M2) and (M3) hold. 

(Ml) holds: 

p(B(a))=p(a,e)=(aa-‘,aa-‘)=(e,e) 

and 

F(p(a)) = F(aa-' ) = F(e) = (e, e). 

(M2) holds: 0(ax) = ax, F(a) = (a,e), Q(x) =x and F(a). O(x) = ax. 

(M3) holds: suppose that C, . x n C, y is empty. Then by Proposition 1, x-‘xy-’ 

y=O and so SxnSy=O. But 

C(S). x = Sx\{O} and C(S). y = Sy\{O} 

by the proof of Theorem 3.2. Thus C(S) .xn C(S). y is empty. Now suppose that 

C, x n C, . y = C, .z. Then by Proposition 1, the idempotent x-‘xy-’ y is nonzero and 

C,.z=SznR, where ZEL~~I_-I~ n R,. But Sx n Sy = Sx-‘xy-’ y and z4vx-‘xy-‘ y 

implies that Sx n Sy = Sz. It follows that C(S) .x n C(S). y = C(S). z. 

We now show that (F, 0) is an equivalence of systems by showing that (ES1 ), (ES2) 

and (ES3) hold. 

(ESl) holds: let (f,f) be any identity of C(S). Then since S is 0-bisimple there 

exists aES such that e-a-la and aa-’ - - f. Now, (a, e) E C(S), and d(a, e) = (e, e) 

and r(a, e) = (f, f). Thus (a, e) is an isomorphism. 

(ES2) holds: Let XEX,, so that x ES\(O). S ince S is 0-bisimple there exists y E S 

such that y-‘_y=x-‘x and yy-’ =e. Thus y~R,=x,. Put s=xy-‘. Then s-‘s=e. 

Thus (s, e) is an isomorphism in C(S). Also, 3(s, e) y since d(s, e) = (e, e) = p(y), and 

(s,e). y=sy=xy-‘y=x. But y=@y). Thus x=(~,e).@(y). 
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(ES3) holds: suppose that 6(x) = (s, e) . B(y). Then x, y E X, = R, and x = sy where 

s~‘sI,e.A1sor(s,e)=p(8(x))andsoss~’=xx~’.Thuse=xxx-‘=ss~’ andsosER,. 

Also s-‘s<e and so se=s. Hence sEReneSe. 0 
Systems in which the acting category is in fact a monoid we shall term monoid sys- 

tems. We can now prove that 0-bisimple inverse semigroups can be precisely described 

by monoid systems. 

Theorem 3. (i) J(&) is 0-bisimple iJ; and only if, for all x, y E X there exist iso- 
morphisms u, v E C such that p(u .x) = p(u . y). 

(ii) If C is a monoid and (C,X) a system then J(cX) is 0-bisimple. 

(iii) J(&) is 0-bisimple iJ; and only $ CX is equivalent to a system of the form 
c!X’ where C’ is a monoid. 

Proof. (i) Suppose that J(cX) is 0-bisimple and let x, y E X. Then [x,x] and [y, y] are 

nonzero idempotents of J(cX). Since J(&) is 0-bisimple there is an element [a,b] 
of J(&) such that 

[b, bl = [y, yl and [a, al = [X,X]. 

Thus b = v. y and a = u .x for some u and v isomorphisms. Since [a, b] E J(cX), we 
have that p(a) = p(b) and so p(v . y) = p(u .x). 

Conversely, let [x,x] and [y, y] be two nonzero idempotents in J(cX). By assump- 

tion, there are isomorphisms u and u such that p(u .n) = p(v . y). Hence [u ’ x, v. y] is 

a well-defined element of J(&). But 

[v.y,v.y]=[y,y] and [u.x,u.n]=[x,x]. 

Thus J(&) is 0-bisimple. 

(ii) The function p maps X to { 1) the set containing the identity of the monoid. 

Thus for all X, y E X we have that p(x) = p(y). Thus (i) is trivially satisfied, and so 

J(&) is 0-bisimple. 

(iii) Suppose that J(&Y) is 0-bisimple. Let e be any identity of C. Put C’=end (e). 

Let f be any identity. Since p is sujective there are elements x and y in X such 

that p(x) = f and p(y) = e. By (i), there exist isomorphisms u and v in C such that 

u~x=v~y.Butd(u)=p(x)=f,r(u)=r(v)andd(v)=p(y)=e.Thusv-‘u~hom(f,e) 

is a well-defined isomorphism. Thus C’ is a dense subcategory of C. Let X’ = {x EX : 

p(x) = e}. It is straightforward to check that c/X’ is a system equivalent to cX. 

Conversely, suppose that (C,X) is equivalent to (C/,X’), a monoid system. Then 

J(&) is isomorphic to J(c!X’) by Theorem 5.3. By (ii) the latter is 0-bisimple. 0 

Thus monoid systems completely character&e 0-bisimple inverse semigroups. Such 

systems are determined by the following set of axioms: let C be a monoid with identity 

1 and let X be a set. Then 

(MS1 ) There is a monoid action C x X -+X. 

(MS2) C is right cancellative. 
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(MS3) If a.x=b.x then a=b. 
(MS4) C.xnC’.y#(d implies C.xnC.y=C.z for some ZEX. 

Such monoid systems are easily seen to be equivalent to the ‘generalised RP-systems’ 

of McAlister [l 11. 

8.4. O-simple inverse semigroups 

The following result may be deduced from Corollary 2.5 of [14]. 

Proposition 1. Let S be an inverse semigroup with zero. Then S is O-simple $ and 
only if, for any nonzero idempotents e and f there exists un idempotent e’ such that 

e9e’ < f. 

Proposition 2. J(cX) is O-simple if, and only $ for all x, y E X there exists un ele- 
ment a E C such that p(x) = p(a . y). 

Proof. Suppose that J(cX) is O-simple, and let x, y E X. Then [x,x] and [y, y] are 

nonzero idempotents in J(cX). By Proposition 1, there exists an idempotent [y’, y’] 

such that 

[.vl~[Y’, Y'l 5 [Y, VI. 

Thus there are isomorphisms u and v in C such that [U .x,u. y’] is defined. Since 

[y’, y’] 5 [y, y] there exists b E C such that y’ = b. y. But then 

p(x) = p((u-‘v) . y’) = p((u-‘ub) . .Y) 

so that we can put a = (u-l vb). 
Conversely, suppose that the condition holds, and that [x,x] and [y, y] are two 

nonzero idempotents in J(QY). By assumption there exists a E C such that p(x) = 

p(a. y). Thus [~,a. y] is an element of J(cX). But 

[a. Y, a. ~1 = [a. Y, 0. VI L: iv, ~1 and [x,x1 = [x,x1, 

thus by Proposition 1, the semigroup J(cX) is O-simple. 0 

We consider a simple application of the above result to generalised polycyclic semi- 

groups. A directed graph Ce is said to be strongly connected if for any two vertices e 

and f there exists a composable sequence of arrows (xi,. . ,x,) such that 

X(X,) = e and 0(x1 ) = f. 

Proposition 3. Let 9 be a directed graph. Then P(3) is O-simple if, and only if, 9 
is strongly connected. 

Proof. Suppose that P(g) is O-simple. Let e and f be any two vertices of 9. Then 

in G* there are identities 1, and If. By Proposition 2, there exists an element a 
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in G* such that p(l,)=a. If. Thus 1, =r(a) and d(p) = 1~. But a is a sequence of 

composable arrows of G from f to e. Thus G is strongly connected. 

Conversely, suppose that G is strongly connected. Let x and y be any elements of 

G*. Let r(x) = 1, and r(y) = If. Since G is strongly connected there exists a sequence 

of composable arrows, a, such that 

r(a) = 1, and d(u) = 1~. 

Thus a. y exists and 

p(x) = r(x) = 1, = r(u . y) = p(u . y). 

Hence P(3) is O-simple by Proposition 2. 0 

8.5. O-E-unitary inverse semigroups 

Definition. An inverse semigroup S with zero is said to be O-E-unitary if e 5s with e 

a nonzero idempotent implies that s is an idempotent. 

Definition. A system (C,X) satisfies the left cancellation condition if a . x = a . y 
implies x = y for all a E C and x, y E X. 

Proposition 1. If S is O-E-unitary then (C(S)&) satisfies the left cancellation 
condition. 

Proof. Let (s, e) . x = (s, e) . y. Then 

sx = sy, e=n-l= yy-l and s-‘s_<e. 

Put ~=s-~sx=.r-~sy. Then w<x,y and so W-‘wlx-‘y. Suppose that W-‘w=O. 

Then X-~S-~SX = 0 and so sx = 0. But this is a contradiction. Thus W-~W is a nonzero 

idempotent. Hence x-l y is an idempotent. But x-‘xgx-’ y and so x-l y =x-lx. Thus 

x = y, and so the left cancellation condition holds. 0 

Proposition 2. J(cX) is O-E-unitary if, and only if, (C,X) sutis$es the left cuncellu- 
tion condition. 

Proof. Suppose that J(cX) is O-E-unitary, and that x = a . y = a f z. Then d(u) = p(y) 

and d(u)=p(z). Thus [y,z] is an element of J(cX). Now [x,x] <[y,z], and [x,x] is 

a nonzero idempotent. Thus, by assumption, [y,z] is an idempotent and so y =z. Thus 

the left cancellation condition holds. 

Conversely, suppose that the left cancellation condition holds, and let [x,x] 5 [y,z] 

in J(&). Then (x,x)=u.(y,z) for some UEC. Hence x=u.y=a.z. Thus by the 

left cancellation condition we must have y =z. Thus [y,z] is an idempotent. 0 
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We may apply the above result to the generalised polycyclic semigroups. Because 

G” is cancellative o*G* satisfies the left cancellation condition. The following is now 

immediate. 

Proposition 3. Let 9 be a directed graph. Then P(9) is O-E-unitary. 

8.6. The clause semigroup 

The clause semigroup was originally introduced by Girard in [5]. His definition was 

made without the use of categories and without a full formalisation of the semigroup 

structure. The process of trying to understand his construction in the light of McAlis- 

ter’s work [ 121 led directly to the main constructions of this paper. 

For this example we shall need some standard definitions from universal algebra. 

Definitions. An operator domain !2 is a set of function symbols indexed by their 

arities. We denote by Q, the set of operators in Q whose arity is n. The set of terms, 

To(X), in a set X of variables over the operator domain Q, is the smallest set satisfying 

the following two conditions: 

(1) x E X implies (x) E To(X). 

(2) If PESZ, and tl,...t,ET&Y) then p(tl,...t,)ET&C). 

The term (x) is usually written x. 

Definitions. A term substitution is a function f :X 4 To(X). The support of ,f’, 
supp( S), is the set {x EX : f(x) #x}. We shall assume that this set is always 

finite. If t E T&X) then var(t) is the set of all variables appearing in t. Substitutions 

can be applied to terms as follows: 

(1) f((x))=f(x) for all xEX. 

(2) f(p(t1,. . . ,tn>) = P(f(tl>,. . . ,f(L)). 

A renaming substitution is a bijective substitution, and thus a bijection on X. 

We now give some definitions and state some results from ‘Unification theory’. 

Consult [2, 41; Ref. [4] contains proofs in Section 8.4. 

Definitions. Let s and t be terms. If a(s) = t for some substitution c, then we write 

s 5 t and say that s subsumes t. Let o and p be substitutions. If r o g = p for some 

substitution r, then we write o<p and say that o is more general than p. 

Theorem 1. (i) Let s and t be terms and let p and a be term substitutions such that 
supp(p) C var(s) and supp(a) 2 var(t). Suppose that p(s) = t and o(t) = s then p and 
o are mutually inverse renaming substitutions. 

(ii) Let p and o be substitutions. Then a 5 p and p 5 IT if, and only iA z o o = p ,for 
some renaming substitution 2. 

Definitions. Let s and t be terms. Let o be a substitution with supp(o) = var(s) U var( t). 

Then o is said to unify s and t if CJ(S) = o(t). The substitution 0 is called a most general 
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unifier (mgu) of s and t if the following two conditions hold: 

1. 0 unifies s and t. 

2. If G’ unifies s and t then al g’. 

We write (T = mgu(s, t) to mean that 0 is a most general unifier of the terms s and t. 

If CJ = mgu(s, t) then a(s) = o(t) is called a most common instance of s and t. 

The key result is the following called the ‘Unification Algorithm’. 

Theorem 2. Given terms s and t then either: 
(i) s and t have no uni$er; 

or 
(ii) s and t are unljiable, and they have an mgu. 

We shall now define a category action which satisfies the orbit condition. 

Definitions. Let X = {xl, x2 , . . .} be a countably infinite set of variables. Let Sz be 

a fixed operator domain. Define a category Co as follows: the identities of Co are 

the identity functions on the finite subsets of X. A morphism f : 1~ -+ 1 r is a term 

substitution f :X + To(Y) such that Y = U {var( f(x)) : x E X}. If g : 1 r + 1~ is another 

morphism of Co, then we write 3gf and define gf : 1~ + 1~ by (gf)(x) = g(f(x)) 

for each XEX. Let XQ = To(X) and define p:& --) (CQ)O by p(t)= l,,,(,). Define 

a function Co *Xo -+Xo by 0. t = a(t). 

Proposition 3. With the de$nition above Ca acts on Xa and satisfies the orbit 

condition. For s, t E Xa, we have that (s, t) E W* H p(s) = p(t). 

Proof. It is clear that Co is a category. To show that we have an action, we have 

to check that the axioms (Al), (A2) and (A3) hold. Of these, only (A2) needs any 

comment. Suppose that 3a. t where a : 1~ + 1 y. Then p(t) = l,,(,) and so X = var(t). 

Now p(a. t) = lvar(o(t)). But Y = var(a(t)) since t contains all the variables of X, and 

every variable y E Y appears as a variable in a(x) for some x EX, by assumption. 

Hence p(a . t) = r(a). 
We now show that the orbit condition holds. Let si and s2 be two terms and sup- 

pose that Co . sr f’ Co . s2 is nonempty. We may assume without loss of generality that 

var(sr ) n var(s2) is empty; for otherwise, we can find renaming substitutions y and 6 

such that 3~. s1,36. s2 and y(sr ) and 4~2) have no variables in common. Since y and 

6 are bijections we have that 

By assumption, there exist morphisms ~1, c12 E Co such that al . s1 = ~2 . ~2. Thus from 

the definitions 

d(al) = varh), d(a2) = var(s2) and ai = ~4s~). 
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Define a substitution a: X + TQ(X) by 

1 

XI(X) if xEvar(st) 

4x) = Q(X) if x E var(sz) 

X else. 

Clearly, cz(st ) = U(Q) and so sr and s2 are unifiable. Let p = mgu(st,sz) and put 

t = ,U(SI ) = P(Q). We shall prove that 

c,*s, ncQ.s,=CQ.t. 

We show first that Co . sl n CQ . s2 C CQ . t. Let /It . sI = b2 . ~2. Define a substitution 

jI:.!Z+ To(%) by 

{ 

jr(x) if xEvar(sl), 

B(x) = P2(x) if x E var(sz), 

x else. 

Clearly, p(sr ) = Jim. But ,u = mgu(sr,s2) and so p 5 b by Theorem 2. Let 8~ = /j for 

some substitution 0. Now 

BIbI I= B(Sl) = (b)(Sl) = m4s1>) = @(t>. 

Define a morphism cp : l,,,(,) -+ l,,,(~,(S, ,) by q(x) = O(x). Then fir sI = q. t. 

Now we prove that Co. t 2 CQ sl n C ~2~2. Let cr.tE(2a.t. Define ~1 :lvar(s,)+ 

1 var(P(sl 1) by PI(~) = Ax), and define 1-0 : l,,(,,) + lvar(p(sz)) by !-Q(X) = P(X). Then 
p(s~)=p~ ‘sI and ~(s2)=~2.s2. Thus r.t=(ccpl).sl =(tlp2).s2. 

Finally, we compute S?*. Let p(s) = p(t) and suppose that o f s = z. s. Now var(s) = 

var(t), so that the variables appearing in s and t are the same. From (T. s = z s, 

we have that CJ and r take the same values on each of the variables of s. Hence, 

r~ and r take the same values on each of the variables of t. Thus 0. t = 5. t, and 

conversely. 0 

We may now provide an explicit description of J(cn&). 

Theorem 4. The underlying set of J(c,Xa) is 

{[s, t] : s, t EXQ, and var(s) = var(t)} U (0). 

Furthermore, the equivalence relation - is given by 

(s,t)-(s’,t’) H (s,t)=c.(s’,t’) 

,for some renaming substitution 0. The binary operation in J(&&) is given by the 
fbllowing expression, where we assume that var( t ) n var( u) = 0 : 

[S> fl@ [% VI = [P(S)? P(V)1 

if’ p = mgu(t, u) and 0 otherwise. 
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Proof. By Theorem 2, we have already seen that 

(s, t) E &?* @ var(s) = var(t). 

Suppose that (s, t) - (s’, t’). Then (s, t) = o . (s’, t’) and (s’, t’) = r. (s, t). Thus in par- 

ticular 

g(s’)=s and r(s) = t. 

The conditions of Theorem l(i) are satisfied and so o and r are mutually inverse 

relabelling substitutions. 

We now compute [s, t] @I [u, v]. Recall that t and u have no variables in common. 

Suppose that Co. t n CQ. u is nonempty. By definition 

[s, t] @ [u, v] = [(u *t) . s, (t * u) . ?I]. 

Let p = mgu(t,u). Then as we have seen 

c,.tncn.u=cSz.CL(t)=CS2.~(U). 

By definition 

(u*t).t=p(t) and (t*u).u=p(u). 

By assumption s and t share the same variables. Likewise, u and u share the same 

variables. Thus 

p(.s)=(U*t).,s and p(o)=(t*u).v. 

Hence 

[s, tlc3 cu, VI = b(s), P(U>l. 0 

The semigroup J(cn&) is the clause semigroup. 
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